Supporting Information for

Boosting Hydrogen Storage Performance of MgH₂ by Oxygen Vacancy-Rich H-V₂O₅ Nanosheet as an Excited H-Pump

Li Ren ^{1,2,3}, Yinghui Li ^{1,2,3}, Zi Li ^{1,2,3}, Xi Lin ^{1,2,3}, Chong Lu ⁴, Wenjiang Ding ^{1,2,3}, Jianxin Zou ^{1,2,3,*}

¹ National Engineering Research Center of Light Alloys Net Forming & State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, P. R. China

² Shanghai Engineering Research Center of Mg Materials and Applications & School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China

³ Center of Hydrogen Science, Shanghai Jiao Tong University, Shanghai 200240, P. R. China

⁴ Instrumental Analysis Center of SJTU, Shanghai Jiao Tong University, Shanghai 200240, P. R. China

* Corresponding author. E-mail: <u>zoujx@sjtu.edu.cn</u> (Jianxin Zou)

Supplementary Figures and Tables

Fig. S1 Digital photos of **a** as-synthesized hydrothermal products, **b** $V_2O_5 \cdot xH_2O$, **c** $V_2O_5 \cdot 350air$ obtained by heat treatment of $V_2O_5 \cdot xH_2O$ at 350 °C in air, **d** $H \cdot V_2O_5 \cdot 200$ obtained by hydrogenation of $V_2O_5 \cdot 350air$ at 200 °C, and **e** $H \cdot V_2O_5 \cdot 300$ obtained by hydrogenation of $V_2O_5 \cdot 350air$ at 300 °C

Fig. S2 HAADF image and the corresponding elemental mapping of pristine V_2O_5 ·xH₂O nanosheets

Fig. S3 XRD patterns of a $V_2O_5 \cdot xH_2O$ and b V_2O_5 -350air

Fig. S4 Kissinger's plots of MgH₂-10 wt% H-V₂O₅

Fig. S5 The DSC curves of **a** MgH₂-10 wt% V₂O₅·xH₂O and **b** pristine MgH₂-BM. **c** Kissinger's plots of pristine MgH₂-BM

Fig. S6 The isothermal a desorption and b absorption curves of pristine MgH₂-BM

Fig. S7 a The extent of reaction curves of MgH₂-10 wt% H-V₂O₅ composites at 30, 50 and 75 °C. **b** $(t/t_{0.5})_{theo}$ vs. $(t/t_{0.5})_{exp}$ of composites at 50 °C for various kinetic models. **c** Time dependence of kinetic modeling equations $g(\alpha)$ for composites with 0.2 < α < 0.7 at different temperatures. **d** Calculation of the apparent activation energies according to the Arrhenius equation

Fig. S8 PCI curves and van't Hoff plots of **a-b** MgH₂-10 wt% H-V₂O₅ and **c-d** pristine MgH₂-BM

Fig. S9 De/re-hydrogenation cycle curves (100th-155th) of MgH₂-10 wt% H-V₂O₅

Fig. S10 TPD results of pristine MgH₂-BM upon cycling

Fig. S11 XRD patterns of pristine MgH₂-BM

Fig. S12 XRD patterns of MgH₂-H-V₂O₅ after 100 cycles

Fig. S13 XRD patterns of hydrogenated MgH₂-H-V₂O₅ after 10 and 100 cycles

Fig. S14 High-resolution O 1s XPS spectra of MgH2-10 wt% H-V2O5 at various states

Fig. S15 Typical TEM images of the MgH₂-H-V₂O₅ composites after cycling tests

Fig. S16 Typical TEM images of pristine MgH₂-BM \mathbf{a} before and \mathbf{b} after ab/de-sorption cycles

Fig. S17 Structure model of MgH₂ on V₂O₅ (001) plane/V₂O_{5-x} (001) plane and DFT calculation of the length of Mg-H bonds under the catalysis of V₂O₅ and V₂O_{5-x}, including MgH₂ for comparison

Fig. S18 Structure model of VH₂ on V₂O₅ (001) plane/V₂O_{5-x} (001) plane and DFT calculation of the length of V-H bonds under the catalysis of V₂O₅ and V₂O_{5-x}, including VH₂ for comparison

Table S1 The bond lengths and bond energy of Mg-H after MgH_2 adsorption at different active sites

Structures	Bond length (Å)	Bond energy (kJ mol ⁻¹)
MgH ₂	1.72	92.39
$MgH_2-V_2O_5$	1.79	62.36
MgH ₂ -V ₂ O _{5-x}	1.88	40.93

Table S2 The bond lengths and bond energy of V-H after VH_2 adsorption at different active sites

Structures	Bond length (Å)	Bond energy (kJ mol ⁻¹)
VH ₂	1.87	75.663
VH_2 - V_2O_5	1.93	70.691
VH ₂ -V ₂ O _{5-x}	2.04	52.613