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MXene@c‑MWCNT Adhesive Silica Nanofiber 
Membranes Enhancing Electromagnetic 
Interference Shielding and Thermal Insulation 
Performance in Extreme Environments
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HIGHLIGHTS

• The  SiO2 nanofiber membranes and MXene@c‑MWCNT6:4 as one unit layer  (SMC1) were bonded together with 5 wt% PVA solution.

• When the structural unit is increased to three layers, the resulting  SMC3 has an average electromagnetic interference  SET of 55.4 dB 
and a low thermal conductivity of 0.062 W  m−1  K−1.

• SMCx exhibit stable electromagnetic interference shielding and excellent thermal insulation even in extreme heat and cold environment.

ABSTRACT A lightweight flexible thermally stable composite is fabricated by com‑
bining silica nanofiber membranes (SNM) with MXene@c‑MWCNT hybrid film. 
The flexible SNM with outstanding thermal insulation are prepared from tetraethyl 
orthosilicate hydrolysis and condensation by electrospinning and high‑temperature 
calcination; the MXene@c‑MWCNTx:y films are prepared by vacuum filtration tech‑
nology. In particular, the SNM and MXene@c‑MWCNT6:4 as one unit layer  (SMC1) 
are bonded together with 5 wt% polyvinyl alcohol (PVA) solution, which exhibits 
low thermal conductivity (0.066 W  m−1  K−1) and good electromagnetic interference 
(EMI) shielding performance (average EMI  SET, 37.8 dB). With the increase in func‑
tional unit layer, the overall thermal insulation performance of the whole composite film  (SMCx) remains stable, and EMI shielding performance 
is greatly improved, especially for  SMC3 with three unit layers, the average EMI  SET is as high as 55.4 dB. In addition, the organic combination 
of rigid SNM and tough MXene@c‑MWCNT6:4 makes  SMCx exhibit good mechanical tensile strength. Importantly,  SMCx exhibit stable EMI 
shielding and excellent thermal insulation even in extreme heat and cold environment. Therefore, this work provides a novel design idea and 
important reference value for EMI shielding and thermal insulation components used in extreme environmental protection equipment in the future.
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1 Introduction

In recent years, manned spaceflight has become an important 
symbol to measure a country’s scientific and technological 
strength. In the face of the extreme environment of space with 
large temperature difference, strong radiation and high vacuum, 
the extra‑vehicular space suit has become the necessary protec‑
tive equipment for astronauts to go outside the space station and 
carry out various kinds of work [1, 2]. For a complete space 
suit, the previous thermal control system and radiation protec‑
tion system are relatively independent, and the design materials 
are complex and heavy, which seriously restrict the physical 
mobility of astronauts. Therefore, the development of light‑
weight, flexible, low‑cost materials with both electromagnetic 
interference (EMI) shielding and thermal insulation is the key 
to ensure the normal life and work of astronauts in space [3, 4].

Conventional thermal insulation materials are mainly divided 
into foam‑based materials [5], phase change materials [6] and 
ceramic aerogel materials [7]. Among them, foam‑based ther‑
mal insulation materials have defects such as low ignition point 
and release of toxic substances during combustion. For most 
phase change insulation materials, maintaining long‑lasting 
insulation performance requires a large space volume due to 
fixed enthalpy values. Ceramic aerogel materials have low 
thermal conductivity and slow phonon transfer rate; especially 
for silica  (SiO2) aerogel, it has small pore size, high porosity 
and thermal stability, so it is a lightweight and efficient ther‑
mal insulation material [8, 9]. However, in practical applica‑
tions, researchers found that  SiO2 aerogel is highly transparent 
to infrared radiation and has great brittleness [10]. With the 
development of nanotechnology in recent years, effective pro‑
gress has been made in converting  SiO2 sol into flexible  SiO2 
nanofiber membranes (SNM), and the obtained SNM shows 
excellent heat insulation and good thermal stability based on its 
special pore structure [11, 12]. Si et al. [13] successfully synthe‑
sized ultra‑softness SNM, which not only have excellent tensile 
strength of 5.5 MPa, but also exhibit ultra‑low thermal con‑
ductivity of 0.0058 W  m−1  K−1. Currently, the ways to obtain 
SNM include laser ablation [14], sol–gel [15], vapor deposition 
[16] and electrospinning [17]. Compared with other methods, 
electrospinning has the advantages of simple operation, low 
cost and good controllability [18–20].

In terms of EMI shielding, MXene, a two‑dimensional 
structural material with high electrical conductivity, has 
been widely studied [21–23]. However, poor mechanical, 

chemical and thermal stability greatly limits its application 
range [24]. Carbon nanotube (CNT) has high aspect ratio, 
low density, outstanding mechanical properties, high elec‑
trical conductivity, and good chemical stability [25–27]; 
therefore, it is another ideal EMI shielding conductive filler; 
unfortunately, weak dispersion has always been a problem 
[28]. It has been found that the combination of MXene and 
CNT by special means can not only overcome the defects 
of each other, but also make the hybrid fillers have good 
comprehensive properties [29]. For example, Zhou et al. 
[30] combined MXene and CNT uniformly through vacuum‑
assisted filtration and demonstrated good EMI shielding 
performance and high tensile strength and toughness in the 
obtained MXene/CNT films. In fact, conductive fillers such 
as MXene and CNT have considerable thermal conductivity 
[31–33], so how to combine them with thermal insulation 
materials and coordinate EMI shielding and thermal insu‑
lation performance is always a challenge in the design of 
aerospace protective suits.

In this work,  SiO2 nanofiber membranes (SNM), which 
mainly play an EMI shielding function, were successfully 
prepared by electrospinning of tetraethyl orthosilicate hydro‑
lyzed precursor followed with a high‑temperature calcina‑
tion condensation process. As a component of EMI shield‑
ing function, MXene@c‑MWCNTx:y is obtained through 
vacuum filtration with MXene/c‑MWCNT of different 
hybrid ratios, and it is found that when the mass ratio of 
MXene to c‑MWCNT is 6:4, MXene@c‑MWCNT6:4 has the 
optimal mechanical and functional properties. Then, SNM 
and MXene@c‑MWCNT6:4 are effectively formed into an 
organic whole by cleverly using 5 wt% polyvinyl alcohol 
(PVA) as a binder, and this structural unit (SNM/MXene@c‑
MWCNT6:4,  SMC1) exhibits excellent EMI shielding and 
heat insulation properties. When the structural unit is 
increased to three layers, the resulting  SMC3 has an average 
EMI  SET of 55.4 dB and a low thermal conductivity of 0.062 
W  m−1  K−1. More importantly, the resulting functional com‑
posite film  (SMCx) resolutely has a stable EMI shielding and 
thermal insulation properties in simulated high‑temperature 
and cold extreme environments. In conclusion, the design 
of this study not only effectively avoids the influence of 
MXene@c‑MWCNT on the overall thermal insulation per‑
formance of the composite film by adjusting the number of 
functional unit layers, but also greatly improves the overall 
mechanical and EMI shielding performance; therefore, the 
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composite functional film obtained in this work has broad 
application prospects in extreme fields like aerospace.

2  Materials and Methods

2.1  Materials

Poly(vinyl alcohol) (PVA 1788), lithium f luoride 
(LiF, ≥ 99.9%), hydrochloric acid (HCl, 35%) and sodium 
dodecyl sulfate (SDS, AR) were obtained from Shanghai 
Macklin Biochemical Co., Ltd. Tetraethyl orthosilicate 
(TEOS, 98%) was purchased from Tianjin Kemiou Chemi‑
cal Reagent Co., Ltd. Oxalic acid  (H2C2O4, AR) was pro‑
vided by Tianjin Damao Chemical Reagent Factory.  Ti3AlC2 
(MAX) powder (≤ 38 μm, 98%) was supplied by 11 Tech‑
nology Co., Ltd. Carboxylated multi‑wall carbon nanotubes 
(c‑MWCNT, ≥ 98%) were provided by Shenzhen Suiheng 
Technology Co., Ltd. Deionized water was supplied in 
unlimited quantities by the laboratory.

2.2  Preparation of SNM

Figure S1(I) shows the preparation process of  SiO2 nanofiber 
membranes (SNM). First, TEOS,  H2O and  H2C2O4 were 
mixed and stirred at room temperature at a molar ratio of 
1:8.063:0.0186 for 10 h to prepare  SiO2 precursor sol. Second, 
 SiO2 sol and 10 wt% PVA solution were mixed at a mass ratio of 
1:1 and stirred for 10 h to obtain the spinnable precursor solution 
[34]. Then, the  SiO2/PVA nanofiber membranes (SPNM) were 
fabricated by an electrospinning device and the corresponding 
setting parameters were as follows: applied voltage of 14 kV, 
syringe boost speed of 1.1 mL  h−1, drum rotation speed of 
140 rpm, receiving distance of 20 cm, and the relative humidity 
and temperature were 40%‑50% and 23–25 °C, respectively [35]. 
Finally, SPNM were pretreated in a vacuum oven at 60 °C and 
then placed in a tube furnace (BTF‑1700C‑CVD from Anhui 
BEQ Equipment Technology Co., Ltd.) with a constant heating 
rate of 5 °C  min−1 up to 800 °C for 2 h to form SNM.

2.3  Preparation of MXene@c‑MWCNTx:y

MXene flakes were obtained by etching  Ti3AlC2 MAX pow‑
der with HF. Briefly, 2 g LiF was dissolved in 100 mL HCl 
solution (12 M) being stirred at 35 °C for 10 min. Then, 

 Ti3AlC2 powders were gradually added to the above mixture, 
and the reaction was held at 35 °C for 24 h. After reaction, 
the solid was separated with supernatant via centrifugation 
for 10 min at 3500 rpm. Subsequently, it was washed by 
deionized water and centrifuged until the pH = 6 [30]. The 
resulting  Ti3C2Tx MXene was then dispersed in deionized 
water to obtain 1 mg  mL−1 MXene dispersion.

In order to improve the solution dispersibility of 
c‑MWCNT, c‑MWCNT and a little SDS were added 
to deionized water and sonicated for 30 min to prepare 
1  mg   mL−1 c‑MWCNT dispersion [36]. As shown in 
Fig. S1(II), the above two dispersions were mixed in mass 
ratios of 0:10, 4:6, 5:5, 6:4, and 10:0, respectively, followed 
by ultrasound for 30 min to prepare mixed dispersion. In 
the end, 50 mL mixed dispersion was filtered to prepare 
MXene@c‑MWCNTx:y with a diameter of 4 cm and a mass 
of 50 mg by vacuum filtration method.

2.4  Preparation of  SMCx

Figure S1(III) presents the preparation process of  SMCx. 
Wisely, 5 wt% PVA solution was evenly spread on the 
MXene@c‑MWCNTx:y, followed by that SNM was laid flat 
on it and tightly bonded the two layers under a certain pres‑
sure. After that, the obtained composite film was placed in the 
oven at 60 °C for 2 h to obtain  SMC1. Finally, taking  SMC1 as 
a unit structure,  SMC2 and  SMC3 with two and three  SMC1 
were obtained by the same bonding method.

2.5  Characterization

The morphology and microstructure were observed by SEM 
(FESEM thermoscientific Apreo C, America). Attenuated total 
reflection Fourier transform infrared (ATR‑FTIR) spectra in 
the frequency region of 4000–400  cm−1 at a 4  cm−1 resolu‑
tion were recorded using an FTIR spectrometer (Nicolet 6700, 
America) with 32 scans. The thermogravimetric analysis 
(TGA) of the precursor nanofiber membrane was conducted 
by using a thermal gravimetric analyzer (TG209F3, Germany) 
in an air atmosphere, and the heating rate was 10 °C  min−1. 
Tensile properties were measured using a universal testing 
machine (AG–X plus, Shimadzu Instruments) at a loading 
rate of 1 mm  min−1. The sheet resistance (Rs) was examined 
using an RTS‑8 four‑point probe, and the corresponding elec‑
trical conductivity (σ) was calculated using the equation: σ = 1/
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(d·Rs) (d is the film thickness) [37]. The thermal conductivity 
was measured by a thermal constant analyzer (TPS2500S, Hot 
Disk AB, Sweden). The EMI shielding performance of the 
MXene@c‑MWCNTx:y and  SMCx were measured using an 
Agilent PNAN5244A vector network analyzer at room tem‑
perature in frequency ranges of 8.2–12.4 GHz (X‑band), and 
the test samples were circular films with a diameter of 4 cm.

2.6  EMI Shielding Testing

In this test, the center of the inside sides of the test fixture is a 
rectangular cavity with a length of 2 cm and a width of 1 cm. 
The samples were made into a circle with a diameter of 4 cm 
to ensure that the sample can completely cover the cavity and 
successfully complete the experiment. When the experiment 
was carried out, the fixture was forcefully clamped to avoid 
serious EM wave exposure, so as to obtain reliable experimen‑
tal data. The power coefficients of reflection (R), absorption 
(A) and transmission (T), as well as the total EMI SE (SET), 
absorption SE (SEA), and reflection SE (SER) were calculated 
as follows [38]:

where S11 represents forward reflection coefficient, S12 rep‑
resents reverse transmission coefficient, and SEM represents 
the multiple reflection SE between the two surfaces of the 
film [39]. When SET ⩾ 15 dB, the SEM can be ignored [40].

2.7  Thermal Insulation Testing

In addition to directly reflecting the thermal conductivity of 
the sample with the thermal constant analyzer, the thermal 
insulation performance of the sample was visually tested 
with the infrared thermal imager (E60, FLIR, America) 
under simulated high‑temperature and cold environments. 
Here, infrared thermal imager is used to record real‑time 
surface temperature changes of different samples over 
time. In order to ensure the reliability of the data, the initial 

(1)R = |S11
|
|
|
2, T =

|
|
|
S21|

2

(2)1 = A + R + T

(3)SET = SEA + SER + SEM

(4)SER = −10 log |1 − R|, SEA = −10 log |T∕(1 − R)|

temperature of the samples under similar experiment (high‑
temperature or cold environment) needs to be consistent.

For high‑temperature environment testing, Xenon lamp 
devices (CEL‑PE300L‑3A, China Education Au‑light 
Co., Ltd, China) that release simulated sunlight can pro‑
vide continuous high‑temperature environment. During the 
experiment, the circular sample with a diameter of 4 cm 
was placed 15 cm perpendicular to the 300 W Xenon lamp 
source (Fig. S2a).

For low‑temperature environment testing, a cylindrical 
glass container (with an inner diameter of 15 cm and a depth 
of 9 cm) filled with ice cubes is freshly removed from the 
refrigerator and covered with a layer of plastic wrap to keep 
the sample from getting soggy (Fig. S2b).

3  Results and Discussion

3.1  Characterization

As shown in Fig. 1a, b, compared to the digital photo‑
graphs of SPNM, the SNM obtained after calcination still 
maintain great flexibility and its surface becomes smooth 
and dense. Figure 1c, d shows the SEM test results of 
SPNM and SNM at the same magnification, respectively. 
It can be seen that the fiber distribution of both is rela‑
tively uniform and the fiber diameter of SNM has been 
significantly decreased. By further magnifying the scan‑
ning magnification, from Fig. 1e and f, it can be clearly 
seen that the fiber diameter was also uniform. Fifty fibers 
were selected from SPNM and SNM respectively for diam‑
eter statistical analysis, and it was found that the diameter 
distribution of both fibers followed a normal distribution 
(Fig. 1g). Specifically, the fiber diameter of SPNM is gen‑
erally distributed in the range of 490–550 nm, and the fiber 
diameter of SNM is generally distributed in the range of 
350–360 nm. After statistical calculation (Table S1), the 
average fiber diameter of SNM decreased from 527.06 nm 
in SPNM to 356.03 nm.

Figure 1h presents that the TGA curves of PVA, SPNM 
and SNM from 30 to 900 °C in the air atmosphere. The 
TGA curve of PVA shows that it can be completely decom‑
posed before 600 °C, which is consistent with the conclu‑
sion of other studies [41, 42]. It can be seen from the TGA 
curve of SPNM that the weight loss of SPNM is mainly 
concentrated in two stages: the range of 100–400 °C with a 
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mass loss of 27% and the range of 400–750 °C with a mass 
loss of 20%. The former is mainly attributed to the removal 
of water molecules and part of PVA, while the latter is 
mainly due to the removal of residual organic matter. In 
addition, the TGA curve of the SNM showed that its mass 
has hardly changed throughout the entire testing tempera‑
ture range. Combined with the TGA of PVA and SPNM, 
it can be preliminarily concluded that the SNM obtained 
after heat treatment at 800 °C have a high‑temperature 
resistance and no organic components.

So as to further analyze the components of SNM and 
SPNM, they were characterized by ATR‑FTIR (Fig. 1i). In 
FTIR spectra of SPNM, the broad peaks at around 3400 
and 2900  cm−1 were assigned to the − OH bonds and the 

 CHn groups, respectively [43–45]. However, the FTIR 
spectra of SNM do not have the above two characteristic 
peaks, indicating that organic matter (such as PVA, resid‑
ual TEOS and  H2C2O4) in SPNM is completely removed 
after being calcined at 800 °C. Moreover, the spectra only 
show obvious peaks near 1095 and 800  cm−1, which cor‑
respond to the tensile vibration of Si–O‑Si bonds [46]. 
The above results comprehensively indicate that SNM are 
mainly composed of ceramic  SiO2 phase. Combined with 
TGA results, it has been proven that after heat treatment 
at 800 °C, organic components in SPNM are completely 
removed, and the resulting SNM are only composed of 
inorganic components of  SiO2. This conclusion also 

Fig. 1  a, b Digital photographs, c‑f SEM images and g fiber diameter size distribution of SPNM and SNM. h TG curves of SPNM, SNM and 
PVA. i ATR‑FTIR spectra of SPNM and SNM
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effectively explains the obvious decrease in fiber diameter 
from SPNM to SNM.

Ti3C2Tx MXene nanosheets with a high specific surface 
area are usually prepared by acid etching and ultrasonic 
exfoliation [47–49]. In this experiment, after the middle 
aluminum layer was etched off by HF, the compact mas‑
sive carbon‑aluminum‑titanium  (Ti3AlC2 MAX) particles 
(Fig. 2a) evolved into multilayered  Ti3C2Tx MXene with an 
accordion structure (Fig. 2b). Further ultrasonic stripping 
resulted in ultra‑thin monolayer  Ti3C2Tx MXene (Fig. 2c) 
[50]. Figure 2d shows the SEM microscopic morphology 
of c‑MWCNT, which are uniformly distributed and cor‑
respond to a product description with an inner diameter 
of 3–5 nm, an outer diameter of 8–15 nm, and a length of 
5–15 μm. Figure 2e presents the standing experiments of 
MXene@MWCNT6:4 and MXene@c‑MWCNT6:4 disper‑
sions, respectively. It can be clearly seen that after being 
placed for 10 days, the former shows a distinct deposition 
separation phenomenon, while the latter still remains a uni‑
form dispersion. After 30‑day placement, more than half 
of the solid deposits appeared in the former, while the lat‑
ter remained almost unchanged. In comparison, it can be 
preliminarily concluded that the active functional groups 
(‑OH, ‑F, C = O, etc.) of MXene and c‑MWCNT are well 
combined, thereby improving the overall dispersibility and 
antioxidant properties.

The major valence bonds of MXene, c‑MWCNT and 
MXene@c‑MWCNTx:y were further analyzed by ATR‑
FTIR. As shown in Fig. 2f, the FTIR spectrum of MXene 
shows typical representative vibrational peaks, which are, 
respectively, attributed to the − OH bonding near 3400 and 
1390  cm−1, C = O bonding near 1630  cm−1, C − F bonding 
near 1116  cm−1, and Ti − O terminal group near 535  cm−1 
[30, 51]. In addition to the aforementioned − OH and C = O 
characteristic peaks, the FTIR spectrum of c‑MWCNT also 
contains C − O bonding near 1026  cm−1 and  CHn groups 
near 2900  cm−1 [52]. The FTIR spectrum of MXene@c‑
MWCNT6:4 contains all the characteristic peaks of MXene 
and c‑MWCNT, indicating the formed effective valence 
bond binding between them. It is worth noting that the FTIR 
spectrum of MXene@c‑MWCNT6:4 is similar to that of 
c‑MWCNT (except for the Ti − O characteristic peak). This 
is because when MXene and c‑MWCNT are mixed together, 
the latter wraps the former (Fig. 3j), resulting in most of 
the infrared beams to preferentially contact and reflect with 
c‑MWCNT during testing.

In order to analyze the microstructures of MXene@c‑
MWCNTx:y more thoroughly, SEM characterizations were 
carried out from both the surface and the cross section. As 
can be seen from the surface SEM images (Fig. 3a, b, c, d), 
with the increase in the relative content of MXene, the num‑
ber of transparent MXene sheets distributed on the surface 
of MXene@c‑MWCNTx:y is gradually increased. Especially 
when the mass ratio of MXene:c‑MWCNT reaches 6:4, 
the MXene sheets are in contact with each other (Fig. 3e), 
which helps to improve the overall electrical conductivity of 
MXene@c‑MWCNT6:4.

For the SEM images of the cross sections, similarly, the 
number of MXene sheets embedded in c‑MWCNT gradually 
increases with the increase in their content (Fig. 3g, h, j). 
From Fig. 3j, it can be seen that MXene sheets distributed 
at MXene@c‑MWCNT6:4 are dense and uniform. In addi‑
tion, region A indicates that MXene sheets are enveloped 
by a large amount of c‑MWCNT, and region B reveals that 
the surrounding linked c‑MWCNT will be taken away when 
MXene is pulled out. The above two phenomena imply a 
strong binding force between MXene and c‑MWCNT, 
which is provided by the hydrogen bond formed between 
their active functional groups (Fig. 3k) [53]. Based on the 
above analysis, one‑dimensional c‑MWCNT and uniformly 
embedded two‑dimensional MXene form a “hand in hand” 
three‑dimensional wire junction structure, which provides a 
theoretical basis for MXene@c‑MWCNT6:4 with good elec‑
trical conductivity and mechanical properties. From Fig. 3f, 
l, it can be seen that a pure MXene film is formed by stack‑
ing rigid and fluffy MXene sheets.

3.2  Mechanical Tensile Performance

Both good mechanical tensile strength and flexibility are 
important indicators for the practical application of fiber‑
based composites [54–56]. As demonstrated in Fig. 4a, the 
tensile strength and modulus of SNM obtained by calcination 
are greater than that of SPNM. Figure 4b reveals that the ten‑
sile strength of MXene@c‑MWCNTx:y is significantly higher 
than that of pure MXene and c‑MWCNT films, and the tensile 
strength of hybrid films increases with the increase in MXene 
content. When the weight ratio of MXene to c‑MWCNT is 6:4, 
MXene@c‑MWCNT6:4 reaches the maximum tensile strength 
of 4.28 MPa, which is mainly attributed to the strong inter‑
facial adhesion between MXene nanosheets and c‑MWCNT 
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through hydrogen bonding and π‑π interaction [57]. However, 
the maximum strain of the hybrid film decreases with the 
increase in MXene content, which is mainly due to the weak 
van der Waals forces between the rigid MXene nanosheets. 
Through the complementary effect of c‑MWCNT, it can be 
seen from Fig. 4b (inset) that MXene@c‑MWCNT6:4 still has 
a good flexibility.

From Fig. 4c, it can be clearly seen that the tensile strength 
of  SMCx composite film composed of SNM/MXene@c‑
MWCNT6:4 (unit layer) has been greatly improved, especially 
for  SMC3 prepared by bonding three unit layers with 5 wt% 
PVA, which has a mechanical tensile strength of 10.01 MPa. 
Figure 4d, e, f shows the tensile cross sections of  SMC1, 
 SMC2, and  SMC3, it can be seen that SNM and MXene@c‑
MWCNT6:4 are tightly coupled, as well as between different 
unit layers. As shown in the insertion, the  SMC3 containing 
three unit structures still maintains good bendability. It is 
worth mentioning that the  SMCx obtained in this work real‑
izes the micrometer level in the thickness direction (Table S2), 
which can greatly save space and enhance the value of practi‑
cal application.

3.3  Electromagnetic Interference Shielding 
Performance

Electrical conductivity is one of the main factors affecting 
the performance of EMI shielding [58, 59]. MXene@c‑
MWCNTx:y serve as the main contributor of EMI shield‑
ing in this work, as shown in Fig. 5a, with the increase in 
MXene content, the conductivity of MXene@c‑MWCNTx:y 
is significantly enhanced (MXene@c‑MWCNT6:4 reaches 
7378 S  m−1), while the sheet resistance and thickness of 
hybrid film are obviously reduced (Fig. S3 and Table S3). 
Here, although the pure MXene film has the highest elec‑
trical conductivity (11,869 S  m−1), its poor mechanical 
stretchability limits its further application.

In Fig.  5b, the SE reflection (SER) curve of pure 
c‑MWCNT film in the X‑band is relatively stable, while the 
SER curves of the pure MXene film and hybrid films present 
wavy shape, and the EMI SER interval values of all films are 
approximately concentrated between 13–15 dB. Combin‑
ing the formula SER (dB) = 20 log(Z0/4Z1), where Z0 and 
Z1 are the impedance of free space and shielding material, 
respectively [60], it can be concluded that under the premise 
of constant spatial impedance, the two different  SER curve 

Fig. 2  a SEM image of  Ti3AlC2. b SEM image of multi‑layer MXene without ultrasonication. c AFM image and SEM image (inset) of MXene 
monolayer. d SEM image of c‑MWCNT. e Digital photograph of MXene@MWCNT6:4 and MXene@c‑MWCNT6:4 dispersions for different 
static times. f ATR‑FTIR spectra of MXene, c‑MWCNT and MXene@c‑MWCNT6:4



 Nano‑Micro Lett.          (2024) 16:195   195  Page 8 of 17

https://doi.org/10.1007/s40820‑024‑01398‑1© The authors

trends are attributed to the uniform diameter distribution of 
one‑dimensional c‑MWCNT and the non‑uniform diameter 
of two‑dimensional MXene, respectively.

As shown in Fig. 5c, the SE absorption (SEA) value of the 
hybrid film in the X‑band is enhanced with the increase in 
MXene content and reaches the maximum value when the 
ratio of MXene to c‑MWCNT is 6:4. The EMI SEA is mainly 
determined by the shielding thickness (d) and skin depth (δ) 

[61], and their general relationship is SEA (dB) = 20(d/δ)
loge = 8.686(d/δ), where δ is skin depth and defined as the 
electromagnetic energy decreases to e−1 of the incident 
wave, it is described as δ = (πfµσ)−1/2 if σ >  > 2πfε0, in which 
σ is the electrical conductivity, ε0 is the vacuum permittiv‑
ity, and permeability µ = µ0µr (µ0 = 4π ×  10−7 H  m−1, µr = 1), 
so shielding thickness (d) and the electrical conductivity 
(σ) are the critical factors for SEA [62]. According to the 

Fig. 3  SEM images of a‑f the surface and g‑j, l the cross section of MXene@c‑MWCNTx:y with different weight ratio of MXene and 
c‑MWCNT. k Diagram of hydrogen bond between MXene and c‑MWCNT



Nano‑Micro Lett.          (2024) 16:195  Page 9 of 17   195 

1 3

Fig. 4  Typical stress–strain curves of a SPNM and SNM, b MXene@c‑MWCNTx:y, and c  SMCx. d‑f SEM cross‑sectional images of  SMCx and 
corresponding digital photographs

Fig. 5  a Conductivity, sheet resistance and film thickness, b‑d EMI SET, SER, SEA performance in the X‑band, e average EMI SET, SEA, SER 
values and f power coefficients of MXene@c‑MWCNTx:y
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above analysis, it can be concluded that in the process of 
gradual change of MXene/c‑MWCNT mass ratio from 0:10 
to 6:4, the progress of SEA mainly benefits from the increase 
in electrical conductivity (σ) (Fig. 5a), but when the ratio 
transitions from 6:4 to 10:0, the decrease in SEA is mainly 
attributable to a sharp reduction in the thickness (d) of the 
shielding film (Table S3). In addition, as shown in Fig. 5d, 
the change trend of EMI shielding effectiveness total (SET) 
is consistent with that of SEA.

The average values of SET, SEA, and SER in the X‑band 
of the sample can effectively disclose its electromagnetic 
shielding mechanism. It can be clearly seen from Fig. 5e 
that the SET values of MXene@c‑MWCNTx:y are all greater 
than 30 dB, which indicates that they can meet the actual 
requirements in various fields [63]. Combined with the dou‑
ble advantages of electrical conductivity and thickness, the 
SET average value of MXene@c‑MWCNT6:4 is as high as 
38.66 dB. According to the shielding efficiency formula η 
(%) = 100–100(1/10SE/10) [62], MXene@c‑MWCNT6:4 can 
shield 99.98% of incident electromagnetic wave. In addition, 
the SER values of all films are stable in the range of 15 dB, 
indicating that more than 90% of the incident electromag‑
netic wave is shielded by reflection [64].

Although the SEA values of the shielding films in Fig. 5e 
are higher than the SER values, most electromagnetic waves 
are reflected before entering the shielding layer, so the power 
coefficient of EMI shielding needs be further analyzed [65]. 
The power coefficient includes absorption coefficient (A), 
reflection coefficient (R) and transmission coefficient (T), 
which are used to evaluate the ability of EMI shielding mate‑
rials to absorb, reflect and transmit electromagnetic waves, 
respectively [66]. Figure 5f shows that the T values of the 
shielding films are close to 0, indicating that MXene@c‑
MWCNTx:y can shield almost all incident electromagnetic 
waves. At the same time, the much higher R values than A 
values indicate that MXene@c‑MWCNTx:y mainly follow 
a reflectance‑based electromagnetic shielding mechanism.

The number of structural unit layers contained in  SMCx 
is an important factor affecting the electromagnetic shield‑
ing performance. As shown in Fig. 6a, b, c, the SER and 
SEA of composite film  SMCx in X‑band both rise with the 
increase in the number of structural unit layers, and SET of 
 SMC3 is greatly improved compared with  SMC1 and  SMC2. 
 SMC1 can only reflect and absorb electromagnetic waves 
on one side, while the EMI shielding mechanism of  SMC2 
and  SMC3 also includes multiple reflections and multiple 

absorption, so the SET increases with the increase in the 
number of layers of structural units. Therefore, the aver‑
age SET of  SMC1,  SMC2, and  SMC3 in Fig. 6d is 37.80, 
46.00, and 55.40 dB, respectively. After calculation,  SMC3 
can shield 99.99% of incident electromagnetic wave. Similar 
to MXene@c‑MWCNTx:y, it can be seen from Fig. 6e that 
the main shielding mechanism of  SMCx is also reflection. 
In order to explore the durability of the electromagnetic 
interference shielding characteristics of  SMC3, a series of 
extreme environment tests have been carried out. As shown 
in Fig. 6f, after being bent 50 times, baked at high‑temper‑
ature (about 500 °C) for 10 min, and frozen in liquid nitro‑
gen for 2 h, the average SET value of  SMC3 is still as high 
as 54.37 dB, indicating that the  SMCx has excellent EMI 
shielding durability.

3.4  Thermal Insulation Performance

For composite films  (SMCx), MXene@c‑MWCNT6:4 serves 
as a functional layer for EMI shielding (Fig. 5), while SNM 
layer gives an excellent thermal insulation performance. In 
Fig. 7a, the thermal conductivity of SNM (0.034 W  m−1  k−1) 
is lower than that of SPNM (0.037 W  m−1  k−1), which is 
mainly due to the elimination of PVA and other organics in 
SPNM after high‑temperature calcination, realizing SNM 
composed of pure  SiO2 ceramic fiber. Although MXene (472 
W  m−1  k−1) and CNT (700 W  m−1  k−1) have considerable 
theoretical thermal conductivity [32, 67], the  SMCx obtained 
by combining the SNM layer still maintain the ideal thermal 
insulation effect, and the thermal conductivities of  SMC1, 
 SMC2 and  SMC3 are 0.066, 0.064, and 0.062 W  m−1  k−1, 
respectively. This not only shows that  SMCx can effectively 
overcome the influence of the high thermal conductivity of 
the shielding film (MXene@c‑MWCNT6:4) and maintain 
the excellent thermal insulation property of SNM, but also 
reveals that the thermal conductivity of  SMCx decreases 
gradually with the increase in the number of structural unit 
layers.

In order to more intuitively reflect the thermal insulation 
performance of  SMCx, real‑time monitoring of their ther‑
mal management performance in simulated high and low 
temperature environments is carried out using an infrared 
thermal camera [68]. For the high‑temperature environ‑
ment created by Xenon lamp, as shown in Fig. 7b, the sur‑
face temperature of MXene@c‑MWCNT6:4 reaches above 
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120 °C instantaneously and is stabilized at about 135 °C 
after 40 s. In contrast, SNM showed excellent thermal insu‑
lation performance, with a surface temperature maintained 
at around 65 °C after 60 s. In addition, the thermal insula‑
tion effect of  SMCx obtained by bonding the shielding layer 
MXene@c‑MWCNT6:4 and SNM with PVA has been further 
improved. From the infrared thermal imaging in Fig. 7c, it 
can be clearly seen that the final temperatures of  SMCx are 
all around 60 °C. It is worth mentioning that the thermal 
insulation performance of  SMCx did not gradually increase 
with the increase in structural units, mainly due to the cer‑
tain photothermal conversion ability of MXene and CNT 
[69]. The natural cooling experiment after 60 s further veri‑
fied the low thermal diffusion coefficient of  SMCx.

For the low temperature environment created by ice, the 
temperature is maintained at about ‑2.5 °C. As shown in 
Fig. 7d, the cooling rates of SNM,  SMC1,  SMC2, and  SMC3 
decreased successively for different fiber films placed in the 
cold environment at the same time. Importantly, the tem‑
perature protection capacity of  SMCx at low temperature 
increased with the increase in the number of unit layers, 
corresponding to  SMC1: 15.46 °C,  SMC2: 17.23 °C and 

 SMC3: 20.18 °C, respectively (Fig. 7e). Interestingly, the 
minimum temperature of  SMC1 is similar to that of SNM, 
which should be because  SMC1 only contains one layer of 
SNM, making its thermal insulation performance very close 
to that of SNM. In summary,  SMCx shows excellent thermal 
insulation and heat preservation for extreme thermal and 
cold environments, respectively.

3.5  Dual‑Effect Mechanism of EMI Shielding and Heat 
Insulation

Combined with the above analysis results,  SMCx shows 
dual effects of EMI shielding and thermal insulation. For 
EMI shielding, MXene@c‑MWCNT6:4 layer play a major 
role, as shown in Fig. 8I, when electromagnetic waves 
reach the surface of the shielding film, more than 90% of 
the electromagnetic waves are immediately reflected due 
to the impedance mismatching of the surface free electrons 
[70]. Next, the interaction between the incident electro‑
magnetic waves and the high density of electrons and holes 
in the conductive layer causes conductive loss, weakening 

Fig. 6  a‑c EMI SER, SEA, and SET performance, d average EMI SET, SEA, SER values and e power coefficients of  SMCx. f EMI shielding per‑
formance of  SMC3 after a series of extreme environment tests
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Fig. 7  a Thermal conductivity of SPNM, SNM and  SMCx. b Temperature–time curves and c corresponding infrared images of MXene@c‑
MWCNT6:4, SNM and  SMCx in high‑temperature environment. d Temperature–time curves and e corresponding infrared images of SNM and 
 SMCx in extreme cold environment
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the power of the incident electromagnetic waves. In addi‑
tion, the abundant active groups and heterogeneous inter‑
faces provided by MXene and c‑MWCNT induce both 
dipole and interfacial polarizations, further absorbing the 
energy of incident electromagnetic waves [71]. Therefore, 
after a series of reflections and absorption, only a very 
small amount of transmitted electromagnetic waves enter 
the next shielding layer. As a result, after multiple reflec‑
tions and absorptions, almost no electromagnetic waves 
can penetrate the  SMC3.

For thermal insulation, SNM layer play a major role, 
as shown in Fig. 8II, due to the small aperture between 
 SiO2 fibers, the convective heat transfer can be almost neg‑
ligible, so the total thermal conductivity (λt) for  SMCx 
can be represented as the sum of contributions from three 
parts (λt = λs + λg + λr) [72], i.e., the solid thermal con‑
ductivity (λs), the gas thermal conductivity (λg) and the 
radiation thermal conductivity (λr). The thermal insula‑
tion mechanisms could be explained from the following 
four aspects: First, the extremely high length‑to‑diameter 
ratio and irregular winding of  SiO2 fibers prolong the path 
of heat conduction in solids; moreover, the intrinsic ther‑
mal conductivity of  SiO2 is low, leading a small λs. Sec‑
ond, the high porosity of SNM makes the air heat transfer 

discontinuous in the whole space of  SMCx, contributing 
a low λg; third, the porous structure makes the infrared 
radiation multiple reflect and absorb, resulting in lower‑
ing of λr; finally and most importantly, the phase interface 
between different solids as well as between solids and 
voids enhances phonon scattering [73].

4  Conclusion

In this work, SNM with low thermal conductivity (0.034 
W  m−1  k−1) was prepared by electrospinning followed with 
calcination and played a decisive role in the thermal insu‑
lation performance of  SMCx. The hybrid film composed of 
MXene and c‑MWCNT was successfully prepared through 
vacuum assisted filtration, and the obtained MXene@c‑
MWCNTx:y showed good EMI shielding performance. 
When the weight ratio of MXene to c‑MWCNT was 6:4, 
MXene@c‑MWCNT6:4 exhibited excellent comprehensive 
performance in terms of tensile strength (4.28 MPa) and 
EMI shielding (SET 38.66 dB). Finally,  SMCx with good 
EMI shielding and thermal insulation performance was 
successfully prepared by using 5 wt% PVA as an adhe‑
sive. Specifically, the thermal conductivities of  SMC1, 
 SMC2 and  SMC3 are 0.066, 0.064, and 0.062 W  m−1  k−1, 

Fig. 8  I EMI shielding and II thermal insulation mechanism diagram of  SMCx
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and their EMI  SET are 37.80, 46.00, and 55.40 dB respec‑
tively. In addition, the overall performance of  SMCx was 
improved with the increase in the number of structural 
unit layers. Importantly,  SMCx presents good durability in 
extreme hot and cold environments. The design ideas of 
this work have an important reference value for the devel‑
opment of special equipment such as manned space suits.
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