Supporting Information for

Thermally Conductive and UV-EMI Shielding Electronic Textiles for

Unrestricted and Multifaceted Health Monitoring

Yidong Peng¹, Jiancheng Dong¹, Jiayan Long¹, Yuxi Zhang¹, Xinwei Tang¹, Xi Lin¹, Haoran Liu¹, Tuoqi Liu¹, Wei Fan¹, Tianxi Liu¹, *, Yunpeng Huang¹, *

¹ Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, P. R. China

*Corresponding authors. E-mail: <u>txliu@jiangnan.edu.cn</u>(Tianxi Liu), <u>hypjnu@jiangnan.edu.cn</u>(Yunpeng Huang)

BN NPs FCBN NPs BN NPs FCBN NPs

Supplementary Figures and Tables

Fig. S1 Photographs of BN NPs and FCBN NPs dispersion (in trichloromethane/toluene solvent) stored for 30 s, 5 min and 20 min, respectively

Fig. S2 (a) SEM image of BN-encapsulated SEBS microfibers without the addition of FC-4430. (b) A low magnification SEM image of FCBN/SEBS microfibers

Fig. S3 (a) FT-IR spectra of pure SEBS, BN NPs and FCBN/SEBS. (b) XRD patterns of pure SEBS, BN NPs, FCBN/SEBS, Ag NPs and AFBS

Fig. S4 SEM image of AFBS microfibers at low magnification

Fig. S5 EDS mapping on the cross-section of AFBS fiber, showing the distribution of the elements C, N, B, and Ag

Fig. S6 The resistance change of the AFBS e-textile when stretched up to 800%

Fig. S7 (a) Reflectivity, (b) absorption and (c) transmittance of BN NPs, Ag NPs and TiO₂ NPs in the UV band

Fig. S8 Electromagnetic shielding effectiveness of the AFBS e-textiles after silver plating treatment for (a) 15 min and (b) 45 min

Fig. S9 Alternating current of 3A and 50 Hz AC generated by a fan to simulate the external electromagnetic interference

Table S1 Comparison of the UV protection performance between AFBS e-textile and previously reported textiles

Samples	UPF	References
PI-cotton textile	34.9	[S1]
Ag-doped TiO ₂ hybrid textile	41.0	[S2]
TiO ₂ @ployester cotton	55.8	[S3]
ZnO/SiO ₂ @cotton textile	123.9	[S4]
CeO _x @HNTs anti-biofilm	58.5	[S5]
AFBS e-textile	143.1	This work

Samples	EMI	References
	shielding	
	effectiveness	
AgNW@cotton textile	38.2	[S6]
MXene@GA-CF textile	35.0	[\$7]
Pt/PDA@PI textile	53.0	[\$8]
AgNW/MXene/TPU	41.7	[\$9]
AFBS e-textile	67.1	This work

Table S2 Comparison of the EMI (X-band) performance between AFBS e-textile and previously reported textiles

 Table S3 Comparison of the thermal conductivity performance between AFBS e-textile

 and previously reported textiles

Samples	Thermal conductivity	References
FP-Cool (BN) textile	0.14	[S10]
BNNS@TPU textile	0.18	[S11]
BN@Flax fiber textile	0.36	[S12]
BNNS@TPU@Cellulose textile	0.31	[S13]
AFBS e-textile	0.72	This work

Supplementary References

- [S1] D. Song, B. Jiang, J. Zhou, Y. Ouyang, Y. Zhang et al., Soluble and colorless polyimide coated cotton fabric with attractive multifunction: Warmth retention, breathable, antifouling, UV and acid resistance. Chem. Eng. J. 455, 140755 (2023). <u>https://doi.org/10.1016/j.cej.2022.140755</u>
- [S2] M. Mamunur Rashid, B. Tomšič, B. Simončič, I. Jerman, D. Štular et al., Sustainable and cost-effective functionalization of textile surfaces with Ag-doped TiO₂/polysiloxane hybrid nanocomposite for UV protection, antibacterial and self-cleaning properties. Appl. Surf. Sci. **595**, 153521 (2022). <u>https://doi.org/10.1016/j.apsusc.2022.153521</u>
- [S3] H. Rabiei, S. Farhang Dehghan, M. Montazer, S.S. Khaloo, A.G. Koozekonan UV protection properties of workwear fabrics coated with TiO₂ nanoparticles. Front. Public Health 10, 929095 (2022). <u>https://doi.org/10.3389/fpubh.2022.929095</u>
- [S4] M.M. Abd El-Hady, S. Sharaf, A. Farouk Highly hydrophobic and UV protective properties of cotton fabric using layer by layer self-assembly technique. Cellulose 27, 1099–1110 (2020). <u>https://doi.org/10.1007/s10570-019-02815-0</u>

- [S5] Y. Feng, D. Zhang, X. Chen, C. Zhou, M. Liu Confined-synthesis of ceria in tubular nanoclays for UV protection and anti-biofilm application. Adv. Funct. Mater. 34, 2307157 (2024). <u>https://doi.org/10.1002/adfm.202307157</u>
- [S6] L. Xing, H. Yang, X. Chen, Y. Wang, D. Sha et al., Caffeic acid induced *in situ* growth of AgNWs on cotton fabric for temperature and pressure sensing and electrical interference shielding. Chem. Eng. J. 471, 144620 (2023). https://doi.org/10.1016/j.cej.2023.144620
- [S7] B. Yan, X. Bao, Y. Gao, M. Zhou, Y. Yu et al., Antioxidative MXene@GAdecorated textile assisted by metal ion for efficient electromagnetic interference shielding, dual-driven heating, and infrared thermal camouflage. Adv. Fiber Mater. 5, 2080–2098 (2023). <u>https://doi.org/10.1007/s42765-023-00330-3</u>
- [S8] X. Tang, X. Zhao, Y. Lu, S. Li, Z. Zhang et al., Flexible metalized polyimide nonwoven fabrics for efficient electromagnetic interference shielding. Chem. Eng. J. 480, 148000 (2024). <u>https://doi.org/10.1016/j.cej.2023.148000</u>
- [S9] J. Dong, Y. Feng, K. Lin, B. Zhou, F. Su et al., A stretchable electromagnetic interference shielding fabric with dual-mode passive personal thermal management. Adv. Funct. Mater. 34, 2310774 (2024). https://doi.org/10.1002/adfm.202310774
- [S10] F. Li, S. Wang, Z. Wang, K. Jiang, X. Zhao et al., Fouling-proof cooling (FP-cool) fabric hybrid with enhanced sweat-elimination and heat-dissipation for personal thermal regulation. Adv. Funct. Mater. 33, 2370020 (2023). https://doi.org/10.1002/adfm.202370020
- [S11] D. Miao, X. Wang, J. Yu, B. Ding A biomimetic transpiration textile for highly efficient personal drying and cooling. Adv. Funct. Mater. 31, 2008705 (2021). <u>https://doi.org/10.1002/adfm.202008705</u>
- [S12] Y. Lu, Z. Li, N. Guo, P. Zhang, S. Fu Preparation and properties of boron nitride loaded regenerated cooling fiber. Fibres. Polym. 24, 1633–1640 (2023). <u>https://doi.org/10.1007/s12221-023-00084-0</u>
- [S13] X. Huang, Z. Li, Y. Li, X. Wu, C. Liu et al., Thermally conductive boron nitride nanosheets on electrospun thermoplastic polyurethane for wearable Janus-type fabrics with simultaneous thermal and moisture management. ACS Appl. Nano Mater. 7, 8229–8237 (2024). <u>https://doi.org/10.1021/acsanm.4c00838</u>