Supporting Information for

Rational Design of Cost-Effective Metal-Doped ZrO₂ for Oxygen

Evolution Reaction

Yuefeng Zhang¹, Tianyi Wang², Liang Mei¹, Ruijie Yang¹, Weiwei Guo⁴, Hao Li^{2, *}, and Zhiyuan Zeng^{1, 3, *}

¹ Department of Materials Science and Engineering, and State Key Laboratory of Marine Pollution, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong 999077, P. R. China

² Advanced Institute for Materials Research (WPI-AIMR), Tohoku University, Sendai 980-8577, Japan

³ Shenzhen Research Institute, City University of Hong Kong, Shenzhen 518057, P. R. China

⁴ Shanxi Supercomputing Center, Lvliang, Shanxi Province 033000, P. R. China

* Corresponding authors. E-mail: <u>li.hao.b8@tohoku.ac.jp</u> (Hao Li); <u>zhiyzeng@cityu.edu.hk</u> (Zhiyuan Zeng)

Supplementary Figures

Fig. S1 The surface structures and corresponding surface energy values of ZrO_2 ($\overline{1}11$), (111), and (101) slabs. Zr and O atoms are denoted by cyan and red balls, respectively

Fig. S2 Structural models corresponding to the metals whose most stable replacement site is the Zr3 site

Fig. S3 Structural models corresponding to the metals whose most stable replacement site is the Zr2 site (**a**) and Zr4 site (**b**)

Fig. S4 Kinetic oxygen evolution reaction (OER) activity volcano plot as a function of G_{O^*} - G_{HO^*} at 1 mA/cm² (blue line)

Fig. S5 Kinetic OER activity volcano plot as a function of G_{O^*} - G_{HO^*} at 1 A/cm² (saddle brown line)

Fig. S6 Negative theoretical overpotential (η) is plotted as a function of the free energy difference between O* and HO* (G_{O*}-G_{HO*})

Fig. S7 Density of states (DOS) obtained through PBE functional (a) and HSE06 functional (b), and band structure (c) of ZrO_2 surface. The red dotted line corresponds to the Fermi level

Fig. S8 DOS of the M-ZrO₂ (M=In, Ru, Sm, Pr, Cr, Fe, Nd, Hf, Ni). The gray line represents the spin-up orbit, and the green line represents the spin-down orbit

Fig. S9 DOS of the M-ZrO₂ (M=Pd, Sn, Ga, Co, Pt, Ir, Rh, Ti, and Mn). The gray line represents the spin-up orbit, and the green line represents the spin-down orbit

Fig. S10 Charge density difference of O* on Ti-ZrO₂, Fe-ZrO₂, ZrO₂, Pt-ZrO₂, and Rh-ZrO₂, respectively. The isosurface value was set to 0.001 e/Å³

Fig. S11 *Ab initio* molecular dynamics (AIMD) simulations under 300 K for (**a**) ZrO₂, (**b**) Rh-ZrO₂, (**c**) Fe-ZrO₂, (**d**) Rh-ZrO₂ with O*, (**e**) Rh-ZrO₂ with HO*, and (**f**) Rh-ZrO₂ with HOO*

Fig. S12 (a) Charge changes produced by metals (Fe, Rh) binding to O* and HO*. D band center (ε_d) of (b) Rh-ZrO₂ and (c) Fe-ZrO₂