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HIGHLIGHTS

• Intrinsically, super‑strong fluorescent silk was fabricated via feeding Bombyx mori silkworms with carbon nanodots.

• The multi‑functional silks showed no cytotoxicity to Schwann cells and exhibited great potential in bioimaging.

• The reinforcing mechanism of multi‑functional silks was proposed.

ABSTRACT Fluorescent silk is fundamentally important for the 
development of future tissue engineering scaffolds. Despite great 
progress in the preparation of a variety of colored silks, fluorescent 
silk with enhanced mechanical properties has yet to be explored. In 
this study, we report on the fabrication of intrinsically super‑strong 
fluorescent silk by feeding Bombyx mori silkworm carbon nanodots 
(CNDs). The CNDs were incorporated into silk fibroin, hindering the 
conformation transformation, confining crystallization, and inducing 
orientation of mesophase. The resultant silk exhibited super‑strong 
mechanical properties with breaking strength of 521.9 ± 82.7 MPa and 
breaking elongation of 19.2 ± 4.3%, improvements of 55.1% and 53.6%, 
respectively, in comparison with regular silk. The CNDs‑reinforced 
silk displayed intrinsic blue fluorescence when exposed to 405 nm 
laser and exhibited no cytotoxic effect on cells, suggesting that multi‑functional silks would be potentially useful in bioimaging and other 
applications.
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1 Introduction

Fluorescent silk, one of the novel natural functional bioma‑
terials, is gaining enormous attention due to its great poten‑
tial for biomedical and intelligent textile‑related applica‑
tions [1–5]. It has been reported that fluorescence can be 
imparted through the incorporation of various organic dyes 
and inorganic nanoparticles into silk through post‑dyeing 
of naturally produced silk [6, 7]. This method inevitably 
requires harsh post‑processing conditions and complex pro‑
cedures, which may devastate the original properties of the 
silk. Alternatively, modification of silkworm genes to obtain 
intrinsically fluorescent silk has been reported [8–11]. This 
technique has great potential for the production of bio‑func‑
tional silk in the future, especially as the mass production of 
spider silk can be achieved through targeted gene replace‑
ment in Bombyx mori [12]. Furthermore, a recent study has 
reported the direct production of intrinsically fluorescent silk 
from silkworms fed on a diet containing dye [13]. Compared 
with other methods, feeding method is considerably more 
convenient and environmentally friendly since it eliminates 
all external dyeing processes and reduces the use of the 
resources associated with it.

Besides its fluorescent capability, the properties required 
for fluorescent silk for use in biomedical scaffolds and diag‑
nostic and therapeutic devices are excellent mechanical 
properties and lack of cytotoxicity. To date, to the best of our 
knowledge, the majority of fluorescent silk only restores the 
original mechanical properties of silk, which is still much 
weaker than that of spider dragline silk or other reinforced 
silk [14, 15]. Super‑strong silk with intrinsically fluores‑
cence has not yet been reported.

In the present study, we have reported the fabrication of 
reinforced and fluorescent multi‑functional silk produced 
directly by silkworms, that is, reinforced intrinsically fluo‑
rescent silk, and studied its physical properties. Based on 
the reinforcing mechanism, we hypothesize that the fluores‑
cent material added to the silkworms’ diet should present a 
number of functional groups that would be able to interact 
with silk fibroin, but otherwise have little effect on the origi‑
nal structure of silk fibroin. As potential candidates, it was 
found that carbon nanodots (CNDs) have the desired struc‑
ture [16, 17]. Furthermore, as a nanodye, CNDs disperse 
homogeneously in the diet, favoring in vivo uptake to form 
high‑quality silk [18]. In addition, CNDs are a new class of 

fluorescent materials that has attracted much attention for 
applications in biomedical field owing to their adjustable 
parameters, good fluorescence stability, and excellent bio‑
compatibility [19–21].

2  Experimental

2.1  Carbon Nanodots

Carbon nanodots (CNDs) were provided by Professor D. 
Wang, Beijing University of Chemical Technology, and 
prepared using a modified hydrothermal method with cit‑
ric acid and ethylenediamine as precursors [22]. The CNDs 
exhibited excellent dispersibility in aqueous solution and had 
diameters ranging from 1 to 5 nm (Fig. S2).

2.2  Preparation of CNDs‑Modified Artificial Diet

The Bombyx mori eggs were provided by the Sericul‑
tural Research Institute of Guangxi, China. The artificial 
silkworm diet was purchased from Shandong Sericultural 
Research Institute, China. The preparation of artificial diet 
is the same as our previous work [23]. Dry diet power was 
mixed uniformly with CNDs in aqueous suspension, fol‑
lowed by microwaving for 5 min, and then pressed into 
wafer. The mass fraction ratio of CNDs/dry diet powder was 
0.00, 0.75, 1.00, and 1.25%.

2.3  Raising of Silkworm

The Bombyx mori silkworms were raised in a climatic 
chamber. The humidity and temperature in different growth 
periods were controlled accurately as previously reported 
by Cai et al. [23]. All silkworm larvae were fed with nor‑
mal artificial diet prior to the second day of the fifth instar. 
A total of 100 silkworms were then allocated equally into 
four groups. Three groups were fed a CNDs‑modified diet 
from the second day of the fifth instar to the start of spin‑
ning since the growth of silk gland and biosynthesis and 
secretion of silk fibroin occurred mostly during this period 
[24]. The other group was fed a normal artificial diet over 
the whole study. Finally, the survival rate of each group was 
up to 95%. The silkworms and resultant silks obtained were 
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termed CNDs‑0.75%, CNDs‑1%, CNDs‑1.25%, and control, 
respectively.

The normal artificial diet consisted of mulberry leaf pow‑
der (38.4%), defatted soybean powder (36.9%), corn powder 
(9.0%), agar powder (5.0%), green branches and petioles 
powder (5.0%), other trace substances, including vitamin C, 
vitamin B complex, choline chloride, and citric acid.

2.4  Cocoon Degumming

Prior to degumming, the obtained cocoons were dried at 
100 °C for 60 min and at 80 °C for 180 min in a vacuum 
drying oven. The cocoons were then degummed three times 
in boiling 0.5 wt%  Na2CO3 aqueous solution for 30 min and 
rinsed with distilled water. Finally, the degummed silks were 
dried at room temperature.

2.5  Cell Culture and Characterization

Silk scaffolds were constructed by winding silk fibers around 
a hollow plastic frame (Fig. 4a), followed by degumming. 
Silk scaffolds were placed into 24‑well plate and sterilized 
using 75% (v/v) ethanol aqueous solution and UV light, fol‑
lowed by washing with phosphate‑buffered saline (PBS) 
three times. Schwann cells (SCs) were obtained from the 
Institute of Biochemistry and Cell Biology of the Chinese 
Academy of Sciences (Shanghai, China). They were seeded 
on scaffolds at a density of 1 × 104 cells per well and cultured 
in Dulbecco’s modified Eagle medium (DMEM) supple‑
mented with 10% (v/v) fetal calf serum and 10% (v/v) dou‑
ble antibody in a cell incubator at 37 °C in an atmosphere 
containing 5%  CO2. Culture medium was exchanged every 
2 days. Cell viability was evaluated using 3‑[4,5‑dimethyl‑
2‑thiazolyl]‑2,5‑diphenyl‑2H‑tetrazolium bromide (MTT) 
method after seeding for 2, 4, and 6 days. After 4 days, scan‑
ning electron microscopy (SEM, S‑4800, Japan) and laser 
scanning confocal microscopy (LSCM, TCS SP5, Germany) 
were used to study the morphology of SCs. For observa‑
tion by SEM, SCs seeded on scaffolds (SCs/scaffolds) were 
washed with PBS three times and then fixed in 2.5% para‑
formaldehyde at 4 °C for 2 h. After removing paraformalde‑
hyde, SCs/scaffolds were washed in PBS three times again, 
followed by dehydration through a gradient of ethanol aque‑
ous solutions (30, 50, 70, 75, 80, 90, and 100 vol%). Finally, 
the resulting SCs/scaffolds were freeze‑dried in tert‑butanol 

solution. SEM images were obtained at 10 kV. For observa‑
tion by LSCM, SCs/scaffolds were fixed in 4.0% paraformal‑
dehyde for 10 min, followed by washing in PBS three times 
and permeabilizing using 0.1% Triton X‑100 solution for 
5 min. The samples were blocked in 1.0% BSA solution for 
20 min. Finally, SCs/scaffolds were incubated with phalloi‑
din solution for 30 min. The laser wavelength was 405 nm.

2.6  Structural Characterization

Silk surface morphology was imaged using a Hitachi 
S‑3000  N scanning electron microscope (SEM). The 
CNDs were observed using a JEM‑2100 transmission elec‑
tron microscope (TEM) operated at 200 kV. Photolumines‑
cence (PL) spectra following excitation using a 370 nm 
laser were collected on JASCO FP‑6600 PL instrument. 
The CLSM (confocal laser scanning microscopy) images 
of the degummed silk were obtained after excitation with a 
405 nm laser and acquired on TCS SP5 LSCM. 3D CLSM 
images were reconstructed using Imaris software.

Fourier transform infrared (FTIR) spectra were recorded 
on a Nicolet 6700 Fourier transform spectrometer attenu‑
ated total reflectance (ATR) accessory. Quantitative analy‑
sis of secondary structure was conducted by spectra decon‑
volution of amide I band [25, 26].

Synchrotron radiation wide‑angle X‑ray diffraction (SR‑
WAXD) was performed on BL15U1 beamline at Shanghai 
Synchrotron Radiation Facility. The wavelength (λ) and 
the spot size of the X‑ray were 0.07746 nm and 3 × 2 μm2, 
respectively. FIT2D (V12.077) software and Peakfit 
(V4.12) software were utilized to process data obtained 
from these analyses. The process method was described 
in detail in our previous work [27].

The diameter of degummed silk was measured using an 
Olympus BX‑51 optical microscope. However, the cross 
section of silk was irregular, and a more accurate diam‑
eter was confirmed through a comparison of the method 
described above and typical weight/length method, as 
detailed in Ref. [23]. For each sample, more than 15 single 
silk fibers were measured. Subsequently, the mechanical 
properties of silks were measured on Instron 5565 at 25 °C 
and (45 ± 5)% relative humidity. The extension rate and the 
gauge length were 2 mm min−1 and 10 mm, respectively.
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3  Results and Discussion

3.1  Growth of Silkworms and Physical Properties 
of Cocoons

The Bombyx mori larval silkworms were raised in the cli‑
matic chamber by feeding with CNDs‑modified diet from 
the second day of the fifth instar to the start of spinning, 
in order to produce multi‑functional silks. The diets con‑
taining different content CNDs were prepared as previously 
described [23]. The cocoons and silk fibers obtained by 
feeding diets with CNDs concentration of 0, 0.75, 1.00, and 
1.25 wt% were named by control, CNDs‑0.75, CNDs‑1.00, 
and CNDs‑1.25, respectively. All silk larvae had a similar 

weight over the duration of fifth instar (Fig. 1e) with no 
differences between the control mature larva and those fed 
with CNDs‑modified diet. This indicated that modified diets 
prepared in this study were safe for silkworm. In addition, 
the cocoons obtained in this way exhibited similar colors 
and sizes (Fig. 1a–d). After drying, the cocoons were boiled 
in 0.5 wt%  Na2CO3 aqueous solution to remove sericin so 
as to obtain degummed silks, used for subsequent charac‑
terizations. Figure 1a–d demonstrates that degummed silk 
exhibited similar smooth morphology with a diameter of 
7 µm. No any CNDs were observed, illustrating that direct 
feeding with modified diet had no apparent effects on silk 
morphology. This may be attributed to the small number 
and excellent water dispersibility of CNDs (Fig. S2), a 
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Fig. 1  Preparation of multi‑functional silk from silkworms fed CNDs. a–d Photographs of mature larvae fed different diets, corresponding 
cocoons and degummed silks. e Weight of silkworm larvae of the fifth instar from first to seventh day. f PL spectra of degummed silks measured 
using an excitation wavelength of 370 nm
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characteristic difference from graphene,  TiO2, and other 
inorganic nanoparticles.

3.2  Fluorescent Properties of CNDs‑Modified Silks

An important observation was that just a small quantity 
of CNDs could endow the silk with unique properties. As 
shown in the PL spectra (Fig. 1f), the modified silks exhib‑
ited a strong emission peak at 450 nm, the intensity of which 
increased as the concentration of CNDs increased. The con‑
trol silks demonstrated only a weak but broad emission peak 
centered at 420 nm. The CNDs in the present study exhibited 
a strong emission peak centered at 450 nm (Fig. 2f); hence, 
we concluded that the fluorescent property originated from 
the CNDs, and silkworms could take in a certain quantity 
of CNDs.

As a result, all degummed silks, except the controls, 
exhibited an intrinsic homogeneous blue fluorescence at an 

excitation wavelength of 405 nm (Figs. 2b–e and S3). The 
CNDs‑1.25 silk exhibited the brightest blue fluorescence, 
consistent with the PL spectra (Fig. 1f). It is worth noting 
that samples with blue fluorescence were degummed silk 
rather than cocoon, indicating that the fluorescence origi‑
nated from silk fibroin brin. This was different from the 
naturally colored silk produced by wild silkworms, the color 
of which emanated from sericin rather than fibroin, and was 
lost after degumming [13].

In order to further ascertain the origin of blue fluores‑
cence of the silk, the silk glands of mature larvae fed with 
different diets were compared under UV lamp. The whole 
silk glands of control silkworm exhibited a light yellowish 
green (Fig. 2b′) fluorescence, while the middle and ante‑
rior silk gland of CNDs‑0.75 silkworm fluoresced light blue 
although the color of the fluorescence from the posterior 
silk gland (Fig. 2c′) was similar to that of control silkworm. 
As the content of CNDs reached up to 1 and 1.25 wt%, the 
whole silk glands fluoresced deep blue (Fig. 2d′–e′) and 
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further confirmed by the PL spectra of middle and posterior 
silk glands (Fig. 2g–h). In addition, the color of the fluo‑
rescence of glands became bluer with the concentration of 
silk fibroin from posterior silk gland to anterior division of 
middle silk gland. Asukura [28] pointed out that silk fibroin 
was polymerized in posterior silk gland. These observations 
illustrated again that CNDs were most likely within the silk 
fibroin and were maintained a certain content during the 
process of concentration and spinning, causing the modified 
silk to become intrinsically blue fluorescent.

3.3  Mechanical Properties of CNDs‑Modified Silks

An important fact is that the CNDs‑modified silks exhibited 
dramatically improved mechanical properties compared with 
control silk (Table 1 and Fig. S4). The breaking strength 
and elongation of 521.9 MPa and 19.2% for CNDs‑1.25 silk 
significantly exceed those of control silk with 336.5 MPa 
and 12.5%, indicating that super‑strong fluorescent silks 
could be fabricated using even small quantities of CNDs. 
Hence, 1.25 wt% was chosen as the maximum content of 
CNDs in this study to save the additional costs of further 
scale production and avoid any adverse effect of excessive 
CNDs on silkworms and silks [23]. Similar to other modified 
silks from silkworms fed silver nanoparticle [29], threonine 
[30], or nanohydroxyapatite powers [31], the mechanical 
properties of CNDs‑modified silks were more variable than 
those of control silk. This may be attributed to the effect 
of exogenous addition on silkworm’s spinning behavior 
including spinning speed, which significantly determines 
the performance of silk [32]. Detailed investigations are 
still required to answer this question further. Moreover, 
the multi‑functional silk with intrinsic fluorescence and 

enhanced mechanical properties was reported here for the 
first time, differentiating them from other fluorescent silk [9, 
13]. Note that the mechanical properties of silks increased 
as CNDs content increased over the range 0.75–1.25 wt%, 
different from the results of silk modified by graphene [33], 
and provided the potential to modulate the properties for 
different applications. In addition, the mechanical properties 
of the silks demonstrated that they were stronger than other 
reported fluorescent silk [9, 13], although it was still lower 
than some reported silks [34, 35]. It should be noted that the 
environment in which the silkworms are raised, the process 
for degumming and approaches for testing all add to the 
variability of properties measured. Hence, in this study we 
only compared the properties and discussed the structures 
of silks fabricated within the same conditions.

3.4  Reinforcing Mechanism of CNDs‑Modified Silks

We utilized FTIR to study the secondary structures of silk, 
strongly related to its mechanical properties. A peak at 
1695 cm−1 was considered attributable to β‑turn confor‑
mation [36], and the peaks at 1623 and 1230 cm−1 were 
related to β‑sheet conformation [37]. The peak centered at 
1265 cm−1 was assigned to a random coil/α‑helix confor‑
mation [25]. The above characteristic peaks of silk fibroin 
were observed in all degummed silks, with no significant 
differences observed, suggesting that there were no strong 
covalent interactions between silk fibroin and CNDs. How‑
ever, compared with control silk, the CNDs‑modified silks 
contained a greater number of chains in random coil/α‑helix 
conformation and fewer with β‑sheet conformation (Figs. 3b 
and S5). This may be attributed to the abundant carboxyl 
and hydroxyl on the surface of CNDs (Fig. S6), favoring 

Table 1  Mechanical properties of intrinsically fluorescent degummed silk fibers

Sample Breaking strength (MPa) Breaking elongation (%) Modulus (GPa) Breaking 
energy 
(kJ kg−1)

Control 336.5 ± 27.0 12.5 ± 2.2 7.3 ± 1.7 21.6 ± 5.0
CNDs‑0.75 390.4 ± 91.5 15.3 ± 3.2 8.3 ± 2.7 30.4 ± 7.5
CNDs‑1.00 479.4 ± 86.7 15.8 ± 3.1 8.4 ± 2.5 36.8 ± 7.3
CNDs‑1.25 521.9 ± 82.7 19.2 ± 4.3 8.9 ± 2.2 51.4 ± 14.3
Transgenic silk [9] 419.97 ± 20.04 21.02 ± 1.49 13.61 ± 0.80 –
Silk from silkworm fed on 

rhodamine [13]
406 – 454 23.7 – 26.5 – –
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the formation of hydrogen bonds with amino groups of silk 
fibroin, hindering the transformation from random coil/α‑
helix to β‑sheets.

The crystalline structure and orientation of silk fibers can 
be evaluated using synchrotron radiation wide‑angle X‑ray 
diffraction (SR‑WAXD) (Figs. 3c and S7). All the silks 
exhibited the principal crystalline peaks of [002], [021], 

[200], and [020]/[210] lattice planes at d‑spacing of 0.35, 
0.37, 0.43, and 0.45 nm, with no remarkable differences, as 
shown in 1D WAXD. However, quantitative analyses of 1D 
WAXD revealed that the crystallinity of the modified silks 
was lower than control silks and decreased with increas‑
ing content of CNDs (Table 2), consistent with the FTIR 
result and previous reports [23, 38]. Based on “hydrogen 
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Table 2  Herman’s orientation function and crystallinity parameters of degummed silks

Sample fcrystal fmesophase Crystallinity (%) Mesophasecontent 
(%)

Crystallite size (nm)

(200)/(210) (020) (002)

Control 0.9699 0.8579 49.3 13.1 5.0 3.1 10.4
CNDs‑0.75 0.9680 0.8587 45.8 14.5 4.4 3.8 9.3
CNDs‑1.00 0.9684 0.8613 44.5 14.9 4.1 3.9 9.7
CNDs‑1.25 0.9677 0.8709 43.1 15.7 4.2 3.3 9.2
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bond barrier” effect [39] and nanoconfined crystallization 
as proposed by Pan et al. [27], the hydrogen bonds between 
CNDs and silk fibroin would have been expected to hin‑
der the motion of silk fibroin, resulting in more amorphous. 
The β‑sheet crystalline structure in silk belongs to the 
orthorhombic system [40], and the crystallite size along a, 
b, and c directions is determined from [200]/[210], [020], 
and [002] planes. Here, the lattice axes a and c are perpen‑
dicular, and along to silk fibroin chains, the lattice axis b is 
perpendicular to the β‑sheet. The crystallite sizes of CNDs‑
modified silks in the a and c directions were slightly smaller 
than those of control silk. However, this was contrary to the 
result measured in the b direction. In addition, the crystal‑
line volume evaluated by La× Lb× Lc [41] decreased with 
increasing the content of CNDs, significantly different from 
the modified silks from silkworms fed  TiO2 [23]. This might 
be explained by differences in the size and dispersibility of 
CNDs and  TiO2. At the same addition, compared with  TiO2 
with poor dispersibility and a larger size (20–50 nm), the 
smaller‑sized CNDs (1–5 nm, Fig. S2) could homogene‑
ously disperse over every segment of silk gland (Fig. 2c′–e′) 
and move along the protein molecules during the process of 
spinning. Hence, hydrogen bond interactions between silk 
fibroin and CNDs acted as a “cross‑linked knot” and hin‑
dered the movement of molecular chains, confining crystal‑
lization of the silk fibroin. This tendency had already been 
observed in other polymers due to the efficient suppression 
of the crystal extension at higher concentration of additives 
[42, 43]. Furthermore, the smaller size and better mobility 
of CNDs favored the arrangement of molecular chains and 
phases that resulted in a comparable crystal orientation and 
higher mesophase orientation (Table 2), which included the 
oriented amorphous and interface zones between silk fibroin 
and CNDs [38, 44].

Based on the observation above, we hypothesize that the 
addition of CNDs would hinder the transformation of con‑
formation, confine the crystallization, and induce orientation 
of mesophase. Those factors have played an important role in 
reinforcing the mechanical properties. Moreover, we should 
note that the addition of CNDs implied providing strong and 
stiff nanomaterial for the silk [45], further enhancing the 
modified silk. The proposed reinforcing mechanism is shown 
in Fig. 3d. Upon stretching, easily movable chains in random 
coil/α‑helix conformation in the amorphous phase were first 
to deform. Meanwhile, the spherical morphology, nanom‑
eter size scale, and intensive hydrogen bond interactions 

caused the CNDs to move with protein chains [46], in turn 
providing more space for chains to move. This collabora‑
tive mobility endowed larger elongation to the modified 
silk fibers. As deformation increased, the relatively weak 
hydrogen bonds between CNDs and silk fibroin were bro‑
ken first and dissipated energy [47]. In addition, the CNDs 
themselves provided stiffness and induced a transfer of stress 
from the silk to CNDs due to the nanofiller effect [45, 48]. 
Furthermore, the more content and higher orientation of the 
mesophase further reinforced the mechanical properties of 
CNDs‑modified silk fibers.

3.5  Non‑cytotoxicity and Application 
of CNDs‑Modified Silks

As a natural biomaterial, silk from normal silkworm has 
been widely used as tissue engineering scaffold. In this 
study, we constructed silk scaffolds by wrapping the fib‑
ers around a hollow plastic frame in order to culture SCs 
(Fig. 4a). After seeding for 2 days, the optical density (OD) 
value of SCs on different substrates was similar (Fig. 4b). 
After 4 or 6 days, SCs displayed higher proliferation on the 
silk scaffolds than coverslips, but no significant difference 
was observed between the control and modified scaffolds 
(Fig. 4c, d). This indicated that the non‑cytotoxicity of natu‑
ral silk was preserved in multi‑functional silk scaffolds mod‑
ified with CNDs and further confirmed by LSCM images of 
SCs stained with phalloidin (Fig. 4c′, d′). Furthermore, an 
important feature of fluorescent silk in tissue scaffolds is the 
improved visualization of cells. SCs which were in directly 
contact with fluorescent silks appeared bright pink, while 
other SCs appeared red. The blue fluorescence of silks also 
allowed more convenient monitoring of scaffold degrada‑
tion. Taken together, CNDs‑modified silks with excellent 
mechanical property, intrinsically fluorescent property, and 
non‑cytotoxicity might motivate to open up new applications 
in tissue engineering field.

4  Conclusions

In summary, multi‑functional silks with reinforced 
mechanical properties, intrinsically fluorescence, and 
non‑cytotoxicity can be produced simply using a simple 
in vivo modification method. The breaking strength and 
elongation of CNDs‑1.25 fluorescent silk reached up to 
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521.9 ± 82.7 MPa and 19.2 ± 4.3%, respectively, consid‑
erably higher than that of regular silk and comparable 
to silks modified through post‑treatment. This may be 
attributed to the hydrogen bonds between CNDs and silk 
fibroin, resulting in more random coil/α‑helix structure, 
mesophase, and higher orientation. In addition, the nano‑
size and excellent dispersibility of CNDs were favored in 
the production of silks with a homogeneous blue fluores‑
cence. It can be expected that large‑scale production of 
multi‑functional silks would be feasible and that the use 
of such silk as active scaffolds in tissue engineering would 
improve the functionalities of conventional biomaterials.
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