Supporting Information for

Achieving Ultra-Broad Microwave Absorption Bandwidth around Millimeter-Wave Atmospheric Window through an Intentional Manipulation on Multi-Magnetic Resonance Behaviour

Chuyang Liu¹, Lu Xu¹, Xueyu Xiang¹, Yujing Zhang^{2,*}, Li Zhou¹, Bo Ouyang^{3,*}, Fan Wu⁴, Dong-Hyun Kim⁵ and Guangbin Ji^{1,*}

¹ School of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, Jiangsu 210016, P. R. China

² School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu 210094, P. R. China

³ School of Physics, Nanjing University of Science and Technology, Nanjing, Jiangsu 210094, P. R. China

⁴ School of Mechanical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu 210094, P. R. China

⁵ School of Physics, Chungbuk National University, Cheongju 28644, South Korea

*Corresponding authors. E-mail: <u>zhangyujing@njust.edu.cn (</u>Yujing Zhang); <u>ouyangboyi@njust.edu.cn (</u>Bo Ouyang); <u>gbji@nuaa.edu.cn</u> (Guangbin Ji)

Supplementary Figures

Fig. S1 SEM images of the original M-type barium ferrite at (**a**) 10,000x magnification and (**b**) 20,000x magnification

Fig. S2 XRD pattern and lattice parameters of the original M-type barium ferrite

Fig. S3 XPS spectra for (a) Fe 2p and (b) O 1s of the original M-type barium ferrite

Fig. S4 Raman patterns of the original M-type barium ferrite

Fig. S5 Mössbauer spectra of the original M-type barium ferrite

Fig. S6 Parameters of occupation area, I.S., Q.S., H_{hf} deduced from Mössbauer spectra of the original M-type barium ferrite

Fig. S7 Hysteresis loop of the original M-type barium ferrite

Fig. S8 Electromagnetic parameters of the original M-type barium ferrite

Fig. S9 Magnetic resonance peak-differentiating and imitating of the sample with composition of $BaZr_{0.2}Fe_{11.8}O_{19}$

Fig. S10 Magnetic resonance peak-differentiating and imitating of the sample with composition of $BaTi_{0.6}Fe_{11.4}O_{19}$

Fig. S11 Magnetic resonance peak-differentiating and imitating of the sample with composition of $BaNb_{0.4}Fe_{11.6}O$

Fig. S12 Reflection loss of the original M-type barium ferrite

Fig. S13 2D reflection loss and impedance matching values of the $BaZr_{0.2}Fe_{11.8}O_{19}$ with thickness of 1.0 mm, 1.1 mm, 1.2 mm, 3.0 mm, 3.2 mm, 3.4 mm

Fig. S14 2D reflection loss and impedance matching values of the BaTi_{0.6}Fe_{11.4}O₁₉ with thickness of 1.0 mm, 1.1 mm, 1.2 mm, 3.0 mm, 3.2 mm, 3.4 mm

Fig. S15 2D reflection loss and impedance matching values of the $BaNb_{0.4}Fe_{11.6}O_{19}$ with thickness of 1.0 mm, 1.1 mm, 1.2 mm, 3.0 mm, 3.2 mm, 3.4 mm

Fig. S16 Near-field simulations for (a) $BaZr_{0.2}Fe_{11.8}O_{19}$, (b) $BaTi_{0.6}Fe_{11.4}O_{19}$ and (c) $BaNb_{0.4}Fe_{11.6}O_{19}$

Fig. S17 Far-field simulations for bistatic scattering RCS Abs (a) $BaZr_{0.2}Fe_{11.8}O_{19}$, (b) $BaTi_{0.6}Fe_{11.4}O_{19}$ and (c) $BaNb_{0.4}Fe_{11.6}O_{19}$

Fig. S18 Far-field simulations of 3D bistatic scattering RCS values for (a) $BaZr_{0.2}Fe_{11.8}O_{19}$, (b) $BaTi_{0.6}Fe_{11.4}O_{19}$ and (c) $BaNb_{0.4}Fe_{11.6}O_{19}$

Fig. S19 Far-field simulations of 2D bistatic scattering RCS values for BaZr_{0.2}Fe_{11.8}O₁₉, BaTi_{0.6}Fe_{11.4}O₁₉ and BaNb_{0.4}Fe_{11.6}O₁₉