
Nano-Micro Letters 

S1/S14 
 

Supporting Information for 

Textured Perovskite/Silicon Tandem Solar Cells Achieving Over 30% 
Efficiency Promoted by 4-Fluorobenzylamine Hydroiodide  
Jingjing Liu1,2,3,4,5, Biao Shi1,2,3,4,5,*, Qiaojing Xu1,2,3,4,5, Yucheng Li1,2,3,4,5, Yuxiang 
Li1,2,3,4,5, Pengfei Liu1,2,3,4,5, Zetong SunLi1,2,3,4,5, Xuejiao Wang1,2,3,4,5, Cong Sun1,2,3,4,5, 
Wei Han1,2,3,4,5, Diannan Li1,2,3,4,5, Sanlong Wang1,2,3,4,5, Dekun Zhang1,2,3,4,5, Guangwu 
Li6,7, Xiaona Du1,2,3,4,5, Ying Zhao1,2,3,4,5, and Xiaodan Zhang1,2,3,4,5, * 

1 Institute of Photoelectronic Thin Film Devices and Technology, Renewable Energy 
Conversion and Storage Center, Solar Energy Conversion Center, Nankai University, 
Tianjin 300350, P. R. China 
2 Key Laboratory of Photoelectronic Thin Film Devices and Technology of Tianjin, 
Tianjin 300350, P. R. China 
3 Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, P. R. 
China 
4 Engineering Research Center of Thin Film Photoelectronic Technology of Ministry of 
Education, Tianjin 300350, P. R. China 
5 Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), 
Tianjin 300072, P. R. China 
6 Center of Single-Molecule Sciences, Institute of Modern Optics, Tianjin Key 
Laboratory of Micro-Scale Optical Information Science and Technology, College of 
Electronic Information and Optical Engineering, Nankai University, 38 Tongyan Road, 
Jinnan District, Tianjin 300350, P. R. China  
7 Shenzhen Research Institute of Nankai University, 16th Floor, Yantian Science & 
Technology Building, Haishan Street, Yantian District, Shenzhen, 518083, P. R. China 

*Corresponding authors. E-mail: biaos_xiaog@163.com (Biao Shi), 
xdzhang@nankai.edu.cn (Xiaodan Zhang) 

S1 Calculation Methods 

S1.1 Simulation Calculation 

First-principle calculations were performed by density functional theory (DFT) using 
the Vienna Ab-initio Simulation Package (VASP) package [S1]. The generalized 
gradient approximation (GGA) with the Perdew-Burke-Ernzerhof (PBE) functional 
was used to describe the electronic exchange and correlation effects [S2–S4]. Uniform 
G-centered k-point meshes with a resolution of 2π×0.05 Å-1 and Methfessel-Paxton 
electronic smearing were adopted for the integration in the Brillouin zone for geometric 
optimization. The simulation was run with a cutoff energy of 500 eV throughout the 
computations. These settings ensure convergence of the total energies to within 1 meV 
per atom. Structure relaxation proceeded until all forces on atoms were less than 10 
meV Å-1 and the total stress tensor was within 0.03 GPa of the target value. The DFT-
D2 Van der Walls correction by Grimmie [S5, S6] was also considered in all 
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calculations. 

The adsorption energies of F-PMAI molecule adsorbed on FA/MA/Cs-PbI3 (100) and 
(111) surfaces were calculated by the following equation: ΔE(ads)=E(total)-E(surface)-E(F-

PMAI), where E(total) is the energy of F-PMAI molecule adsorbed on FA/MA/Cs-PbI3 (100)
and (111) surfaces, E(surface) is the energy of FA/MA/Cs-PbI3 (100) and (111) surfaces,
and E(F-PMAI) is the energy of the F-PMAI molecule. The more negative the value, the
stronger the binding ability.

S1.2 Ion Migration Activation Energy (Ea) Calculation 

Temperature-dependent conductivity, σ (T), was measured to compare the activation 
energy (Ea), for ion migration. Ea can be calculated from Equation [S7, S8] 𝜎𝜎(𝑇𝑇)𝑇𝑇 =

𝜎𝜎𝑜𝑜𝑒𝑒
(−𝐸𝐸𝑎𝑎𝐾𝐾𝐾𝐾)  , Where k is the Boltzmann’s constant, 𝜎𝜎𝑜𝑜  is the constant, and T is the 

temperature. Based on ln(𝜎𝜎(𝑇𝑇)𝑇𝑇) versus1000/T plots, the Ea for ion migration was 
extracted from the slope of the fitted lines at relatively higher temperature. 

S1.3 Space Charge Limited Current (SCLC) Measurements 

The trap densities were extracted using the equation: 𝑁𝑁𝑡𝑡 = 2𝜀𝜀𝜀𝜀0𝑉𝑉𝐾𝐾𝑇𝑇𝑇𝑇
𝑒𝑒𝐿𝐿2

, where 𝑁𝑁𝑡𝑡 denotes 

the trap state density, ε and 𝜀𝜀0  are the relative dielectric constant and the vacuum 
dielectric constant, respectively, 𝑉𝑉𝑇𝑇𝑇𝑇𝐿𝐿 is the trap-filled limit voltage, e is the electron 
charge and L is the thickness of perovskite film [S9].  

S1.4 Capacitance-voltage (C-V) Measurements 

The Mott-Schottky equation: 1
𝐶𝐶2

= 2(𝑉𝑉𝑏𝑏𝑏𝑏−𝑉𝑉)
𝐴𝐴2𝑒𝑒𝜀𝜀𝜀𝜀0𝑁𝑁𝐴𝐴

  (A is the device area, 𝜀𝜀  and 𝜀𝜀0  are the 

relative and vacuum permittivity, and 𝑁𝑁𝐴𝐴 is carrier concentration) [S10]. 

S1.5 Dark J-V Curves Measurement 

In the dark J-V curves, the ideal factor (m) is extracted from the equation: 𝑚𝑚 =

(𝐾𝐾𝑇𝑇
𝑞𝑞
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑
𝑑𝑑𝑉𝑉

)-1. When m=1, bimolecular recombination dominates; when m=2, trap-assisted 

recombination dominates [S11]. 

S1.6 Light Intensity-dependent Voc Measurement 

The slope of the dependence of Voc verse light intensity (I) is used to evaluate the degree 

of the trap-assisted recombination via the equation 𝑉𝑉𝑜𝑜𝑜𝑜 = 𝑑𝑑𝐾𝐾𝑇𝑇𝑑𝑑𝑑𝑑(𝐼𝐼)
𝑞𝑞

+ 𝑐𝑐 (n is the ideal

factor, K is the Boltzmann constant, T is the absolute temperature, I is the incident light 
intensity, q is the elementary charge, and c is the constant) from the 
Shockley−Read−Hall recombination mechanism. The closer the value of n to 1, the less 
trap-assisted nonradiative recombination exists in the PSCs [S12]. 

S2 Supplementary Figures 
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Fig. S1 Schematic of the hybrid two-step deposition perovskite solar cells 

 

Fig. S2 Schematic of the fabrication of perovskite/silicon tandem solar cells 
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Fig. S3 a) Full-scale X-ray photoelectron spectroscopy (XPS) spectrum of perovskite 
films without and with F-PMAI. XPS spectra of b) F 1s, c) I 3d and d) C 1s of 
perovskite films without and with F-PMAI additive 

 

Fig. S4 Images of water droplets on the surface of perovskite films a) without and b) 
with F-PMAI 

 

Fig. S5 Top-view a) and cross-sectional b) SEM images of co-evaporated precursor 
films. c) XRD spectra of co-evaporated precursor films 
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Fig. S6 Top-view and SEM images of perovskite films a) without and b) with F-PMAI 
during the different processes. c) XRD patterns of perovskite films without and with F-
PMAI after different processes, including organic salt deposition and pre-annealing 

 

 

 

Fig. S7 Photographs of perovskite thin films without and with additives at different 
processes and time 
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Fig. S8 The peak intensity ratio of PbI2/PVK at the organic salt deposition and pre-
anneal stage respectively 

 

Fig. S9 Schematic diagram of interaction mechanism of the F-PMAI on perovskite 

 

Fig. S10 Cross-section SEM images of perovskite films a) without and b) with F-PMAI 
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Fig. S11 Peak intensity ratio of (111) and (100) perovskite in Fig. 1d 

 

Fig. S12 a) XRD pattern of perovskite film with different F-PMAI concentrations (0, 
0.7mol%, 1.5mol%, 2.3mol%). b) Peak intensity ratio of (111) and (100) perovskite 

 

Fig. S13 Integrated GIWAXS intensity plots azimuthally along the ring at a q≈10 nm−1, 
assigned to the (100) plane of perovskite films without and with F-PMAI 
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Fig. S14 a) PL and b) TRPL spectra of perovskite films without and with F-PMAI 
deposited on ITO substrates 

Fig. S15 PL mapping of perovskite films a) without and b) with F-PMAI with a 
structure ITO /Spiro-TTB /perovskite. PL mapping of perovskite films c) without and 
d) with F-PMAI with a structure of ITO/perovskite/C60

Fig. S16 Kelvin probe force microscopy (KPFM) images of perovskite films a) without 
and b) with F-PMAI 
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Fig. S17 Ultraviolet photoelectron spectroscopy (UPS) results of perovskite films 
without and with F-PMAI 

 

Fig. S18 a) Jsc, b) Voc, c) FF, d) PCE of PV parameters for solar cells with different 
concentrations of F-PMAI (0, 0.7ml%,1.5mol%, 2.3mol%), 25 devices for each type 
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Fig. S19 Continuous light illumination stability of unencapsulated PSCs with F-PMAI 
((100 mW cm−2, 25% (RH), 25 °C)) 

 
Fig. S20 Temperature-dependent conductivity of perovskite films a) without and b) 
with F-PMAI. Lateral devices with ITO/perovskite/Ag were used 

 

Fig. S21 Top-view SEM of a) without and b) with F-PMAI perovskite films on textured 
silicon substrates. Cross-section SEM of c) without and d) with F-PMAI perovskite 
films on textured silicon substrates 
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Fig. S22 a) SEM-EDS mapping of perovskite film with F-PMAI on textured silicon 
substrates. b) Cross-sectional SEM-EDS mapping of perovskite film with F-PMAI on 
textured silicon substrates 

  

Fig. S23 Photovoltaic parameters of a) VOC, b) JSC, c) FF, and d) PCE without and with 
F-PMAI additive derived from 25 tandem devices, respectively 

Table S1 Summary of fitting of the time-resolved photoluminescence (TRPL) of the 
perovskite films by exponential fitting 

Sample A
1
 (%) 𝝉𝝉

1 
(ns) A

2
 (%) 𝝉𝝉

2 
(ns) 𝝉𝝉

Av
(ns) 

w/o 25.73 11.88 440.80 252.5 252.20 

w F-PMAI 5.01 142.13 94.99 541.83 536.38 
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Table S2 Summary of reported monolithic perovskite/silicon tandem solar cells based 
on micrometer-sized pyramids of textured monocrystalline silicon 

Institution 
Tunneling 
Junction 

VOC  
(V) 

JSC 
(mA/cm2) 

FF 
 (%) 

PCE 
 (%) 

SPO 
 (%) 

Eg  
(eV) 

Area 
(cm2) 

Refs. 

EPFL 
nc-

Si:H(n+/p+) 
1.78 19.5 73.1 25.5 25.2 1.60 1.42 [S13] 

NKU 
nc-

Si:H(n+/p+) 
1.808 19.78 76.9 27.48 / 1.63 0.5091 [S14] 

CSEM& 
EPFL 

ITO 1.91 20.47 79.8 31.25 / 1.70 1.1677 [S15] 

UESTC ITO 1.79 20.1 80.0 28.84 / 1.65 1.2 [S16] 

NKU 
nc-

Si:H(n+/p+) 
1.85 19.4 79.6 28.5 28.2 1.68 0.5036 [S17] 

NJU ITO 1.85 19.8 78.9 28.9 28.6 1.68 1.05 [S18] 
NCU ITO 1.82 20.62 79.41 29.8 29.4 1.61 1 [S19] 
NJU ITO 1.84 20.1 77.6 28.8 28.3 1.68 1.05 [S20] 

NKU 
nc-

Si:H(n+/p+) 
1.81 20.01 82.91 30.05 29.4 1.60 0.5003 
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