Supporting Information for

Structurally Flexible 2D Spacer for Suppressing the Electron-Phonon

Coupling Induced Nonradiative Decay in Perovskite Solar Cells

Ruikun Cao^{1,2, #}, Kexuan Sun^{1, #}, Chang Liu^{1,*}, Yuhong Mao⁴, Wei Guo¹, Ping Ouyang¹, Yuanyuan Meng¹, Ruijia Tian¹, Lisha Xie¹, Xujie Lü⁴, and Ziyi Ge^{1,3,*}

¹ Zhejiang Provincial Engineering Research Center of Energy Optoelectronic Materials and Devices, Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, Ningbo 315201, P. R. China

²School of Materials Science and Chemical Engineering Ningbo University, Ningbo 315211, P. R. China

³ Center of Materials Science and Optoelectronics Engineering University of Chinese Academy of Sciences, Beijing 100049, P. R. China

⁴ Center for High Pressure Science and Technology Advanced Research (HPSTAR), Shanghai 201203, P. R. China

[#]Ruikun Cao and Kexuan Sun contributed equally to this work.

*Corresponding authors. E-mail: <u>liuchang1@nimte.ac.cn</u> (Chang Liu); <u>geziyi@nimte.ac.cn</u> (Ziyi Ge)

Supplementary Figures

NH₃ bending mode

NH₃ rocking mode

Fig. S1 Relevant vibrational modes in CMA^+

Fig. S2 X-ray diffraction patterns of 5-60° with 3D, 3D/2D-CMAI and 3D/2D-PEAI films

Fig. S3 The (100) in-plane and out-of-plane line cuts of GIWAX images of 3D, 3D/2D-CMAI, and 3D/2D-PEAI

Fig. S5 AFM images of 3D, 3D/2D-CMAI, and 3D/2D-PEAI

Fig. S6 Water contact angle test

Fig. S7 a Theoretical energy band structure of (CMA)₂FaPb₂I₇ at 0 GPa. **b** Density of states of (CMA)₂FaPb₂I₇ at 0 GPa. **c** Theoretical energy band structure of (CMA)₂FaPb₂I₇ at 1 GPa. **d** Density of states of (CMA)₂FaPb₂I₇ at 1 GPa. **e** Theoretical energy band structure of (PEA)₂FaPb₂I₇ at 0 GPa. **f** Density of states of (PEA)₂FaPb₂I₇ at 0 GPa. **g** Theoretical energy band structure of (PEA)₂FaPb₂I₇ at 1 GPa. **h** Density of states of (PEA)₂FaPb₂I₇ at 1 GPa.

Fig. S8 Compression diagram of organic layer under 0-1Gpa

S3/S10

Fig. S9 a-b UV-Vis absorption spectra for the (CMA)₂FAPb₂I₇) and (PEA)₂FAPb₂I₇) target perovskite films under 0-3 GPa. **c-d** The corresponding tauc plots of UV-Vis absorption spectra. **e** Variation of the band gap of (CMA)₂FAPb₂I₇) and (PEA)₂FAPb₂I₇) with pressure change

Fig. S10 a Low temperature PL testing of 3D/2D-CAMI, (b) Low temperature PL testing of 3D/2D-PEAI

Fig. S11 Pseudocolor maps of TA spectra for 3D, 3D/2D-CMAI and 3D/2D-PEAI films

Fig. S12 a HCs at delay times from 0.3 to 15 ps for 3D. b Hot electron temperature decay for 3D

Fig. S13 Excitation at λ =800 nm a–c Pseudocolor maps of TA spectra for pristine 3D and 3D/2D-CMAI,3D/2D-PEAI, d–f HCs at delay times from 0.3 to 15 ps

Fig. S14 High-resolution XPS spectra of Pb 4f, I 3d, and N1s

Fig. S15 Steady-state PL spectra and TRPL spectra of the pristine 3D, 3D/2D-CMAI, and 3D/2D-PEAI

	τ1 (μs)	τ ₂ (μs)	τ (μs)
3D	0.78	5.32	0.96
3D/2D-CMAI	0.96	8.25	1.84
3D/2D-PEAI	1.17	7.11	1.74

Table S1 Fitting parameters for TRPL of bi-exponential decay fits

CMAI	Voc ^a (V)	J _{SC} ^a (mA cm ⁻²)	FF ^a (%)	PCE ^a (%)
1.5 mg/ml	1.17 ± 0.005	25.45±0.42	79.20±1.03	23.71±0.28
	(1.17)	(25.87)	(78.75)	(23.99)
3.0 mg/ml	1.18 ± 0.006	25.53±0.59	80.71±1.16	24.43±0.40
	(1.19)	(25.46)	(81.88)	(24.83)
5mg/ml	1.19±0.01	25.74±0.26	82.11±0.97	25.23±0.29
	(1.19)	(25.73)	(83.09)	(25.52)
7 mg/ml	1.17±0.009	25.09±0.33	78.93±1.36	23.26±0.80
	(1.18)	(25.43)	(79.98)	(24.07)

Table S2 Summary of PSC photovoltaic efficiency based on modification of various concentrations of CMAI

^a Average and standard deviation values were obtained based on over 10 cells from 2 different

Table S3 Summary of PSC photovoltaic efficiency based on modification of various concentrations of PEAI

PEAI	Voc ^a (V)	J _{SC} ^a (mA cm ⁻²)	FF ^a (%)	PCE ^a (%)
1.5 mg/ml	1.12±0.038	24.76±1.48	73.87±3.67	20.57±0.45
	(1.15)	(24.79)	(73.12)	(21.01)
3.0 mg/ml	1.14 ± 0.014	24.57±0.40	75.59±1.78	21.36±0.43
	(1.15)	(24.47)	(77.38)	(21.79)
4.5mg/ml	1.16±0.018	24.39±0.30	77.46±0.52	22.04±0.40
	(1.16)	(24.69)	(77.98)	(22.45)
6 mg/ml	1.16±0.011	24.20±0.47	76.19±1.76	21.46±0.69
	(1.16)	(24.61)	(77.44)	(22.15)

^a Average and standard deviation values were obtained based on over 10 cells from 2 different batches for 3D/2D-PEAI. Parameters of the best cell are reported in brackets.

Additive	V _{OC} (V)	J _{SC} (mA cm ⁻²)	FF (%)	PCE (%)
3D	1.09	25.54	72.38	20.21
3D/2D-CMAI	1.19	25.73	83.09	25.52
3D/2D-PEAI	1.16	24.69	77.98	22.45

Table S4 Summary of rigid PSC photovoltaic efficiency based on modification with

 CMAI and PEAI

Table S5 Photovoltaic efficiency of champion PSCs based on 3D and 3D/2D-CMAI in forward and reverse scans

Additive		V _{OC} (V)	J _{SC} (mA cm ⁻²)	FF (%)	PCE (%)
3D/2D-CMAI	Reverse	1.19	25.73	83.09	25.52
	Forward	1.19	25.71	82.64	25.35
3D	Reverse	1.09	25.54	72.38	20.21
	Forward	1.08	24.99	72.37	19.70

Fig. S16 J–V characteristics of optimized 3D and 3D/2D-CMAI PSCs in forward and reverse scans

Fig. S17 DMT modulus of pristine 3D and 3D/2D-CMAI,3D/2D-PEAI

Fig. S18 The external quantum efficiency (EQE) spectra and the integrated current density of f-PSCs

Table S6 Summary of flexible PSC photovoltaic efficiency based on modification

 with CMAI

	$V_{OC}(V)$	J _{SC} (mA cm ⁻²)	FF (%)	PCE (%)
3D	1.07	23.62	76.09	19.29
3D/2D-CMAI	1.20	24.87	78.39	23.41

Table S7 Summary of f-PSC photovoltaic efficiency based on 3D and 3D/2D-CMAI

	V _{OC} ^a (V)	J_{SC}^{a} (mA cm ⁻²)	FF ^a (%)	PCE ^a (%)
3D	1.06±0.005	22.99±0.63	74.56±1.53	18.93±0.36
	(1.17)	(23.62)	(76.09)	(19.29)
3D/2D-CMAI	1.19±0.004	24.35±0.52	77.31±1.08	23.04±0.37
	(1.20)	(24.87)	(78.39)	(23.41)

^a Average and standard deviation values were obtained based on over 10 cells from 2 different batches for 3D and 3D/2D-CMAI. Parameters of the best cell are reported in brackets.

Electron-only	V _{TFL} (V)	n _{trap} (cm ⁻³)	μ (cm ² V ⁻¹ s ⁻¹)
3D	0.82	8.5×10 ¹⁶	3.87×10 ⁻⁵
3D/2D-PEAI	0.58	5.84×10 ¹⁶	2.07×10 ⁻⁵
3D/2D-CMAI	0.52	4.78×10 ¹⁶	1.89×10 ⁻⁵

Table S8 The parameter of SCLC of Electron-only

Hole-only	V _{TFL} (V)	n _{trap} (cm ⁻³)	μ (cm ² V ⁻¹ s ⁻¹)
3D	0.62	6.43×10 ¹⁶	2.43×10 ⁻⁵
3D/2D-PEAI	0.46	4.64×10 ¹⁶	1.76×10^{-5}
3D/2D-CMAI	0.41	3.77×10 ¹⁶	1.54×10^{-5}

Table S9 The parameter of SCLC of Hole-only

(a)

Fig. S19 SEM cross-sectional view

Fig. 20 ISOS-D stability test for 3D devices and 3D/2D-CMAI,3D/2D-PEAI devices