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HIGHLIGHTS

• Tremendous progress has been advanced by research into graphene and its derivatives with great benefits toward low-cost, portable, 
and real-time tactile sensors/electronic skin.

• The review presented herein direct future efforts aimed at high-quality graphene-based tactile sensors and their implications for the 
wider scientific community.

• The paper also are informative regarding some basic and crucial issues regarding graphene and its derivatives, such as charge-transport 
principles, doping/trapping behaviors, correlations between structure/morphology and properties/functions.

ABSTRACT Skin is the largest organ of the human body and can perceive and 
respond to complex environmental stimulations. Recently, the development of 
electronic skin (E-skin) for the mimicry of the human sensory system has drawn 
great attention due to its potential applications in wearable human health moni-
toring and care systems, advanced robotics, artificial intelligence, and human–
machine interfaces. Tactile sense is one of the most important senses of human 
skin that has attracted special attention. The ability to obtain unique functions 
using diverse assembly processible methods has rapidly advanced the use of 
graphene, the most celebrated two-dimensional material, in electronic tactile 
sensing devices. With a special emphasis on the works achieved since 2016, this 
review begins with the assembly and modification of graphene materials and 
then critically and comprehensively summarizes the most advanced material 
assembly methods, device construction technologies and signal characterization 
approaches in pressure and strain detection based on graphene and its derivative 
materials. This review emphasizes on: (1) the underlying working principles of these types of sensors and the unique roles and advantages 
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of graphene materials; (2) state-of-the-art protocols recently developed for high-performance tactile sensing, including representative 
examples; and (3) perspectives and current challenges for graphene-based tactile sensors in E-skin applications. A summary of these 
cutting-edge developments intends to provide readers with a deep understanding of the future design of high-quality tactile sensing devices 
and paves a path for their future commercial applications in the field of E-skin.

KEYWORDS Graphene derivatives; Tactile sensor; Electronic skin; Assembly

1 Introduction

A tactile sensor is a kind of device that simulates the tactile 
sense of human skin and can detect and analyze the strength, 
position and time sequence of an external mechanical force 
with micron-level resolution by micro/nano processing 
technology and intelligent data analysis. As one of the most 
important sensor components in electronic skin (E-skin), 
tactile sensors have become a popular international research 
area due to their potential applications in wearable human 
health monitoring and care systems, advanced robotics, arti-
ficial intelligence, and human–machine interfaces. Among 
all kinds of tactile sensors, flexible, low-cost, conformal, 
portable and wearable real-time-monitoring functional 
electronic devices based on graphene and its derivatives 
should be generally concerned as the next generation of 
sensing devices for E-skin applications [1–5]. On one hand, 
the inherent characteristics of graphene and its derivatives, 
such as a large surface area and planar geometry, good elec-
trical conductivity (ultrahigh mobility, ballistic transport, 
anomalous quantum Hall effect, nonzero minimum quan-
tum conductivity, Anderson weak local change, and Klein 
tunneling), high chemical and thermal stabilities, and low 
toxicity, as well as being readily functionalizable, enable the 
effective detection of various stimuli [6–10]. On the other 
hand, additional unique superiorities, such as their light-
weight, mechanical flexibility, and generally good process-
ability, as well as their good compatibility with large-area 
and flexible solid supports, endow these materials with great 
potential for the manufacturing of sensing devices using a 
wide range of desirable or arbitrary solid supports [11–15]. 
Furthermore, diverse assembly and processing approaches, 
such as chemical modification, interfacial assembly, nano-
doping, layer-by-layer assembly, laser scribing, dip-coating 
and others, can be employed to obtain graphene materials 
with new functions.

With a special emphasis on the state-of-the-art works 
published in 2016, these latest developments use the most 

advanced methods of material assembly, device construc-
tion and signal characterization and represent the forefront 
of graphene-based tactile sensors, laying the foundation and 
identifying the direction for future commercial applications. 
The main contents of this review provide a general synopsis 
on the functional supramolecular nanoassemblies of gra-
phene and its derivatives with respect to progress during 
the tactile sensing era for E-skin applications. Some his-
torically significant seminal works achieved before 2016, 
which are of paramount importance in shaping this field, are 
also highlighted to provide a foundation. For other interest-
ing yet earlier studies, we encourage the interested readers 
to consult other excellent reports. This review is organized 
as follows: First, we briefly introduce the related concepts 
and preparation methods of graphene and its derivatives for 
tactile sensors. Then, with an emphasis on the impactful 
protocols of how to improve the performance of this kind of 
sensor, the unique roles and advantages of the employed gra-
phene materials are discussed and highlighted by addressing 
representative paradigms. Finally, the current perspective 
and challenges of graphene sensors are outlined. We hope 
that the discussions will be beneficial to future investigations 
aimed at high-quality graphene-based tactile sensors.

2  The Unique Roles and Advantages 
of Graphene Materials for Tactile Sensors

Since Geim and Novoselov discovered graphene in 2004, 
it has received tremendous attention as an ideal material 
to construct electronic devices due to its unique physical 
properties [16]. As is known, graphene, as the most cel-
ebrated of two-dimensional (2D) materials, possesses a 
unique sp2-hybridized crystal structure, where each carbon 
atom has three equivalent valence orbitals (one is an s orbital 
and the two others are p orbitals) together in a plane form-
ing a triangle and a pz orbital perpendicular to the basal 
plane, which arranges the carbon atoms in a honeycomb 
lattice. The hybridization of one s and two p orbitals leads 
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to the formation of covalent σ-bonds with other neighbor-
ing carbons, and the pz orbitals overlap each other to form 
delocalized π-bonds; the abundant delocalized electrons 
are responsible for the extraordinary electronic properties 
of graphene. The concentration of the electrons and holes of 
graphene can up to 1013 cm−2, and the mobility can reach 
200,000 cm2 V−1 s−1 [17–20]. This property makes graphene 
an ideal active material in electronic devices.

Additionally, graphene has a perfect 2D structure, which 
offers abundant active sites on the basal plane to react with 
functional groups by means of conjugation reactions or the 
absorption of various functional moieties via hydrophobic 
interactions, dipole–dipole interactions, or π–π stacking 
[21]. This characteristic is the basic merit of graphene-based 
materials, from which we can build blocks of macroscopic 
graphene with novel structures and functionalities by means 
of self-assembly. From another point of view, most regu-
lar molecular assembly strategies make graphene the basic 
fundamental platform for external stimuli detection, as it 
can be modified by other functional nanomaterials [22–24]. 
Particularly, graphene oxide (GO) is an atomic-thick gra-
phene fragment possessing hydroxyl and epoxide functional 
groups in the basal plane and carbonyl and carboxyl groups 
at the edges that express many distinguished advantages, 
such as facile preparation, mass production, chemical mod-
ification, interfacial activities, and low-cost. Reduced GO 
(RGO) not only is decorated with multiple oxygen-contain-
ing functional groups but also restores the good electronic, 
thermal, and mechanical properties of graphene. Therefore, 
abundant organic synthesis principles can be employed with 
functional supramolecular nanoassemblies of π-conjugated 
molecules to realize a responsiveness to various stimuli, 
confirming graphene materials to be excellent scaffolds for 
various sensors [25–30].

Moreover, graphene materials also possess excellent trans-
mittance and mechanical properties with light transmittances 
of up to 97.7%, fracture strains of up to 25% and a Young’s 
modulus of ≈ 1.1 TPa, which provide graphene a significant 
opportunity for the construction of flexible and stretchable 
electronic devices used in tactile detection [31, 32].

Most importantly, many studies have discussed the physi-
cal properties of graphene and its sample preparation routes 
[33–35]. For example, (1) graphene deposited by mechanical 
exfoliation is commonly used for fundamental research due 
to the quality exhibiting near-inherent properties [36]; (2) 
chemical vapor deposition (CVD) and solution processing 

methods, which can scale up the production of graphene, 
are beneficial for the construction of tactile sensors based 
on graphene materials [37, 38]; and (3) laser scribing, 
plasma-enhanced CVD and spray-deposited graphene from 
solution are also effective ways to fabricate active materials 
for tactile detection and have attracted significant attention 
[39–41]. However, different assembly methods can possibly 
lead to clear differences in the fabricated graphene proper-
ties, which lead to different fundamental physics for strain 
sensors.

3  How to Improve the Performance 
of Graphene‑Based Tactile Sensors?

3.1  Capacitive Tactile Sensors

In recent years, great progress has been made in fabricating 
pressure sensors based on different sensing mechanisms, 
including capacitive [42, 43], transistor-based [44, 45], 
piezoresistive [46, 47], triboelectric [48, 49], and optical 
sensing technologies [50]. Among the abovementioned pro-
tocols, touch-sensing devices based on the capacitive effect 
play an important role by taking the advantage of their inher-
ent flexibility, low-power consumption, fast response speed, 
simple device structure, and low-cost scalable fabrication 
processes [7, 10]. Capacitance-type tactile sensors contain 
two conductive layers separated by an elastomer dielectric 
layer. The capacitance (C) of a parallel plate capacitor can be 
defined as C = ε0εA/d, where ε0, ε, d, and A are the vacuum 
dielectric constant, the relative permittivity of the elastomer 
dielectric, the distance, and the overlapped area between the 
two parallel plates, respectively. With excellent electrical 
properties, mechanical flexibility and optical transmittance, 
graphene has become one of the most promising materials 
for electrodes in tactile piezocapacitive sensors.

For example, to obtain a tunable-sensitivity flexible pres-
sure sensor, a classic method was employed by Luo and 
coworkers, wherein graphene was used as the electrodes, 
and polydimethylsiloxane (PDMS) pyramids with differ-
ent spacings were used as the dielectric layer [42]. By a 
theoretical calculation model, the authors simulated the 
relationship curve between the sensitivity and PDMS pyra-
mids with different spacings. The spacing of the pyramids 
was found to be a main factor affecting the sensitivity of 
the capacitance pressure sensor, and the measurement data 
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were consistent with the simulation results. More impor-
tantly, with the help of graphene electrodes, pressure sen-
sor devices with flexibility and reliability were achieved. 
Additionally, Yang and coworkers demonstrated a novel 
3D microconformal graphene electrodes for ultrasensitive 
and tunable flexible capacitive pressure sensors, wherein 
smooth, nanostructured and microstructured flexible gra-
phene electrodes (MGrE) were controllably fabricated via 
a PMMA-mediated transfer method, ultraviolet-curable 
adhesive-mediated transfer method, and microconformal 
transfer method, respectively (Fig. 1a). Owing to the rough-
ness of the electrodes effectively improving the performance 
of capacitive tactile sensors and the tunable sensitivity via 

controllable microconformal structures, a capacitive pres-
sure sensor with a high sensitivity, fast response speed, 
ultralow detection limit, tunable sensitivity, high flexibility, 
and high stability was obtained by sandwiching the PDMS 
dielectric layer between the top MGrE and bottom elec-
trode, as shown in Fig. 1b. The as-fabricated MGrE-based 
tactile sensor could be used for monitoring blood pressure 
and sensing the capacitance response induced by droplets 
of water falling.

In the above configurations, the tunable sensitivity was 
obtained by changing the space between the pyramids or 
the morphology of graphene; indeed, the tunability of the 
suspended membrane area and the dielectric gap were the 
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Fig. 1  Typical capacitance-type tactile sensors with graphene as electrodes. a Schematic diagram of the fabrication processes for different con-
formal graphene electrodes and SEM images of three kinds of graphene films derived from PMMA-based, ultraviolet-curable adhesive-medi-
ated, and microconformal transfer methods. b Illustration of a capacitive pressure sensor based on MGrE, a schematic diagram of the sensing 
mechanisms and grasping with the proposed pressure sensor. Reproduced with permission from Ref. [42]. Copyright 2019 American Chemical 
Society
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most important factors to the sensing performance (Fig. 1b). 
Although such graphene pressure sensors exhibit potential 
for application in wearable products such as E-skin (Fig. 1b), 
the size of the sensor cannot be decreased, resulting in a 
nonlinear pressure transduction and a limited dynamic oper-
ating range. Berger et al. [43] solved this issue by applying a 
novel strained membrane transfer and optimizing the sensor 
architecture. Pressure sensor devices with novel structures 
were fabricated by the following steps: (1) a chip with CVD 
graphene was coated with a layer of polymethylmethacrylate 
(PMMA) to form a graphene-polymer heterostructure mem-
brane. (2) Then, the top surface was adhered to by a tape 
support window, which was lifted off the Si/SiO2 wafer by 
wet etching. (3) On another substrate, a piece of Si/SiO2 
wafer was patterned by deep reactive ion etching to form 
an array of circular or hexagonal holes of a given diameter, 
periodicity and depth, arranged in various patterns such as 
a hexagonally packed lattice. (4) The graphene-polymer 
membrane was aligned with the patterned  SiO2 surface 
using a tape-supported transfer process. It was found that 
sensors covering an area of just 1 mm2 showed reproduc-
ible pressure transduction under static and dynamic load-
ing up to pressures of 250 kPa. The measured capacitance 
change in response to pressure was in good agreement with 
calculations.

The microstructure dielectric layer of the abovementioned 
devices to some extent can overcome the slow response and 
relaxation times caused by the high viscoelasticity of PDMS, 
leading to a substantially higher sensitivity and faster 
response/relaxation time. However, the construction of such 
capacitive sensors often requires intricate processes such as 
traditional lithography and e-beam evaporation, which are 
generally tedious to work and crosstalk between adjacent 
cells is inevitable. These drawbacks can be overcome simply 
by replacing the dielectric layer. Nylon netting composed 
of polyethylene terephthalate (PET) is a flexible, low-cost 
insulating polymer with a regular microporous structure and 
excellent mechanical properties, and was first selected and 
sandwiched between graphene films by He et al. [51] as the 
dielectric layer of a capacitive pressure sensor. Such devices 
have the advantages of excellent pressure-sensing sensitiv-
ity, ultralow detection limit, outstanding mechanical stability 
and ultrafast response speed, which enable the detection of 
fast variations in a small applied pressure from morphologi-
cally changing processes, e.g., the falling of a droplet onto 
the sensor. Moreover, a capacitive pressure sensor array was 

fabricated for demonstrating the ability to monitor spatial 
pressure distribution.

An air gap between the surrounding spacers in each tac-
tile cell is another effective method to reduce the difficulty 
in capacitive tactile sensor preparation. Pyo et al. [52] pre-
sented a capacitive tactile sensor comprised of monolayer 
graphene electrodes that were separated by spacers, which 
formed air gaps. As shown in Fig. 2a, the graphene elec-
trodes were patterned and assembled on PET, while PDMS 
and SU-8 served as the dielectric and spacer between facing 
graphene electrodes, respectively. By utilizing the meritori-
ous properties of graphene and the structural design of the 
air gap, the as-fabricated tactile sensor exhibited mechanical 
flexibility and an optical transparency in the visible range, 
along with a high pressure sensitivity (6.55% kPa−1), rapid 
response (≈ 70 ms), and high stability over 2500 cycles of 
loading/unloading. The authors also demonstrated a pixe-
lated sensor array for pressure mapping without any signifi-
cant crosstalk between adjacent cells, as shown in Fig. 2b.

From the above examples we can see that most of the 
capacitive tactile sensors have mainly focused on pressure 
or strain sensors that transduce physical touch into electronic 
signals, which cannot fulfill the demands of E-skin applica-
tions. Indeed, in addition to a position-sensing capability 
through contact, a 3D-sensing capability for the recognition 
of 3D shapes and the distance of approaching objects before 
contact occurs is significantly important both in wearable 
electronics applications and in the robotics field [53]. Fur-
thermore, plausible mimics of multifunctional human skin 
will require multimodal detection, including temperature, 
humidity, and pressure, integrated into a single pixel [54]. 
To address these issues, a graphene-based touch sensor with 
an overall area of 4 × 6 cm2 and 8 × 8 array (64 channels) 
was fabricated by Kang and coworkers [53]. As displayed 
in Fig. 2c, this device was comprised of four main compo-
nents. Ultrathin PET was used as the top and bottom sub-
strates; triple-layer graphene, which was chemically doped 
with bis(trifluoromethane) sulfonamide (TFSA), was used as 
the transparent electrode; the acrylic polymer was used as 
the dielectric layers to separate top and bottom electrodes; 
and monolayer graphene was used as the shielding layer. 
By taking advantage of the unique properties of graphene 
and the thin device geometry, multitouch, spread, and scroll 
operation modes could be exhibited, and all remained stable, 
even on a curved forearm. As a result, this device can be 
integrated with highly deformable areas of the human body, 
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including the forearms and palms, to sense both contact and 
noncontact modes, as shown in Fig. 2d.

Graphene and its derivatives are versatile and sometimes 
can be used as a good dielectric material for capacitive pres-
sure sensors. By adjusting the proportion of graphene and 
 NH4HCO3 in a PDMS sponge, Kou and coworkers achieved 
a composite. When the sponge was sandwiched between 
two electrodes, a flexible wireless pressure sensor with a 
high sensitivity, wide operating rage, rapid response time, 
low detection limit, and good stability was obtained [55]. 
Ho et al. [54] developed a transparent and stretchable all-
graphene multifunctional E-skin sensor matrix, wherein 
humidity, thermal, and pressure sensors were judiciously 
integrated into a layer-by-layer geometry through a simple 
lamination process. As shown in Fig. 3a, b, high-quality 
large-area CVD graphene was used to form the electrodes 
and interconnects for these three sensors, while GO and 
RGO were used as the active sensing materials for the 
humidity and temperature sensors, respectively. The 2D 
color maps of the simultaneous multifunctional sensing 

were collected without mutual interference of the electri-
cal signals. Another fascinating all-graphene capacitive 
tactile sensor used for E-skin was fabricated by Wan and 
coworkers, wherein RGO was used as the electrodes, and 
GO foam, with excellent elastic property, was used as the 
dielectric material [56]. By utilizing the inherent insulat-
ing property of GO and the porous structure of the 3D GO 
sponge, the distance between the upper and the bottom elec-
trodes decreased as an external pressure was applied; this 
decrease led to an increase in the capacitance, as shown 
in Fig. 3c, d. As a result, a tactile sensor with outstanding 
pressure sensitivity in a low-pressure regime was achieved, 
and prototype capacitive pressure sensor arrays of 8 × 8 pix-
els, with enough spatial resolution to detect the placement 
of a strawberry, were realized (Fig. 3e). Apart from, the GO 
sponge structure, a micropatterned graphene/PDMS com-
posite was also employed as the dielectric layer [57]. With a 
wrinkled continuous Au pattern as an antenna and electrode 
and a folded PDMS cavity as the substrate, a flexible high-
performance pressure sensor was obtained.
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Fig. 2  Typical crosstalk-free, multipoint recognition of flexible, and transparent capacitive graphene-based tactile sensors. a Schematic illustra-
tion of the sensor array composed of graphene-patterned top and bottom PET layers, PDMS insulator, and SU-8 spacers. b Schematic illustra-
tion of the 3 × 3 tactile cell array and the finite element analysis result for deflection of the top layer under 8 kPa applied to the center of cell-
O. Reproduced with permission from Ref. [52]. Copyright 2017 WILEY–VCH Verlag GmbH & Co. KGaA, Weinheim. c Schematic diagram 
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car. Inset of each image shows relative capacitance changes for spread (left) and grip (right) statuses of the hand. Reproduced with permission 
from Ref. [53]. Copyright 2017 American Chemical Society



Nano-Micro Lett. (2019) 11:71 Page 7 of 37 71

1 3

As seen from the above examples, both graphene layer 
and graphene foam can be used to construct high-perfor-
mance capacitive tactile sensors. Graphene layers with good 
morphology, high crystallinity and uniform thickness are 
usually obtained through CVD. The graphene electrodes 
of capacitive tactile sensors obtained in this way not only 
present excellent electrical properties but also control the 
transparency through altering the growth process. Further-
more, the electrodes can also conform to substrates of dif-
ferent surface morphologies, thus, realizing the patterning 
of electrodes and ultimately improving the tactile sensitiv-
ity of devices. What is more interesting is that the CVD 
method can achieve large-area graphene layers, making the 
realization of integrated of tactile sensor components easier 
and laying a solid foundation for tactile sensors with good 
spatial resolution. However, the high energy consumption, 
high cost and high pollution stemming from the production 
process pose difficulties to realizing industrial production. 

In contrast, graphene foams are usually obtained through 
GO, which can be prepared in large quantities by solution 
methods at room temperature. Furthermore, GO has dif-
ferent electrical properties due to the varying degrees of 
reduction, which enables it to be used as both electrodes 
and the insulating layer of capacitance tactile sensors. When 
the graphene foam, which is porous and flexible, acts as 
the dielectric layer, the distance between the two parallel 
plates is easily adjusted under the action of external forces, 
thus, greatly improving the sensing performance of capaci-
tive tactile sensors. However, even with a strong reduction, 
the oxygen-containing functional groups do not completely 
disappear, which greatly reduces the crystallinity and con-
ductivity of RGO, and results in the material not being a 
good electrode for capacitive tactile sensors. Therefore, 
due to the graphene layer and the graphene foam having 
respective advantages and disadvantages for constructing 
capacitive tactile sensors, suitable forms of graphene and 

GO

rGO

PDMS

Graphene

(a) (c)

(b)
(d)

(e)

Press Release

20 µm 20 µm

0
0.009
0.021
0.033

0
0.009
0.021
0.033

25 °C
29 °C
32 °C
37 °C

20%

38%

56%

79%

0

24 kPa

36 kPa

48 kPa

1

2

3

4

5

6

7

8

0

−0.042

−0.091

−0.142

Temperature Humidity Pressure

0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

A B C D E F G H

Δ
C

/C
0

On Off OffOn

On

On Off
1.54 Pa

0.79 Pa

0.46 Pa0.24 Pa

Off

5.96
5.95
5.94
5.93
5.92
5.91
5.90
5.89
5.88
5.87
5.86

C
ap

ac
ita

nc
e 

(p
F)

2 3 4 5 6 7
Time (s)

8 9 101112131415

Fig. 3  Versatile graphene and its derivatives are used to fabricate multifunctional capacitance-type tactile sensors. a Schematic diagram show-
ing the four pixels (2 × 2) of the multimodal E-skin sensor, which were capable of mapping three individual stimuli including humidity, tempera-
ture and pressure. b Black-and-white maps of the calculated sensitivities of the three sensors during the finger pressing event (top), and a 2D 
color map of the distributions of the corresponding temperatures (blue), humidity (red), and pressures (green). Reproduced with permission from 
Ref. [54]. Copyright 2016 WILEY–VCH Verlag GmbH & Co. KGaA, Weinheim. c Schematic of the loading–unloading cycle for the pressure 
sensor with GO foam as a dielectric material. d Transient response to the placement and removal of several ultrasmall weights in the GO foam-
based sensor. Inset: a petal on the sensor. e The pressure response to the strawberry. Insert: Bird’s eye view of the strawberry standing on the 
sensor arrays. Reproduced with permission from Ref. [56]. Copyright 2016 Elsevier Ltd



 Nano-Micro Lett. (2019) 11:7171 Page 8 of 37

https://doi.org/10.1007/s40820-019-0302-0© The authors

its derivatives with different morphologies should be chosen 
according to the actual practical applications.

3.2  Piezoresistive Tactile Sensors

Although capacitive tactile sensors based on versatile gra-
phene materials forge ahead on wearable electronic devices, 
it has been widely accepted that high sensitivity, high resolu-
tion, and mass production can hardly be realized at the same 
time, and the constructed devices are still far from practi-
cal uses. Owning to the excellent electrical property of gra-
phene and its nanoscale flexibility, minor stress deformations 
could lead to a dramatic change in resistance [31]. There-
fore, graphene-based piezoresistive sensors have become the 
most commonly used electromechanical sensors with rela-
tively simple read-out systems and offer high flexibility and 
stretchability [58]. The mechanisms of graphene-based tac-
tile piezoresistive sensors can be described by the following 
two types: due to the breaking of sublattice symmetry under 
uniaxial strain, the bandgap of graphene can be opened to 
increase its resistance; the fragments of a conductive net-
work assembled by graphene and its derivatives can con-
nect with each other under strain or pressure to change the 
resistance and recover when the external force is removed. In 
graphene-based piezoresistive sensors, the resistance of the 
graphene is defined as R = ρL/A, where ρ is the resistivity, L 
is the length, and A is the average cross-sectional area. When 
sensors are in operation, various related parameters are used 
to evaluate their qualities. Among them, the most funda-
mental parameter is the gauge factor (GF), which reflects 
the sensitivity to external physical action. The GF is defined 
as GF = (∆R/R)/ε, where ΔR/R is the normalized resistance 
and ε is the mechanical strain/pressure. A higher GF means 
a higher sensitivity [32]. To achieve a higher GF, various 
assembly methods have been applied in recent studies.

3.2.1  Graphene Tactile Sensors Using 1D Structures

As the high aspect ratio of 1D architecture favors the rapid 
capture and release of external stimuli, increasing effort 
has been focused on fabricating pressure sensors based on 
1D active material. However, the innate 2D structure of 
graphene makes obtaining 1D microscopic structure dif-
ficult. Thus, we need to search for other tools to help. As 
reported by Nakamura and coworkers, using a nickel wire as 

a template, 1D hollow tubing CVD graphene fibers (TGFs) 
could be obtained, coated with PDMS, and used as the 
active material for resistance-type strain sensors, as shown 
in Fig. 4a, b [46]. During the process of charge conduction, 
PDMS acted as a barrier in a bundle to bundle hopping, 
which made the TGF-based strain sensor possess better 
sensing properties than that of multiwall carbon nanotube 
(MWCNT)/PDMS composite-based strain sensors.

Electrostatic spinning is a special fiber manufacturing 
process in which a polymer solution or melt is sprayed in a 
strong electric field. By taking advantage of this commonly 
used method, composite nanofibers of carbon nanotubes and 
graphene were fabricated by Lee et al. [47] (as shown in 
Fig. 4c), wherein graphene was introduced to improve the 
pressure sensitivity. According to the authors’ simulation, 
these fibers changed their relative alignment to accommo-
date a bending deformation, thus, reducing the strain in indi-
vidual fibers. Based on this fascinating result, extraordinarily 
small bending-sensitive, ultra flexible, and optically trans-
parent resistive-type pressure sensors were fabricated. These 
sensors could be used to accurately evaluate external stimuli 
with curvilinear and dynamic surfaces; even when the sen-
sors were bent to a radius as small as 80 µm, the sensor 
properties remained practically unchanged without bending 
interference, as shown in Fig. 4d, e. Furthermore, as shown 
in Fig. 4f, such a bending-insensitive device array could be 
used to accurately measure the distribution of the pressure 
normal to the soft movable 3D surface of a balloon that was 
being pressed by a soft object, such as a finger, without suf-
fering from the inaccuracy induced by mechanical deforma-
tions, such as wrinkling and twisting. These excellent results 
lay a good foundation for the practical application of 1D 
graphene-based tactile sensors to E-skin.

GO and RGO contain abundant oxygen functional groups 
on their basal plane and edges, which make their self-assem-
bly into 1D fiber architectures via solution processes pos-
sible. Fu and coworkers prepared a kind of conductive glass 
fibers (GFs) fabric by dip-coating GO on the surfaces of 
GFs, followed with an HI reducing process [59]. Taking 
advantage of the GFs with a high mechanical performance 
as a reinforcement filler and silicone resin with excellent 
flexibility as the matrix, the fabricated RGO@GFs/silicone 
composite simultaneously exhibited a high tensile strength 
and good flexibility. Yin et al. [60] dropped cellulose acetate 
fiber bundles into an as-prepared RGO aqueous solution to 
obtain synergetic fiber (SF)/RGO layers. When stretched, 
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the fiber bundles fractured into gaps, islands, and bundles 
bridging the gaps; thus, the conductive fiber bundles could 
serve as mechanical sensors capable of detecting trace ten-
sile strain down to 0.05% with a high sensitivity.

3.2.2  Graphene Tactile Sensors Using 2D Structures

With the increasing demand for high-conductivity films, 
2D graphene films have attracted significant attention 
due to their transparency and flexibility for wide-ranging 
application in optoelectronics, light-emitting diodes, solar 
cells, and sensors [11]. For tactile sensors used in E-skin, 
an abundance of facile synthetic methods for producing 
2D graphene thin films exists. The CVD method is the 
most widely used approach to fabricate high-quality 2D 
graphene films, and many interesting works based on this 

method have been reported [59, 60], Recently, Li et al. [61] 
fabricated a tactile sensor based on a CVD graphene film-
boron nitride (BN) heterostructure, wherein monolayer 
graphene was sandwiched between two layers of vertically 
stacked dielectric BN nanofilms. With the protection of 
the BN layers, the oxidation and contamination of gra-
phene were effectively avoided. Xu et al. [62] constructed 
an ultrathin and flexible tactile sensing element based on 
few-layer CVD graphene films. As shown in Fig. 5a, the 
sensor was assembled through a very simple method con-
sisting of a PET substrate and two unconnected graphene 
films. The excellent optical transparency made the sen-
sor promising for a broad range of applications, including 
smart windows with a rainy weather warning. By means 
of a pair of compliant conductive plates, a novel tactile 
sensor, which could reflect the displacement of touch with 
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sensitivity, excellent durability and fast response, was fab-
ricated by Xu and coworkers (Fig. 5b); the plates were 
adhered to CVD graphene films, as the surface layer of 
a PET substrate, and a transparent elastic adhesive was 
sandwiched between the electrodes [58]. As the distance 
between a touch point and the electrode of the as-fabri-
cated sensing device determined the change in resistance, 
this particular structure could reflect 1D touch, as shown 
in Fig. 5c. To realize the spatial resolution of a tactile 
sensor, a pressure sensor array with a 4 × 4 tactile sensing 
unit was constructed by Lv et al., and each sensing unit 
contained a polyimide (PI) substrate, CVD graphene/PET 
film and PDMS substrate bump [63]. The authors believed 
that the designed high-sensitivity flexible E-skin might 
have important application prospects in medical diagnosis, 
artificial intelligence, and other fields.

In addition to directly using CVD graphene as an active 
material in tactile sensors, the modification and microstruc-
ture of graphene can further improve the sensing perfor-
mance of devices. From the point of view of material modi-
fication, Haniff et al. [64] found that the straightforward  NH3/
Ar plasma treatment of graphene, changed its morphology, 
structure, chemical composition, and electrical properties. 
Due to the tunneling behavior originating at localized defects, 
the graphene structure doped with nitrogen atoms exhibited 
a significant increase in sensitivity by one order of magni-
tude compared to that of the unmodified graphene sheet, as 
shown in Fig. 6a, b. The integration of a serpentine-shaped 
pattern for single-layer graphene was another efficient way to 
improve the performance of graphene-based tactile sensors 
(Fig. 6c) [65]. Owing to the unique microstructure, the sen-
sor was capable of stretching up to 20% with a high GF up to 
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Fig. 5  2D graphene films obtained by CVD used for piezoresistive pressure sensors. a Schematic illustration of the fabrication procedure of a 
tactile sensor composed of 2D graphene films and a PET substrate. Reproduced with permission from Ref. [62]. Copyright 2018 Springer Sci-
ence + Business Media, LLC, part of Springer Nature. b Optical photograph of an ultrathin, transparent and flexible tactile sensor. Inset: The 
geometric dimension of the sensor. c Sensitivity of the device to longitudinal displacement at different axial distances of 5, 10, 15, and 20 mm. 
Reproduced with permission from Ref. [58]. Copyright 2017 The Royal Society of Chemistry
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42.2 and could provide functional extensions to bidirectional 
responses (Fig. 6d). In terms of the microstructure of the 2D 
material, there are no exactly flat graphene materials when 
the length in one dimension exceeds 10 nm [66]. It is appeal-
ing that compared with their flat counterparts, wrinkled 
structures could induce many novel physical properties and 
have several distinguishing application trends in the E-skin 
field [67]. Therefore, in recent years, great efforts have been 
made to seek methods for generating highly controlled wrin-
kling in graphene materials. Chen and coworkers reported 
a high-sensitivity, ultrathin, and transparent pressure sensor 
based on wrinkled graphene prepared by a facile liquid-phase 
shrink method [68]. A porous anodic aluminum oxide (AAO) 
membrane, with a thickness of only 200 nm, was used to 
isolate the two layers of graphene. When an external com-
pression was applied to the as-fabricated device, the distance 
between two graphene wrinkles was changed to form current 
pathways. As a result, an ultrahigh operating sensitivity (up 
to 6.92 kPa−1) was obtained, substantially higher than that of 
tactile sensor devices with relatively flat graphene electrodes. 

More interestingly, as the complete separation of the two gra-
phene layers occurred when the sensor was not subjected to 
any pressure, such a device could be used as an on/off and 
energy-saving device.

Although CVD graphene-based tactile sensors show the 
high sensitivity and reliability needed for sensor devices, 
their low yield, high production costs, and complex pro-
cesses hinder their development toward practical applica-
tions [15]. Fortunately, the functional diversity of graphene 
and its derivatives make solution processing possible and 
can provide environmentally friendly, low-cost, and scalable 
methods for the production of large-area ultrathin 2D gra-
phene films [69, 70]. Yang and coworkers proposed an ultra-
sensitive strain sensor with a large strain range and ultrahigh 
GF (up to 1054) based on graphene armor scales by a simple 
solution fabrication process [69]. To achieve the graphene 
armor scales, graphene ink was sprayed uniformly on the 
surface of a PDMS substrate to form a 2D film. After wiring 
with copper wire and silver ink, another PDMS layer was 
used to encapsulate the whole structure. Then, the sensor 
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was stretched and recovered within a range of 50% ten times 
to generate the graphene armor scales, as shown in Fig. 7a. 
Due to the excellent performance, this strain sensor could 
meet the demands of E-skin for subtle, large and complex 
human motion monitoring (Fig. 7b) and indicated tremen-
dous application potential for health monitoring, mechani-
cal control, real-time motion monitoring and more. Another 
relevant example in terms of solution processing methods 
was presented by Zhang et al, wherein RGO was coated on 
micropyramid PDMS arrays via layer-by-layer assembly 
[70]. This feature size would be easily integrated into a cell 
array with sufficient spatial resolution and constructed sig-
nal collection. Additionally, by employing an in situ chemi-
cal reduction method with the eco-friendly reducing agent 
vitamin C, a free-standing graphene film presented surface 
fluctuations, and a fluffy, layered structure was obtained in 
the cross section [71]. Owing to this advanced structure, a 
pressure sensor based on such a graphene film displayed 
a high sensitivity along with an extraordinarily ultra-wide 
operation range. Cost-effective methods, such as direct laser 
scribing PDMS and direct laser reduction of GO, can also 
help us to obtain high-performance tactile sensors [62, 72].

3.2.3  Graphene Tactile Sensors Using 3D Porous 
Structures

Active materials based on a 3D porous structure are the 
most common well-shaped and self-supported graphene 

hierarchical nanostructures used in graphene-based tactile 
sensors. Based on the large stacking interfaces and the π–π 
interface interactions between graphene sheets, those 3D 
materials with an ultralight density and flexibility also pos-
sess a high conductivity and mechanical strength. In addi-
tion, their scalable production makes for an attractive choice 
for practical implementation [21]. Recently, researchers have 
developed several porous materials as templates to generate 
3D graphene porous structures, such as polymer sponges 
(including polyurethane (PU) and polyvinyl chloride (PVC)) 
[73–78], various fabrics [79–81], cellulose paper [82], multi-
layer silk [83], all kinds of metal foams [84–86], and others 
[87–89].

A typical example using commercially available PU 
and PVC sponges as templates was reported by Zhang 
et al., wherein graphene-wrapped sponges were obtained 
by soaking sponges in a hydroquinone/GO mixed solution 
and then vacuum annealing under certain conditions [74]. 
The as-constructed composites could be processed into dif-
ferent dimensions and differently shaped sensors to detect 
multiple forms of mechanical deformation, such as tensile 
strain, impact, bending, vibration, and twisting, as shown 
in Fig. 8a. By using a similar approach, Zhu and coworker 
fabricated graphene sponges via a dip-coating process 
that stacked graphene layers onto polyimide scaffolds in 
a homogeneous graphene solution with GO serving as the 
dispersant [76]. Then, as illustrated in Fig. 8b, a tactile 
sensor with 3 × 3 graphene sponge sensing units was con-
structed through photoetching, magnetron sputtering, and 
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screen-printing processes. The authors’ believed that such 
a tactile sensor had potential for E-skin applications, such 
as monitoring body motion and other biomedical appli-
cations. Conductive PU sponges coated with synergistic 
MWCNTs and graphene prepared by solution methods 
could be used to construct more advanced tactile sensing 
devices by taking advantage of the synergistic effect from 
multiple mechanisms [73, 77]. As shown in Fig. 9a, under 
a low compression strain, MWNT-RGO@PU assumed 
nanogaps, microcracks and a fractured skeleton while at 
the stage of the “disconnect-connect” transition; whereas 
a high compression strain led to the compressive contact 
stage, where a conductive skeleton was displayed. The ver-
satility of these sensors has been demonstrated in a wide 
range of E-skin applications, such as speech recognition, 
health monitoring, and body motion detection, as displayed 
in Fig. 9b. In addition to MWNTs, a conducting polymer 
such as polyaniline, with a large surface area and excellent 
electrical conductivity, can also be mixed with graphene 
to construct stretchable electronic devices to improve the 
sensing performance [75].

As is known, the majority of sponges provided on the 
market are PU sponges. The production process for this kind 

of chemical product is neither environmentally friendly nor 
conducive to human health, so tactile sensors based on PU 
sponges are difficult to realize for practical applications of 
E-skin [81, 83]. To achieve a similar functionality without 
the abovementioned environmental and health issues, vari-
ous natural fabrics have been used to replace PU sponges. 
Liu and coworkers utilized silk as a support body to fabricate 
a 3D graphene structure, a graphene-silk pressure sensor 
with high sensitivity, good repeatability, flexibility, and com-
fort for skin was obtained [83]. Yuan et al. developed a fac-
ile, cost-effective, and scalable method for the fabrication of 
high-performance strain sensors based on a graphene-coated 
spring-like mesh network. Owing to the unique 3D structure 
of the spring-like mesh network, the tactile sensor could 
be used to detect various deformations, such as pressing, 
stretching, bending, and even subtle vibrations [81]. Mi and 
coworkers chose highly elastic fabric fibers as the functional 
carrier and then simply coated RGO on the fibers by plasma 
treatment, dip-coating and hydrothermal reduction steps, 
finally making a wearable strain sensor [83]. Lu and cow-
orkers used low-cost, commercial 3D polyester nonwoven 
fabrics as scaffolds to construct highly sensitive wearable 
piezoresistive pressure sensors [90]. Kim collaborated with 
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colleagues and fabricated RGO/SWCNT hybrid fabric-based 
strain-pressure sensors using a simple solution process. The 
RGO/SWCNT fabric sensor not only showed particularly 
high mechanical stability and flexibility during 100,000 
bending tests but also exhibited excellent water-resistance 
properties after ten washing tests [79]. The superior sensing 
performances and economic fabrication processes belonging 
to these kinds of wearable tactile sensors have strengthened 
our confidence in smart clothing, which can be practical for 
applications in household, health-care, entertainment and 
robotics fields.

In addition to natural fabrics, paper is another kind of 
environmentally friendly substrate with a 3D hierarchical 

nanostructure and good elasticity that also has potential to 
be a good alternative to improve the performance of pres-
sure sensors. A typical paradigm was reported by Tao et al. 
[78], who mixed multilayer tissue papers with a GO solution 
to obtain GO paper; then, after an annealing process and 
the drawing out of a wire, a graphene-paper-based pressure 
sensor was constructed. The 3D structure of the tissue paper 
with RGO is shown in Fig. 10a, b; sensors applied in pulse 
detection, respiratory detection, and voice recognition, as 
well as the detection of various intensities of motion, are 
demonstrated in Fig. 10c. Compared to most reported gra-
phene pressure sensors, this sensor realized the optimiza-
tion of sensitivity and working range, which was especially 
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suitable for wearable applications. The authors believed 
that this graphene-paper pressure sensor would have great 
potential in E-skin devices to achieve health monitoring and 
motion detection.

Although the 3D graphene structures prepared through 
the abovementioned templates can significantly improve 
the sensing performance of tactile sensors, the opacity of 
sponges, fabrics and tissue paper hinders the construction of 
transparent E-skin [91, 92]. PDMS, an intrinsically elastic 
and extensible material with a high transparency, responds 
readily to tensile, torsional, and compression forces and has 
been widely used as a flexible substrate for various tactile 

sensors. Yun and coworkers employed simple coatings and 
a direct patterning method to fabricate RGO-sheet-wrapped 
PDMS porous conductive materials, without any compli-
cated microfabrication processes [88]. Taking advantage of 
the inherent properties of PDMS and the high conductiv-
ity of RGO, the strain sensor exhibited a high sensitivity 
with a wide sensing range, which could be used to monitor 
large-scale human motion, as shown in Fig. 11a. The as-
constructed graphene/PDMS porous structure could also be 
used for bioelectrodes to detect human electrophysiological 
signals. Encapsulating 3D graphene foam with PDMS is an 
alternative approach to obtain pressure sensors based on 3D 
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porous graphene foam/PDMS [89–92]. By unidirectional 
freeze-drying and simple mechanical compression, a tactile 
sensor with excellent flexibility, high stretchability and sens-
ing sensitivity, and anisotropic mechanical properties was 
fabricated by Zeng and coworkers [89]. Rinaldi et al. [81] 
found that the piezoresistive properties could be adjusted 
by varying the amount of graphene in the graphene/PDMS 
foams. Due to static mechanical forces or KHz vibration, 
the electronic band structure would become modified, lead-
ing to a significant resistance change in graphene. Based on 
this phenomenon, Zhang and coworkers found that the 3D 
graphene foam/PDMS could be used to detect frequency 
signals by both tuning fork tests and piezoelectric ceramic 
transducer tests, which showed a clear linear response from 
audio frequencies, including frequencies up to 141 kHz (the 
ultrasound range), as shown in Fig. 11b, c [92]. Zheng et al. 
employed such a facile approach to design highly stretch-
able graphene foam/PDMS composite films with tunable 
sensitivities and switching capabilities by simply control-
ling the thickness of the graphene foam [91]. Based on a 
3D printing technique, Wang et al. successfully fabricated 
graphene/PDMS composites with long-range ordered porous 
structures. The resultant composites presented tunable and 
high gauge factors, along with excellent durability [93].

Beyond PDMS, other flexible porous polymers, such 
as porous inverse opal acetylcellulose (IOAC) films, 

thermoplastic polyurethane electrospun fibrous mats, 
poly(diallyldimethylammonium chloride), polyester textiles, 
and polyaniline (PANI) can also be used as templates to con-
struct 3D graphene structures [89–97]. The special hierarchi-
cal conductive network endows 3D graphene-based tactile 
sensors with a good stretchability and high sensitivity. The 
nanoscaled PANI arrays greatly enhanced the strength and 
electrical conductivity of the 3D microarchitectural RGO 
sponge, endowing the pressure sensor with a high sensitivity, 
wide range and reliable sensing, a rapid response time, and 
excellent stability. Simultaneous, a porous IOAC film could 
be used not only as flexible microstructured substrates for 
highly sensitive motion sensing but also for the collection 
and analysis of ion concentrations in sweat by monitoring 
simple colorimetric changes or reflection-peak shifts, which 
resulted in this material having great application potential 
in the field of E-skin.

Flexible and transparent polymers to some extent can 
solve the problem of sensor transparency. Nevertheless, all 
of the porous structure cannot effectively remain in sensors 
after the polymer has infiltrated into the as-prepared gra-
phene foam, and the pores can achieve enhanced sensing 
performances [97, 98]. To conquer this challenge, Pang and 
coworkers used nickel foam as a template and a chemical 
etching method to create a graphene porous network (GPN), 
as shown in Fig. 12a; this represents the first work of in situ 
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GPN prepared in a polymer and used for pressure and strain 
applications [85]. Because of the pores in the GPN, the 
composite, as pressure and strain sensors, exhibited a wide 
pressure-sensing range and the highest sensitivity among 
graphene foam-based sensors, respectively, and could be 
used as E-skin to monitor or even recognize walking stages, 
finger bending degrees, and wrist blood pressure (Fig. 12b). 
Kim et al. [98] demonstrated a strain-pressure sensor with a 
high sensitivity and durability by combining molybdenum 
disulfide  (MoS2) and Ecoflex with such a GPN. It was found 
that the conformal nanostructure of  MoS2 on the GPN sur-
face could produce improved resistance variations against 
external strain and pressure. As a result, the  MoS2/GPN/
Ecoflex sensor exhibited noticeably improved sensitivity 
over that of previously reported GPN/PDMS sensors in a 
pressure test. Copper foil, as the most commonly used metal 
for the preparation of graphene by CVD, has also been used 
to fabricate porous graphene 3D structures [75, 84].

Generally, the size and distribution of the pores in the 
foam, as well as the thickness of the pore walls, are essential 
to the sensitivity of graphene foam-based pressure sensors 
[99]. Therefore, developing new approaches for preparing 
graphene foams with satisfactory disorder to fabricate high-
performance pressure sensors with acceptable sensitivities, 
detection limits, response times, and stabilities is signifi-
cantly important. Due to the consistency of commercial 
production patterns and methods, the abovementioned tem-
plates are difficult to realize because of the highly disordered 
distributions of pore diameter and pore-wall thickness [100, 
101]. Furthermore, to some extent, the scaffold materials 
increase not only the complexity of the sensor structure but 
also the weight of sensing devices [100]. Zang and cowork-
ers introduced an ultrasonic dispersion method to solve this 
problem, and the porous structure was maintained by the 
freeze-drying process [101]. Due to the maintenance of the 
highly disordered structure of the ultrasonically dispersed 
GO before the freezing process, the RGOF sensors demon-
strated an ultrahigh sensitivity of 22.8 kPa−1, an ultralow 
detection limit of approximately 0.1 Pa, and a superior sepa-
ration of 0.2-pascal-scale difference.

To fabricate graphene aerogels with ultralight, superelas-
tic, and excellent mechanical and multifunctional properties, 
surfactants and crosslinkers are often employed in the syn-
thesis system [100–102]. Qu’s group fabricated macropo-
rous polystyrene/graphene aerogels (MPS-GAs) with the 
help of sodium dodecyl sulfate (SDS) by using a simple 

physical strategy in an aqueous emulsion containing poly-
styrene (PS) as a mediator [103]. The synthesis process is 
shown in Fig. 13a: (1) Cyclohexane containing PS was intro-
duced into GO suspensions, followed by adding SDS into 
the system through vigorous stirring, in which SDS acted 
as a surfactant to decrease the surface tension and facilitate 
the stable and uniform dispersion of PS in the GO aqueous 
suspensions. (2) During this process, PS molecules, with 
a conjugated structure, could crosslink well with graphene 
sheets through π–π interactions. Then, the formed emul-
sions were immediately immersed into liquid nitrogen for 
10 min to keep their macroporous structure. (3) The aerogels 
were obtained after lyophilization and a thermal treatment. 
Thereafter, the authors used polyethylene glycol sorbitol 
monooleate (Tween 80), instead of SDS, as a sparkling 
agent, and an automatic egg beater, instead of a blender, 
to obtain a sparkling graphene block (SGB) with bubbled 
cavities maintained well, as illustrated in Fig. 13b [102]. 
The 3D microporous graphene aerogels obtained by freeze-
directed assembly and assisted by surfactants exhibited an 
excellent elasticity, even at 95% compressive strain, and 
could rebound a steel ball with an ultrafast recovery speed 
(~ 1085 mm s−1), making this material a promising candidate 
for applications in actuators, elastic conductors, strain/pres-
sure sensors, and wearable devices, as shown in Fig. 13c, 
d. Xiao et al. developed a silane-crosslinked and modified 
graphene aerogel (SGA) using a novel and simple method 
involving the CVD of methyltriethoxysilane into a graphene 
oxide aerogel, wherein the compression recoverability could 
extend to 99.5% [100]. In addition to a high-tactile sensing 
performance, the compressible and ultralight structure could 
also serve as a fast and recyclable superadsorbent being able 
to adsorb various organic liquids with an ultrahigh capac-
ity. Researchers also found that the addition of functional 
inorganic semiconductor materials, such as  SnO2, GaN, and 
CdS, to the graphene aerogel 3D structure could enhance the 
tactile sensing properties, where the piezoresistive response 
was considerably higher than that of the bare aerogel [104, 
105].

From the abovementioned 3D graphene-based tactile 
sensing paradigms for E-skin applications, we can see that 
most of the developed strategies focused on high sensitiv-
ity, while sensors capable of combing high sensitivities 
and broad dynamic ranges have barely been proposed. This 
inequality is because such materials are prone to satura-
tion responses when attempting to obtain measurements 
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involving high pressures [106]. By means of using a high-
internal-phase emulsion (HIPE) as a template, a highly 
porous graphene material consisting of small pores packed 
between larger ones was fabricated by Yang and coworkers, 
wherein the inner walls were lined with RGO [106]. The 
procedure for fabricating RGO@PolyHIPE foams and the 
image of this kind of material are illustrated in Fig. 14a. 
Owing to the unique 3D hierarchical structure, the piezore-
sistive pressure sensor based on RGO@PolyHIPE foam was 
capable of a high sensitivity over a pressure range spanning 
from a mosquito touching the surface to an elephant stand-
ing on the surface, as shown in Fig. 14b. Tsui et al. reported 
piezoresistive responses from aerogels of graphene-coated 
SWCNTs, made using a facile and versatile sol–gel method 
[107]. With the synergistic effect of graphene and SWCNTs, 
the piezoresistivity of these aerogels spanned wide compres-
sive pressures up to at least 120 kPa with sensitivity, and the 
piezoresistive responses did not show any creep for at least 
1 h and 80 kPa of compressive static loading. Such sensing 

regimes allow tactile sensors based on 3D graphene struc-
tures to move closer to the practical application of E-skin.

3.2.4  Graphene Tactile Sensors Draw Inspiration 
from Nature

As we all know, many well-adapted hierarchical structures 
have been developed through natural selection and are criti-
cal for the survival of organisms. For example, to climb a 
vertical wall, the feet of the gecko have developed a kind of 
special hierarchical structure so that maximized contact area 
and intermolecular interactions could be realized [108], the 
self-cleaning ability of a lotus leaf mainly depends on the 
hydrophobic hierarchical structure of its surface [109], and 
the epidermal ridges on the surface of the human skin help 
us perceive the world. These typical examples have inspired 
us to design biomimetic materials for the fabrication of tac-
tile sensors used in E-skin applications [110–112].

(a) (b)

(d)

(c)

Automatic
egg beater

Stirring

GO

PET

MPS20-GAs
Copper wire

SDS

Freeze-drying

Annealing

PS
n

(      )

GO + Tween 80

1) Freeze-drying

2) Low-temperature
annealing (200 °C)

Finger bending2.5
2.0
1.5
1.0
0.5
0.0

2.5
2.0
1.5
1.0
0.5
0.0

Δ
R

/R
0

0 20 40 60 80
Time (s)

Wrist bending2.0

1.5

1.0

0.5

0.0

Δ
R

/R
0

0 20 40 60 80
Time (s)

Elbow bending

Δ
R

/R
0

0 20 40 60 80
Time (s)

1 mm

0.0 ms 15.0 ms 34.5 ms 64.5 ms

1 cm

Fig. 13  Typical 3D graphene structures via surfactant-assisted self-assembly used for tactile sensors. a Schematic illustration of the fabrication 
process of 3D microporous polystyrene/graphene aerogels. Reproduced with permission from Ref. [103]. Copyright 2016 Wiley–VCH Verlag 
GmbH & Co. KGaA, Weinheim. b Illustrations of the preparation of a sparkling graphene block. c Photograph of a sparkling graphene block 
bent to 180° (left) and real-time images from a high-speed camera showing that the sparkling graphene block can rapidly bounce a steel ball. 
Reproduced with permission from Ref. [102]. Copyright 2017 American Chemical Society. d The as-fabricated tactile sensor as a promising 
candidate for wearable devices. Reproduced with permission from Ref. [103]. Copyright 2016 Wiley–VCH Verlag GmbH & Co. KGaA, Wein-
heim



 Nano-Micro Lett. (2019) 11:7171 Page 20 of 37

https://doi.org/10.1007/s40820-019-0302-0© The authors

(a)

(b)

(i)

Polymerization

Reduction

30 µm 15 µm

1 µm

200 µm

−H2O

(ii) (iii)

5 µm5 µm

50 nm

rGO

Polymer

Pore

Lipophilic phase
(monomer+AIBN)

GO

5×105

105

104

103

102

101

100D
et

ec
tio

n M
ax

/D
et

ec
tio

n M
in

DetectionMin (Pa)

current work
More sensitive

Broader range

Span 80

rGOMRAFT(St12-AA6)

Aqueous phase
(H2O+VC+CaCl2)

0.4

0.3

0.2

0.1

0.0

35

30

25

20

15

10

5

0

Δ
I/I

0

Δ
I/I

0

0 4020 60 80 100

2.53 kPa−1

0.06 kPa−1

0.21 kPa−1

Pressure (Pa)

Pressure (kPa)

120140

0 50 100 200150

31 13

24
42 44 48

49

18
12 10

28
19

2643
274557

46

(11/47)

1 10 100 1000

Fig. 14  A novel method to obtain 3D graphene structures by using high-internal-phase emulsion (HIPE) as a template. a Schematic illustration 
of the procedure for fabricating the RGO@PolyHIPE foams via HIPE polymerization, optical microscopy images, and SEM images of the foam. 
b Relative change in the sensor’s current and pressure curves. The inset shows the relative current change in a small pressure range below 140 Pa 
(left). Comparison of the detection limit of minimum pressure and the responsive pressure range between the sensor described in the current 
work and previously reported sensors (right). Reproduced with permission from Ref. [106]. Copyright 2019 American Chemical Society



Nano-Micro Lett. (2019) 11:71 Page 21 of 37 71

1 3

By using a bioinspired hierarchical structure based on 
the surfaces of organs and consisting of PDMS covered 
with monolayer graphene (Fig. 15a), Bae and coworkers 
presented a high-performance piezoresistive pressure sen-
sor device with a linear relationship between the applied 
pressure and output and with a high sensitivity over a wide 
range of pressures, specifically between 0 and 12 kPa [109]. 
Inspired by the skin’s epidermis, with high-performance 
force sensing, Pang et al. proposed a special surface mor-
phology with a spinosum microstructure of random distri-
bution via the combination of an abrasive paper template 
and RGO, as shown in Fig. 15b [111]. By taking advantage 
of the random distribution of the spinosum microstructure, 
the sensitivity of the graphene pressure sensor could reach 
25.1 kPa−1 over a wide linear range of 0-2.6 kPa. As shown 
in Fig. 15c, following the same inspiration, a novel pressure 
sensor with a hierarchical structure and gradient RGO wrin-
kles was reported by Jia et al. [112]. The researchers found 
that benefiting from the skin-like structures, the pressure 
sensor demonstrated an outstanding sensitivity.

Except for human epidermis, the epidermal ridges on the 
skin of the human fingertip, which serve to amplify subtle 
external stimulations, can also inspire us to design highly 
sensitive fingertip skin-like pressure sensors. As shown in 
Fig. 15d, the growth of a 3D graphene film mimicking the 
morphology of fingertip skin via CVD was reported by Xia 
and coworkers [113]. The hierarchical structure of graphene 
and the PDMS films molded from a natural leaf contributed 
to the superior performance of the pressure sensor. Chun 
and coworkers reported that by introducing microstruc-
tures inspired by human fingerprints, a surface texture was 
successfully defined through fast Fourier transform analy-
sis, and its spatial resolution was easily achievable [114]. 
Another example inspired by human organs (the arch of the 
foot) was reported by song et al., wherein a novel Janus gra-
phene (JGF) film with concave-convex arch-shaped micro-
structures on both surfaces was presented [115]. The special 
microstructures of the graphene material could effectively 
hinder the full contact of two face-to-face JGF electrodes 
and led to a tunable pressure-dependent contact area.
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In addition to human organs, microstructures from ani-
mal and plant organs also provide interesting ideas for the 
preparation of active materials for graphene-based tactile 
sensors. A more obtrusive example is the Shar-Pei dog, and 
the higher dimensional patterns of Shar-Pei skin can sustain 
large in-plane stretching and still provide tactile percep-
tions so that wrinkle-crumple RGO electrodes with a high 
stretchability and strain-insensitive resistance profiles were 
fabricated by means of sequential deformation processes, as 
shown in Fig. 16a [116]. The stretchable pressure sensors 
could be integrated with two surgical robots for a transoral 
robotic surgery procedure. During the cadaveric testing, 
the RGO sensors could detect the robot-tissue contacts 
under joint stretches in real time to enhance the surgeon’s 
awareness for collision avoidance, as shown in Fig. 16b. 

Zhao et al. demonstrated an innovative and cost-efficient 
strategy to fabricate highly sensitive, stretchable, and con-
ductive strain-sensing platforms inspired by the geometries 
of a spider’s slit organ and a lobster’s shell, wherein the 
electrically conductive composites were fabricated via 
embedding the 3D percolation networks of fragmentized 
graphene sponges (FGS) in a poly(styrene-block-butadi-
ene-block-styrene) (SBS) matrix, followed by an iterative 
process of silver precursor absorption and reduction [117]. 
With the contribution of high stretchability from SBS and 
the binary synergistic effects of the designed FGS architec-
ture and Ag NPs, a high-quality strain sensor with potential 
for use in E-skin applications was obtained. Inspired by an 
octopus’ microsuckers, Chun and coworkers developed a 
water-resistant and skin-adherent graphene-coated fabric 
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Fig. 16  Microstructures inspired from animal and plant organs provide interesting ideas for the preparation of active materials for graphene-
based tactile sensors. a Comparison of the surface topographies between a Shar-Pei dog’s skin and RGO crumples by using Canny edge detec-
tion. b Continuum surgical robots with the as-fabricated pressure sensor for the collision-aware the transoral robotic surgery procedure. Repro-
duced with permission from Ref. [116]. Copyright 2019 American Chemical Society
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(GCF) for a wearable tactile sensor, which could adhere 
strongly to the skin in both dry and wet environments [118]. 
By taking advantage of these characteristics, human physi-
ological signals, such as wrist pulse and electrocardiogra-
phy (ECG), as well as body motions and speech vibrations, 
could be monitored. By laminating a single-layer graphene 
film as the sending element on a thin polymeric support 
of PDMS, Chun and coworkers also achieved a peeling-
resistant and water-drainable tactile sensor presenting an 
excellent performance under both dry and wet conditions, 
the construction of which was inspired by the toe pads of 
a tree frog [119]. Furthermore, Liu et al. [120] reported a 
high-performance strain sensor with a fish-scale-like gra-
phene-sensing layer, and Jian et al. [121] presented a high-
performance pressure sensor based on biomimetic aligned 
CNTs/graphene hierarchical structures molded from natu-
ral leaves. Inspired by mussel chemistry, Jing et al. [122] 
fabricated biocompatible, self-healing, highly stretchable 
polyacrylic acid/RGO nanocomposite hydrogel sensors by 
means of a dual-crosslinking mechanism including physi-
cal crosslinking and chemical crosslinking. All these exam-
ples mentioned above tell us that many wonderful hierar-
chal microstructures exist in nature and are waiting to be 
explored by researchers for fabricating tactile sensors in 
E-skin applications.

3.2.5  Synergy with Other Materials

With the rapid development of materials science, micronano 
materials with various morphologies and functions have 
been designed and synthesized. To advance the applications 
of E-skin, these materials can be integrated with versatile 
graphene materials in various ways to achieve effects in tac-
tile sensors exemplifying that the combination can be greater 
than the sum of the individuals [33].

3.2.5.1 Combined with  Inorganic Functional Materi-
als ZnO, as a common inorganic semiconductor pos-
sessing a large bandgap and exciton binding energy, an 
inherently high transparency and excellent luminescence 
at room temperature, has become a celebrated material 
widely used in liquid crystal displays, thin-film transis-
tors, light-emitting diodes and other electronic products, 
particularly tactile sensors [48, 87]. Sun et al. [48] found 
that the coupling effect obtained between ZnO nanopar-
ticles and graphene nanoplatelets could make a strain 

sensor exhibit perfect linearity for its whole working 
range. Hassan et al. [87] found that the presence of ZnO 
increased the connectivity between flakes of graphene, 
and when combined with a random micro-ridged PDMS 
substrate, the fabricated strain sensor achieved stretchabil-
ity up to 30% and bendability down to 10 mm in diameter. 
Pham and coworkers constructed an exotic heterostructure 
pressure sensor based on ZnO/chlorine radical-trap-doped 
bilayer graphene, wherein the heavy p-type chlorine trap 
doping in the graphene channel led to chlorine radicals 
without damaging the graphene and made a considerable 
contribution to the significantly improved sensing effect 
[49].

In addition to ZnO, other inorganic materials can also be 
employed to construct functional composites to enhance 
the sensing performance of tactile sensors. For example, 
Ma et al. [123] synthesized a novel kind of ultralight gra-
phene-amorphous carbon (AC) hierarchical foam, with an 
inner layer of graphene and an outer layer of AC, by CVD 
at 1065 °C, as shown in Fig. 17a. Owing to this unique 
structure, the inner graphene layer with a high conductivity 
and integrity provided the high sensitivity, while the outer 
AC layer helped to enhance the durability and mechani-
cal resiliency, which dispersed the pressure and led to 
the high durability against strain, as shown in Fig. 17b. 
By hybridizing carbon nanofibers (CNFs) with graphene 
nanoplates (GNPs) within a PDMS medium, Zhang et al. 
[124] presented a new technique to synergistically improve 
a sensor’s sensitivity and cycle stability. Compared with 
tactile sensors containing only CNFs or GNPs, the hybrid-
ized devices exhibited a better performance with a great 
linear range and a substantially improved stability. By tak-
ing advantage of the different chemical potentials between 
graphene and Zn, current signals can be obtained sponta-
neously from redox-induced electricity in the presence of 
saline water. Inspired by this phenomenon, Wang et al. 
[125] fabricated a novel self-powered sensing device 
based on a highly stretchable graphene film and a woven 
meandering zinc wire. From another point of view, Shi 
and coworkers found that graphene hybridization could 
significantly strengthen CNT networks, especially at nano-
tube junctures, and enhance the resistance to buckling and 
bundling under cyclic strains up to 20% [101].

3.2.5.2 Combined with Polymers As an important mem-
ber of the material family, polymers present many excel-
lent properties, such as light weight, mechanical flex-
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ibility, and their generally good solution processability, 
as well as a good compatibility with large-area and flex-
ible solid supports; all of these characteristics cannot be 
matched by other materials and endow polymers with the 
ability to manufacture various sensing devices [9]. Fur-
thermore, the inherent characteristics of polymers, such 
as their susceptibility to noncovalent interactions (includ-
ing hydrogen bonds, charge transfer, dipole–dipole inter-
actions, photoexcitation and reversible transformations), 
enable effective interactions with other materials to yield 
multifunctional composite materials [15].

Poly(vinylidene fluoridetrifluoroethylene) (P(VDF-
TrFE)), as a natural elastic conductive building block, is usu-
ally functionalized with graphene materials and has widely 
been used in the piezoresistive sensors [50, 126, 127]. For 

example, Lou and coworkers first reported the fabrication of 
a self-assembled 3D film platform that combined a naturally 
viscoelastic material (P(VDF-TrFE)) with RGO by a sim-
ple, efficient two-step solution process, as shown in Fig. 18a 
[128]. The authors were found that the piezoresistive sen-
sor with a sandwich structure displayed a high sensitivity, 
low detection limit and low working voltage, and the array 
could be used as highly sensitive E-skins for mapping spatial 
pressure distributions and monitoring human physiological 
signals, including real-time pulses and muscle movements, 
as displayed in Fig. 18b, c. Then, researchers integrated 
three types of sensors (a pressure sensor, photodetector 
and gas sensor) and three on-chip microsupercapacitors in 
parallel into a single pixel to construct a multifunctional 
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self-powered E-skin system [50]. The fabricated integrated 
system could monitor biosignals by being worn on the 
human body and exhibited great mechanical flexibility while 
subjected different bending curvatures, as shown in Fig. 18d. 
Coupling the high piezoelectric coefficient of P(VDF-TrFE) 
with the outstanding electrical properties of graphene, the 
graphene/P(VDF-TrFE) heterostructure could also be used 
to fabricate a highly sensitive, flexible and biocompatible 
pressure sensor [129].

The abovementioned graphene/polymer composites 
were fabricated by simply mixing graphene and polymers 
together, hardly yielding well-defined composite materials 
and negatively affecting the performance of pressure-sens-
ing devices based on such materials. To solve this problem, 
Lin and coworkers prepared a highly flexible self-healing 
conductive polymer composite consisting of graphene, 
poly(acrylic acid) and amorphous calcium carbonate by a 
biomineralization-inspired process [130]. Strain sensing 
based on this bioinspired dynamically crosslinked graphene/
polymer composite possessed good editability and process-
ability, and the material could be fabricated into stretchable 
strain sensors of various structures that worked well both 

in air and under water. By taking advantage of a polymer’s 
nature, all kinds of excellent structures with the uniform 
size of the 0D micro-ball can be synthesized. Based on elec-
trostatic interactions, RGO would cover the polymer balls 
to produce polymer ball @RGO nanoparticles [128–131]. 
Due to the bending of graphene sheets by the van der Waals 
attractive force, the PMMA ball @ RGO-based tactile sen-
sor, at pressures < 1 torr, showed an increased resistance 
value [131]. Additionally, the detecting limit of PS ball@
rGO-based pressure sensors could be as low as 3 Pa with a 
low energy consumption of ~ 1 μW at a low bias voltage of 
1 V; a fast response time of 50 ms with a high sensitivity 
of 50.9 kPa−1 at 3–1000 Pa and a high stability for 20,000 
loading–unloading cycles could also be obtained [128]. Fur-
thermore, PS balls could also be doped into RGO fragments 
to fabricate ultrasensitive small strain detectors [131]. The 
GF could be very effectively tuned by changing the size and 
doping ratio of the nanoparticles.

From another point of view, due to the certain amphiphi-
licity caused by the hydrophilicity of the oxygen-containing 
groups and the hydrophobicity of π-conjugated graphene 
fragments, GO, as a novel cousin of graphene, can be 

(a) (b)

(d)(c)

PVDF nanofibers

Graphene oxide sheet

1) Self-assembly
2) Reduction

PVDF@rGO nanofibers

ΔI/I0

Δ
I/I

0

Δ
I/I

0

ΔI/I0 ΔI/I0

0.20

0.15

0.10

0.05

0

0.25

0.20

0.15

0.10

0.05

0

0.20

0.15

0.10

0.05

0

1 cm 1 cm 1 cm

0.4
0.3
0.2
0.1
0.0

−0.1

0.3

0.2

0.1

0.0

−0.1

Thin woman

0 2
Time (s) Time (s)

Fat man Fat man after running

4 6 8 10
1 s

Fig. 18  Typical paradigms concerning graphene combined with polymers to enhance the sensing performance of piezoresistive devices. a Sche-
matic illustration of the mechanism for the formation of PVDF fibers coated by RGO nanosheets, followed by electrostatic interactions. b Top 
view of the metal letters “C,” “A” and “S” positioned over the pressure sensor array and the current map of pressure distributions. c Photograph 
of the device loaded on two wrists for testing blood pressure through near-surface arteries. Reproduced with permission from Ref. [128]. Copy-
right 2016 Elsevier Ltd. d The multifunctional E-skins attached on a hand, wrist and throat to monitor biosignals. Reproduced with permission 
from Ref. [50]. Copyright 2017 Elsevier Ltd.



 Nano-Micro Lett. (2019) 11:7171 Page 26 of 37

https://doi.org/10.1007/s40820-019-0302-0© The authors

considered as a 2D surfactant for use as a dispersing agent or 
to generate Pickering emulsions [132]. Taking into account 
this significance of GO in the formulation of advanced func-
tional hybrid materials, Scaffaro et al. [133] exploited GO 
for poly(lactic acid)-poly(ethylene–glycol) blends. The pres-
ence of GO not only improved the mechanical properties 
of the composites but also endowed them a good electrical 
performance to obtain high-quality tactile sensors. In addi-
tion, due to GO containing abundant oxygen groups and 
poly(vinyl alcohol) (PVA) containing hydroxyl groups, a 
homogeneous dispersion of GO into PVA and strong inter-
facial adhesion between them could be achieved, enhanc-
ing the tensile strength, Young’s modulus and elongation at 
break of PVA [134]. Liu et al. [135] fabricated a flexible and 
highly sensitive pressure sensor based on wrinkled graphene 
film/innerconnected PVA nanowires/interdigital electrodes, 
as shown in Fig. 19a. Due to the synergistic effect between 
graphene and PVA, the as-prepared pressure sensor realized 
a high sensitivity of 28.34 kPa−1 and could detect subtle 
pulse beats and monitor various human movement behav-
iors in real time (Fig. 19b). In addition, different polym-
erization methods among polymer monomers combined 
with graphene can also produce excellent pressure-sensing 
materials [136–138]. The as-fabricated tactile sensors based 
on these active layers not only possessed a high pressure-
sensing performance but also achieved self-healing, thermal 
response and other properties of human skin, attaining the 
ideal platform to realize the practical application of E-skin.

3.3  Graphene Tactile Sensors Based on FET Devices

In the above, the development of pressure-sensing devices 
based on capacitance and piezoresistivity in recent years is 
introduced in detail. Nevertheless, the neighboring interfer-
ence of capacitive types, the low pixel density of piezoresis-
tive types, and the inevitable low contrast ratio and crosstalk 
effect of passive-matrix sensor arrays are difficult to apply to 
practical E-skin [139]. In recent years, field-effect transistor 
(FET)-type pressure sensors have attracted broad attention 
from a wide variety of scientific and technique communi-
ties and have become an important topic of general concern 
owning to their inherent properties, such as excellent signal 
amplification, high array uniformity, high spatial contrast 
and facile integration with electrical circuitry [44].

FETs generally consist of four typical parts, including the 
gate electrode, source and drain electrodes, dielectric layer 
and semiconductor active layer. The active layer, which is 
located in the channel between the sources and drain elec-
trodes, is generally isolated from the gate electrode by a die-
lectric [45, 140]. The optimization of each part of the FET 
device can enhance the performance of the device and might 
also provide opportunities for high-quality tactile sensors. 
Thus far, most of the dielectric layers of FET tactile sensors 
have been solid species, where the charge carrier transport 
functionality of the semiconductor occurred mainly in a few 
molecular layers at the active material/dielectric interface. 
Not all of the solid dielectric could respond to the external 
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force during sensing, thus, limiting the sensitivity and reso-
lution capacity of these sensors. To address this issue, Shin 
et al. [45] designed an unconventional approach for fabricat-
ing fully integrated active-matrix arrays of pressure-sensi-
tive top-gate graphene transistors with an air-dielectric layer, 
simply formed by folding two opposing panels (Fig. 20a). 
Due to the clean interface between the graphene channel 
and air, these air-dielectric graphene FETs displayed excel-
lent electrical properties and a high reliability under ambient 
conditions. As illustrated in Fig. 20b, the height of the air 
gap was determined by the thickness of elastomeric partition 
spacers between the graphene and top gate, and it decreased 
by applying pressure with increasing capacitance of the 
metal-air-graphene structure, which could not only enhance 
the detection range of tactile sensors but also lead to low 
fabrication costs and densifications of these sensor arrays.

Another example related to reducing the efforts and cost 
of the fabrication techniques for the FET-based tactile sen-
sor configuration was reported by Sahatiya and coworkers, 
wherein 2D graphene/MoS2 was used as the active layer, 
cellulose paper was used as the dielectric and graphite pencil 
trace as the gate [140]. Owing to the low-cost and biodegra-
dability of cellulose paper, the as-fabricated graphene/MoS2 
transistor was not only easily fabricated but also an ultrasen-
sitive strain sensor; the graphene/MoS2 channel acted as a 
sensing layer, and the electrical resistance could be greatly 
varied by application of different strains. More interestingly, 
by interfacing the sensor with a microcontroller, the data 
could be acquired and transferred to a smartphone through 
Bluetooth communication, thus, enabling human motion 
monitoring, as shown in Fig. 20c. In this work, except for 
graphene materials, other ultrathin soft 2D materials, such 
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as  MoS2, are also being particularly highlighted. It should 
be noted that because of the downscaling limit of silicon-
based devices, atomic layered 2D materials, ranging from 
graphene and its derivatives to transition metal dichalco-
genides (TMDCs), metal carbides and nitrides (MXenes), 
and montmorillonite (MMT), have recently become a focus 
for advanced electronics [141]. From another point of view, 
their unique physiochemical properties along with extraordi-
nary softness and inherent flexibility, high transparency and 
carrier transport properties have attracted significant inter-
est for use in mimicking the multifunctionalities of human 
skin [142]. Although graphene has many physiochemical 
properties similar to other two-dimensional materials, there 
are many differences between them. Graphene possesses a 
unique band structure in which the valence and conduction 
band have an overlap at the Dirac point; thus, it simulta-
neously presents characteristics of a metal and a semicon-
ductor, which allows it to be used as both electrodes and 
semiconductor layers in FET-based tactile sensors [143]. 
However, as graphene is a zero-gap semiconductor, the on/
off ratio of graphene FETs has always been relatively low, 
limiting its applicability in tactile sensors. Because of their 
bandgap, TMDCs and MXenes have typical semiconduc-
tor properties and good optical properties, which provide 
unique characteristics hardly found in graphene [144]. How-
ever, the preparation technology of these two-dimensional 
materials is not as mature as that of graphene, and its com-
mercial implementation is still a long way off. It should 
be noted that the contact resistance between graphene and 
other two-dimensional materials is substantially lower than 
that between a metal and two-dimensional semiconductor, 
greatly improving the performance of tactile sensors con-
structed with heterogeneous structures of graphene and other 
two-dimensional materials.

Although FET-based tactile sensors are generally very 
sensitive, easily integrated, realize real-time detection, the 
touch point of the abovementioned FET pressure sensors 
are mostly located in the gate or channel region [145]. As 
a result, when a large number of sensors are assembled 
in large-area tactile skin-type applications, high-voltage 
operation is needed with high power consumption, which 
further hinders the practical application of the devices 
[146, 147]. To conquer this challenge, Yogeswaran et al. 
[147] fabricated a low-voltage piezoelectric graphene 
field-effect transistor (GFET) for pressure sensors in 
tactile sensing, wherein a GFET was connected with a 

piezoelectric metal–insulator-metal (MIM) capacitor in 
an extended gate configuration. By taking advantage of 
the piezopotential generated from the piezoelectric MIM 
capacitor, which could modulate the channel current of the 
GFET, the current sensors could operate at a considerably 
lower voltage and exhibit a higher sensitivity. Hwang et al. 
[148] also fabricated a touch sensor using a piezoelectric 
polymer, wherein graphene was used as active layer of the 
FET, and the piezoelectric potential created by an exter-
nally applied force to the PVDF-TrFE layer acted as a gate 
modulation voltage, controlling the carrier transport across 
the graphene-silicon interface. The sophisticated structure 
not only saved energy but also improved the sensitivity 
of the graphene FET-based touch device by seven times.

In addition to piezopotential MIM capacitors, the 
induced triboelectric potential can also be able to couple 
with FETs for modulating the carrier transport in semicon-
ductor channels and helping to obtain high-performance 
devices [145]. For example, a graphene tribotronic touch 
sensor based on the coplanar coupling of a single-elec-
trode-mode triboelectric nanogenerator (S-TENG) and a 
GFET was constructed by Khan et al. [146], as shown in 
Fig. 21a. When any object touched the friction layer of the 
S-TENG, charges would be produced due to the triboelec-
tric effect, which could act as the gate bias to modulate the 
channel current transport without an external gate voltage. 
Such as-fabricated tribotronic sensors displayed a sensi-
tivity of ≈ 2%  kPa−1, a limit of detection < 1 kPa, and a 
response time of ≈ 30 ms (Fig. 21b). Meng et al. [145] also 
fabricated a mechanosensation-active matrix gated by tri-
boelectric potential, instead of applying gate voltages, and 
was based on a direct-contact tribotronic planar graphene 
transistor array, wherein an ion gel was utilized as both the 
dielectric layer of the FET device and the friction layer for 
triboelectric potential coupling to achieve highly efficient 
gating and sensation properties. As shown in Fig. 21c, 
different contact distances between the ion gel and other 
friction materials produced different triboelectric poten-
tials, which were directly coupled to the graphene chan-
nel, and led to different output signals through modulating 
the Fermi level of graphene. As a result, the sensor array 
(1) exhibited excellent sensing properties, (2) could be 
used to recognize different categories of materials, and 
(3) could sense contact distances and realize a 2D color 
map of an object. These results suggest graphene-based 
FET tactile sensors have great promise in human–robot 
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interfaces, electronic artificial skin, multifunctional sen-
sors, and smart wearable devices.

4  Summary and Outlook

Recently, targeting high-performance graphene-based 
tactile sensors, great progress has been achieved mainly 
in terms of the sophisticatedly designed morphologies of 
graphene and its derivatives, the working principles aim-
ing at providing a fundamental knowledge of the sensing 
processes, state-of-the-art protocols targeting high-perfor-
mance sensing, and the development of synergy with other 
materials. Indeed, the tremendous advancements accumu-
lated to date have brought tactile sensors a significant step 
closer to the potential applications of flexible and wear-
able E-skins, such as health monitoring devices, artificial 
intelligence, and human–machine interfaces. Continuous 
efforts to further improve the overall qualities of this kind 
of sensor, including sensitivity, detection range, pattern 
recognition and spatial resolution of external forces, 
response time, stability and reproducibility, limit of detec-
tion, capability of digital and intelligent readouts, real-
time workability, etc., remain strongly desired. To achieve 

this improvement, the following aspects will continue to 
be the major subjects of this field in our opinion.

First, the synthesis, assembly and modification of high-
performance graphene materials are the basis for the fab-
rication of high-performance graphene-based tactile sen-
sors. As we mentioned above, graphene and its derivative 
materials were usually used as conductive electrodes or 
sensitive materials. As electrodes, graphene has a variety of 
intrinsic excellent physical properties, such as a high elec-
trical conductivity, transparency, and flexibility, which lay 
a good foundation for building high-performance wearable 
devices. However, on one hand, it is difficult to industrialize 
the production of large-area, high-quality materials via cur-
rent production technology. On the other hand, ultrathin 2D 
structures are easily damaged during scratching by exter-
nal forces, and the reuse of devices can only be realized 
through the application of complex packaging technologies. 
Therefore, exploring the preparation process of graphene 
electrodes remains the basis for commercial applications of 
graphene-based tactile sensors. From the point of view of 
sensitive materials, graphene materials are easy to assem-
ble; are easy to modify; are easy to combine with other 
materials, enabling them to have diverse morphologies and 
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properties; and can be used to improve the performance of 
tactile sensors. However, as a zero-bandgap semiconduc-
tor, the on/off ratio of graphene is relatively low, and the 
current is difficult to modulate. Although there are many 
ways to open the bandgap in graphene, these remain in 

the laboratory. Therefore, scientists should do their best 
to explore simpler and more effective ways to realize the 
commercial applications of graphene as an active material.

Second, the launch of emerging sensing mechanisms in 
terms of molecular engineering, supramolecular assembly, 

Table 1  Summary of graphene material-based tactile sensors

Types of devices Sensitivity Response time Limit of detection References

Capacitive tactile sensors
Micro-conformal Graphene Electrodes 7.68 kPa−1 30 ms 1 mg [42]
Graphene Electrodes and Air Dielectric 6.55 kPa−1 70 ms 8 kPa [52]
Suspended Graphene–Polymer Heterostructure Membranes 123 aFPa−1 – 80 kPa [43]
Piezoresistance tactile sensors (one-, two- or three-dimensional structures)
Direct Laser Scribing Polydimethylsiloxane 480 kPa−1 2 μs/3 μs 28 Pa [72]
A Transparent Tactile Sensor Based on GFs/PET 0.23 mm−1 18.1 ms – [62]
(PDMS) Arrays and Reduced Graphene Oxide (rGO) Film 1.71 kPa−1 6 ms 0–225 Pa [70]
Graphene/Polyethylene Terephthalate (G/PET) Film 10.80 Ω/kPa 10 ms 0–600 kPa [63]
Graphene Oxide/PolyHIPE Foam for Pressure Sensing 2.53 kPa−1 15.4 ms 0.6 Pa [106]
(GPN) Combined with Polydimethylsiloxane (PDMS) 0.09 kPa−1 – 0–1000 kPa [85]
Cracked Paddy Shaped  MoS2/Graphene Foam/Ecoflex Hybrid Nanostruc-

tures
6.06 kPa−1 – 0.6–7.6 kPa [98]

RGO/Polyaniline Wrapped Sponge 0.042 kPa−1 96 ms 0–27 kPa [75]
(RGOF)-Based Pressure Sensors Combination of Ultrasonic Dispersion 

and Freeze-Drying Methods
22.8 kPa−1 – 0.1 Pa [101]

An Ultralight Sparkling Graphene Block 229.8 kPa−1 – 0–0.1 kPa [102]
Graphene-Paper Pressure Sensor 0.1 kPa−1 60 ms 0–20 kPa [104]
Porous Graphene Sponges 0.046 kPa−1 – 0.3–10 kPa [107]
Skin-like Strain Sensors Based on Graphene/Spring-like Mesh Network 72 kPa−1 – 1.38 Pa [83]
PDMS Foam Coated with Graphene Nanoplatelets 0.23 kPa− 1 – 10 kPa [81]
Piezoresistive Effect of Multilayer Graphene Films on Polyester Textile 0.012 kPa− 1 50 ms High as 800 kPa [96]
Piezoresistance tactile sensors (inspired by nature)
The ACNT/G and m-PDMS Films 19.8 kPa−1 16.7 ms 0.6 Pa [121]
A Bioinspired Hierarchical Graphene/PDMS Array 8.5 kPa−1 30 ms 1 Pa [109]
Graphene Pressure Sensor with Random Distributed Spinosum 25.1 kPa−1 80 ms 0–2.6 kPa [111]
Fingerprint-Like Patterned 3D Graphene Film 110 kPa−1 30 ms 0.2 Pa [113]
RGO Films with Continuous Gradient Wrinkles 178 kPa−1 131 ms 42 Pa [112]
Bioinspired Microstructured Pressure Sensor Based on a Janus Graphene 

Film
0.736 kPa−1 21.5 ms 0.1 kPa [115]

Piezoresistance tactile sensors (synergy with other materials)
Transparent and Self-powered Multistagesensation Matrix – – 800 Pa [149]
Large-Scale Polystyrene Ball@reduced-Graphene-Oxide Core–Shell 

Nanoparticles
50.9 kPa−1 50 ms 3–3000 Pa [128]

P(VDF-TrFe) with an Electrically Conductive Material rGO 15.6 kPa−1 – 1.2 Pa [126]
Polyvinyl Alcohol Nanowires/Wrinkled Graphene Film 28.34 kPa−1 – 2.24 Pa [135]
Graphene–Polymer Nanocomposite-Based Redox-Induced Electricity – 0.11 s – [125]
Graphene tactile sensors based on FET devices
Integrated Arrays of Air-Dielectric Graphene Transistors 2.05 × 10 −4 kPa−1 – 250 Pa–3 Mpa [45]
Direct-Contact Tribotronic Planar Graphene Transistor Array 0.16 mm−1 15 ms – [145]
Solution Processed Fabrication of Graphene–MoS2 Transistors on Paper – 55 ms – [140]
Graphene Tribotronics for Electronic Skin and Touch Screen Applications 2%  kPa−1 30 ms 1 kPa [146]
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and their combination with other protocols will undoubtedly 
be among the most important ways to construct new types of 
high-performance tensile sensors. For example, a self-pow-
ered sensation matrix could be constructed by sandwiching 
piezoelectric polymer materials between two graphene elec-
trodes [149, 150]. According to the principle of piezoelectric 
nanogenerators, the sequential multistage sensation could be 
substantially realized. On the other hand, a further elucida-
tion of the underlying working principles is still a significant 
topic. By means of template-stripping-based nanotransfer 
printing, a stable nanowire array nanograting can be simply 
and rapidly produced to yield a plasmonic sensor [28, 151]. 
Such an as-fabricated device coupled to monolayer graphene 
exhibited an ultrahigh sensitivity to applied strain by shifts 
in the plasmonic-enhanced Raman spectrum. Accordingly, 
by taking the advantage of collaborations with other mate-
rials, optimized device structures together with a deeper 
understanding of the underlying working principles will not 
only favor the construction of next-generation qualified tac-
tile sensors but will also afford important scientific contribu-
tions to optics, electricity and materials science, which are 
significant issues of general concern (Table 1).

As we have highlighted, numerous sophisticated strate-
gies have been proposed to achieve high-performance tac-
tile sensors based on graphene materials. However, most 
of the abovementioned works address only one or a few 
aspects of a sensor’s quality, which is still far from mimick-
ing human skin. Clearly, a mechanically flexible and fully 
integrated sensor array for multiplexed monitoring of an 
individual’s activities, without interrupting or limiting the 
user’s motions, is still a formidable challenge that cannot be 
realized by a single capacitive-style, piezoresistive-style or 
FET-style array. The combination of a couple of the state-
of-the-art strategies might be among the most feasible ways 
to address this topic to some extent.

Finally, multifunctional tactile sensing devices capable of 
digital and intelligent readouts are important issues required 
by modern E-skin applications. Therefore, the construction 
of high-performance tactile sensing device arrays along 
with effective pattern recognition algorithms is particularly 
important. We believe that with the joint efforts of scientists 
in chemistry, physics, material science, micronano process-
ing, computer science and other disciplines, the construction 
of high-performance graphene-based tactile sensing systems 
for potential commercial uses will soon become a reality.
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