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HIGHLIGHTS

• Typical structures/working mechanisms of gel-based triboelectric nanogenerators and performance advantages of gel materials 
reviewed.

• Optimization of hydrogels, organogels, and aerogels for triboelectric nanogenerators in flexible sensing summarized.

• Applications, challenges, and future development directions of gel-based triboelectric nanogenerators in flexible sensing are discussed.

ABSTRACT The rapid development of the Internet of Things and artificial intelligence technologies has increased the need for wearable, 
portable, and self-powered flexible sensing devices. Triboelectric nanogenerators 
(TENGs) based on gel materials (with excellent conductivity, mechanical tunabil-
ity, environmental adaptability, and biocompatibility) are considered an advanced 
approach for developing a new generation of flexible sensors. This review compre-
hensively summarizes the recent advances in gel-based TENGs for flexible sensors, 
covering their principles, properties, and applications. Based on the development 
requirements for flexible sensors, the working mechanism of gel-based TENGs 
and the characteristic advantages of gels are introduced. Design strategies for the 
performance optimization of hydrogel-, organogel-, and aerogel-based TENGs are 
systematically summarized. In addition, the applications of gel-based TENGs in 
human motion sensing, tactile sensing, health monitoring, environmental monitor-
ing, human–machine interaction, and other related fields are summarized. Finally, 
the challenges of gel-based TENGs for flexible sensing are discussed, and feasible 
strategies are proposed to guide future research.
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1 Introduction

Extensive interest in the Internet of Things and artificial 
intelligence has prompted the rapid development of flexi-
ble sensing technology [1–4], such as wearable electronics, 
electronic skin, and implantable medical devices [5–10]. 
To promote practical applications, there is an urgent need 
for flexible sensors that are wearable, portable, and self-
powered. However, the development requirements of the 
new generation of flexible electronic devices are not met 
by traditional piezoresistive or capacitive sensors, which 
require an external power supply, or piezoelectric sensors, 
which have a relatively restricted selection of materials 
[11–14]. Triboelectric nanogenerators (TENGs), which 
based on both contact electrification and electrostatic 
induction, offer significant advantages for the development 
of new-generation sensors [15–26]. TENGs are considered 
an ideal choice for flexible sensors because of their many 
advantages, e.g., self-powering, compact size, low cost, 
wide variety of suitable materials, and high sensitivity 
[27–37]. Materials for flexible sensors must meet a range 
of strict requirements, such as flexibility, biocompatibility, 
and environmental tolerance. Therefore, flexible materials 
with tunable performance are being developed to meet the 
needs of TENGs for flexible sensing applications.

Gels are three-dimensional network structures composed 
of particles or polymers within a certain size range dispersed 
in another medium [38]. Depending on the nature of the sol-
ute (water, organic liquids, and gases), gels are categorized 
as hydrogels, organogels, or aerogels, respectively [39]. 
The three-dimensional dynamic network structure enables 
the development of flexible and tailorable gel materials. 
Gel materials are characterized by excellent conductivity, 
mechanical flexibility, self-healing ability, environmental 
adaptability, and biocompatibility [40–42]. Owing to these 
excellent properties, gel materials have been widely uti-
lized in many fields, including environmental management 
[43–47], flexible sensing [48–50], electrical engineering 
[51–53], actuators [54–56], and biomedicine [57–64]. In the 
field of TENGs, these three types of gels have unique proper-
ties and advantages that can be modified for the development 
and application of various flexible triboelectric sensors.

Since Xu et al. first used hydrogel materials in TENGs 
[65], gel-based TENGs have been extensively studied. 
Accordingly, summarizing relevant studies on gel-based 

TENGs highlighted the remarkable results that have been 
achieved. However, most of these comprehensive reports 
focused on a single type of gel, predominantly hydrogels 
[66–71]. Notably, in recent years, significant research has 
been conducted on organogel- and aerogel-based TENGs 
to improve their output, environmental adaptability, and 
mechanical durability [31, 70, 72–86]. These advance-
ments have demonstrated their indispensable position and 
advantages in the field of flexible sensing. Therefore, it is 
necessary to review the remarkable advancements in all 
gel-based TENGs for flexible sensing. This review com-
prehensively summarizes the research progress in gel-
based TENGs for flexible sensing from the perspective 
of principles, properties, and applications (Fig. 1). First, 
the basic principles of gel-based TENGs and character-
istic advantages of gel materials are briefly introduced. 
Subsequently, the design strategies for optimizing the 
performance of hydrogel-, organogel-, and aerogel-based 
TENGs are systematically summarized. Subsequently, 
the applications of gel-based TENGs in human motion 
sensing, tactile sensing, health monitoring, environmental 
monitoring, human–machine interactions, and other fields 
are outlined in detail. Finally, considering the current chal-
lenges of gel-based TENGs, viable strategies are proposed, 
and the prospects of gel-based TENGs in flexible sensing 
are discussed.

2  Working Mechanism and Advantages 
of Gel‑Based TENGs

Gel-based TENGs can function properly under deformation 
states such as stretching, bending, and folding. Combining 
gels and TENGs can fully leverage the advantages of both 
and is an effective strategy for fabricating high-performance 
and sustainable flexible devices. This section begins with 
a brief overview of TENGs, followed by a discussion of 
the performance advantages of gel materials and the typi-
cal structure and working mechanism of gel-based TENGs.

2.1  Overview of TENGs

TENGs were first proposed by Wang et al. in 2012 [16], 
and the related theory was derived from Maxwell’s equa-
tions. TENGs are a type of distributed energy-harvesting 
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device based on the coupling effect of contact electrifi-
cation and electrostatic induction [24]. According to 
the requirements of practical applications, TENGs are 
classified into four basic working modes: vertical con-
tact–separation [101, 102], lateral sliding [103], single-
electrode [104], and freestanding tribolayer [105]. TENGs 
are broadly applicable and are classified into two main 
categories: energy harvesting and sensing. TENGs effi-
ciently use dispersed low-frequency energy sources such 
as biomechanical, wind, ocean, and water wave energy 
to achieve energy conversion and harvesting [106–116]. 
The miniaturization ability and flexibility of TENGs offer 
unique advantages in sensing applications, such as human 

motion, biomechanics, and human–computer interfaces 
[89, 117–131]. Figure 2 illustrates the four working modes 
and applications of TENGs.

2.2  Advantages of Gel Materials for TENGs

Various flexible materials have been explored for the devel-
opment of TENGs for flexible sensor applications. Films 
[132–135], fibers [136], membranes [137], and gels are com-
monly used as flexible materials. Films or membranes are 
most widely used in TENGs owing to their good flexibility 
and mature preparation processes. For example, polydi-
methylsiloxane (PDMS) films and membranes have played 

Fig. 1  Gel-based TENGs for flexible sensing. Reproduced with permission from Ref. [87], Copyright 2022, Elsevier; Ref. [88], Copyright 2023, 
Elsevier; Ref. [89], Copyright 2017, American Association for the Advancement of Science; Ref. [90], Copyright 2023, Wiley–VCH.; Ref. [91], 
Copyright 2022, Wiley–VCH.; Ref. [92], Copyright 2022, Elsevier; Ref. [93], Copyright 2022, Elsevier; Ref. [94], Copyright 2023, Elsevier; 
Ref [95]. Copyright 2023, Elsevier; Ref. [96], Copyright 2021, Elsevier; Ref. [97], Copyright 2021, Elsevier; Ref. [98], Copyright 2022, Ameri-
can Chemical Society; Ref. [99], Copyright 2023, Wiley–VCH.; Ref. [86], Copyright 2023, Wiley–VCH.; Ref. [100], Copyright 2021, Elsevier
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an invaluable role in the development of flexible TENGs. 
Strategies such as MXene doping, pre-stretching, ultraviolet 
ozone irradiation [132], or chemical modification treatments 
[133], can effectively improve the applicability of PDMS in 
TENGs for flexible sensing. Films and membranes respond 
better to external forces under localized deformation and 
smaller stretching conditions. However, in larger mechani-
cal deformation and impact environments, strong stretch-
ing tends to cause irreversible damage to the mechanical 
properties and electrical conductivity of the material, thus 
limiting the sensing applications of the film- and mem-
brane-based TENGs [138]. Fibers have a high aspect ratio 
and specific surface area, excellent flexibility and ductility 

[136]. However, fibers are limited by the intrinsic conductive 
properties of the material, and complex structural designs 
(weaving, knitting, serpentine sewing, and spiral winding) 
are often required to prepare fiber-based TENGs for flex-
ible sensing [136]. In contrast, gel materials with a dynamic 
three-dimensional network structure have excellent perfor-
mance tunability, which is especially suitable for flexible 
TENGs. Gels can achieve the integration of flexibility and 
conductivity on the gel substrate, on-demand and adapt-
able designs in terms of transparency, interfacial adhesion, 
self-healing, and extreme environmental tolerance. For 
instance, a conductive, transparent, and self-cleaning poly-
acrylamide (PAM) hydrogel with high mechanical stability 

Fig. 2  Working modes and applications of TENGs. Reproduced with permission from Ref. [111], Copyright 2022, Elsevier; Ref. [112], Copy-
right 2023, Elsevier; Ref. [113], Copyright 2023, Wiley–VCH; Ref. [116], Copyright 2023, Wiley–VCH; Ref. [89], Copyright 2017, American 
Association for the Advancement of Science; Ref. [122], Copyright 2023, American Chemical Society; Ref. [123], Copyright 2020, American 
Association for the Advancement of Science; Ref. [125], Copyright 2020, Elsevier; Ref. [117], Copyright 2018, American Association for the 
Advancement of Science
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was combined with a TENG for wireless communication 
sensing [139]. In addition, a highly conductive, self-healing, 
and freeze-resistant gelatin organic hydrogel-based TENG 
[140], and a highly conductive, ultralight, and thermally 
insulating calcium alginate aerogel-based TENG were 
demonstrated for high-temperature environmental sensing 
[74]. The advantages of gel materials, such as their high 
conductivity, mechanical toughness, self-healing ability, and 
excellent environmental adaptability make them suitable for 
the development of wearable, portable, and self-powered 
flexible sensors. Flexible triboelectric sensors based on gel 
materials allow a greater range and complexity of defor-
mation, resulting in more sensitive sensing and response to 
environmental changes.

The material composition and structure of gel materials 
can be tailored to meet the requirements of different flexible 
TENGs sensing applications. Table 1 summarizes the advan-
tages and disadvantages of the three types of gels used in 
TENGs and sensing applications. Hydrogels can be used as 
flexible substrates for TENG-based sensors because of their 
good flexibility and tunable mechanical properties. They are 
particularly suitable for applications with frequent deforma-
tion and stress changes, such as electronic skin and wearable 
sensors [65]. In addition, conductive gels fabricated using 
intrinsically conductive materials or conductive enhancers 
can be used as flexible electrodes in TENGs. TENGs based 
on conductive gels with the dual functions of flexibility and 
conductivity can overcome the problem of conductive fail-
ure caused by the rupture of traditional electrode materials 
under stretching and greatly expand the application scope 

of TENGs in flexible sensing. Currently, hydrogels exhibit 
the greatest advantages for application in TENG electrodes. 
Ultra-strong and ultra-tough conductive gels can be prepared 
by combining traditional gel materials (e.g., polyvinyl alco-
hol (PVA), and PAM) prepared by classical processes (e.g., 
freeze–thaw and microphase separation) with highly conduc-
tive materials (silver nanowires, graphene, etc.) [81, 87]. 
The self-repair ability of high-strength conductive gels is 
due to dynamic covalent bonding, which further enhances 
their mechanical stability. The use of such gels as a flexible 
electrode in TENGs can greatly improve the working stabil-
ity and accuracy in extreme environments. In addition, bio-
compatible gels can be placed in direct contact with human 
skin or tissue to enable the application of TENGs in medical 
and health monitoring.

Organogels are mechanically more flexible and stable 
than hydrogels and can maintain good flexibility and 
stretchability as flexible electrode materials over a wide 
range of stress and environmental conditions (tempera-
ture and humidity variations) [79, 153]. These favorable 
properties could enable organogel-based TENGs to be 
used for the long-term monitoring of bending motions. 
There is a wide range of options for the liquid phase of 
an organogel and its continuous phase can comprise polar 
organic solvents and their aqueous mixtures [148], ionic 
liquids, fats, or oils [154, 155]. Ionogels with excellent 
ionic conductivities are being investigated as flexible 
electrodes. Organogels with excellent environmental tol-
erance, mechanical toughness, and temperature resistance 
can be developed for TENG applications by replacing or 

Table 1  Advantages and disadvantages of various gels and their sensing applications in TENGs

Types Roles in TENG Advantages Disadvantages Sensing Applications in 
TENG

Hydrogel Electrode [71]
Tribolayer [141]
Substrate [65]

High conductivity [142]
Mechanical flexibility [143]
Self-healing [144]
Biocompatibility [71]

Solvent loss leads to electrode failure [71]
Difficult to balance conductivity and transpar-

ency [140]
Requires elastomer encapsulation; poor interfa-

cial adhesion [145]

Implantable sensing [146]
Health monitoring [147]
Motion sensing [87]
Tactile sensing [89]

Organogel Electrode [148]
Tribolayer [149]

Frost-resistance [75]
Toughness [80]
Environmental
adaptability [77]

Insufficient conductivity
Poor interfacial adhesion [78]

Implantable sensing [76]
Motion sensing [148]
Smart fabrics [77]

Aerogel Electrode [150]
Tribolayer [69]

Lightweight
Compressibility
Porous structure
Thermal insulation [151]

Limited strain sensing range
Electrical properties affected by humidity [88]
Insufficient mechanical properties [86]

Gas sensing [152]
Foot motion sensing [88]
Temperature sensing [94]
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changing their solute properties [73, 83, 156–159], which 
is important for enhancing the durability and application 
range of flexible sensors.

Highly porous aerogel materials can be applied to 
TENGs for high-temperature and gas sensing because of 
their thermal insulation and breathability [94, 152]. Their 
porous structure and light weight make aerogels preferred 
materials for flexible friction layers [69]. Conductive aero-
gels can be used as electrodes for flexible TENG sensing 
over a small strain range or as friction layers, which is 
uniquely advantageous for the miniaturization of TENG 
sensing devices.

In general, the three-dimensional dynamic network 
structure of hydrogels and organogels endows them with 
adjustable conductivity, and their solid-like structure and 
shape self-repair properties enable them to adapt to vari-
ous deformation conditions. The special porous structure 
of aerogels results in their light weight, thermal insula-
tion, and electromagnetic protection properties, which are 
advantageous for TENG sensor applications. The three 
types of gels are characterized by their respective advan-
tages and have exhibited extraordinary application value 
in flexible TENGs. However, the performance limita-
tions of existing gel materials limit their wide application 
and further development in TENG sensors; for example, 
elastomer encapsulation is required to avoid solvent loss 
in hydrogels, the weak adhesion of organogels, and the 
limited strain range of aerogels. Owing to the complexity 
and diversity of flexible sensing applications, there are 
many potential influencing factors in real scenarios that 
place high demands on the performance of gel materials, 
especially in terms of their ability to withstand dynamic 
mechanical deformation, shape adaptability to irregular 
surfaces, and operational stability in extreme environ-
ments. Therefore, there is an urgent need to explore effec-
tive solutions for the performance enhancement of hydro-
gels, organogels, and aerogels based on the application 
requirements of TENGs for flexible sensing, so as to guide 
the development and application of gel-based TENGs in 
flexible sensing.

2.3  Typical Structures and Working Mechanisms 
of Gel‑Based TENGs

The four traditional working modes defined above can be 
applied to gel-based TENGs. The vertical contact–separa-
tion mode relies on the contact–separation motion of the 
friction layer to generate charge. Owing to its high output 
efficiency and stability, it is widely used in energy harvesting 
and self-powered sensing fields. However, the vertical con-
tact–separation mode may not be suitable for the develop-
ment of small devices and complex multidimensional motion 
sensors because of the need for a gap between the upper 
and lower layers and its limitation in generating electric-
ity in a single direction [141]. For the sliding and single-
layer modes, although there is no need for set a gap, the 
wear of the friction layer caused by sliding is not condu-
cive to the long-term use of gel-based triboelectric sensors. 
Therefore, gel-based TENGs that use these two modes have 
certain limitations for developing flexible sensors [160]. In 
contrast, the single-electrode mode has a simple structure 
and can directly contact human skin. In addition, the other 
charge-generating surface does not require electrode, allow-
ing greater flexibility, functionality, and applicability of the 
device [104]. This mode of gel-based TENG combines the 
advantages of single-electrode and gel materials in terms of 
both structure and function, making it particularly suitable 
for use in flexible wearable sensors [71].

In TENG structures, gels are commonly used as charge-
exporting layers (electrodes) or charge-generating layers (tri-
bolayers). As shown in Fig. 3a, hydrogels and organogels 
are frequently utilized as electrodes in TENGs operating in 
the single-electrode mode. Hydrogel- and organogel-based 
TENGs often require gel encapsulation within an elasto-
mer, such as Ecoflex [161, 162], PDMS [65, 139, 146, 163], 
silicone elastomers [97, 164], and polyacrylate elastomers 
[100]. These elastomers are employed as a single tribolayer 
for contact charging, whereas materials such as fabric, latex, 
or skin serve as the other tribolayer [104]. The addition of 
elastomers significantly mitigates the damage caused by 
material dehydration, thereby ensuring the stability of the 
gel structure and the properties of the TENGs.

The working mechanisms of ionic and electronic hydro-
gels in TENGs differ because of the distinct characteristics 
of hydrogel conductors. Figure 3b shows a single-elec-
trode TENG with an ionic hydrogel electrode [89]. When 
the elastomer makes contact with tribolayers exhibiting 
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different dielectric constants, equal magnitude charges of 
opposite polarity are generated on the surfaces of the elas-
tomer and the tribolayer (Fig. 3b–i). Upon the separation 
of the two triboelectric layers, the electrostatic charge on 
the elastomer surface triggers the redistribution of ions 
within the ionic hydrogel. Positive ions migrate towards 
the negative charge on the elastomer surface, whereas 
negative ions accumulate at the hydrogel-wire interface. 
The connecting wire transports an equivalent number of 
positive charges owing to interfacial polarization, whereas 
negative charges flow in the opposite direction towards 
the grounded end, thereby generating an electrical current 
signal (Fig. 3b-ii). At the maximum distance between the 
two tribolayers, all electrostatic charges in the elastomer 
film are shielded, and no current is generated (Fig. 3b-
iii). As depicted in Fig. 3b-iv, when the two tribolayers 
come into contact again, electrons flow from the ground 
to the wire. This cyclic contact–separation process pro-
duces a continuous alternating current (AC). TENGs with 
electronic hydrogels as electrodes operate under the same 

principles as traditional TENGs, relying on electron trans-
fer for power generation [68].

The use of gels as tribolayers in TENGs has received less 
comprehensive research attention than their use as electrode 
layers. Nevertheless, existing reports highlight the research 
value of gel materials in tribolayer designs. Of particular 
interest are aerogels, which offer distinct advantages owing 
to their high specific surface area and porosity [31, 84, 88, 
92, 151, 165–167]. In the vertical contact–separation mode 
of aerogel-based TENGs, two tribolayer materials with dif-
ferent dielectric constants are vertically stacked. One of the 
tribolayers is an aerogel material and metal electrodes are 
applied to the backsides of both materials (Fig. 3c). This 
configuration enables the generation of a continuous AC 
output via contact–separation cycles, similar to traditional 
TENGs [168]. Notably, the compressibility of the aerogels 
enhances the deformability of the device, whereas the pres-
ence of pores facilitates the storage and transfer of charged 
materials, thereby effectively increasing the surface charge 
density of the tribolayers [68, 84]. Consequently, under 

Fig. 3  Typical structures and working mechanisms of gel-based TENGs. a Structure of single-electrode gel-based TENGs. b Working mecha-
nism of ionic hydrogel-based TENGs. c Working mechanism of TENGs with aerogel as a tribolayer
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identical conditions, TENGs with aerogel tribolayers dem-
onstrate superior electrical output compared to those with 
employing dense tribolayers.

3  Optimizing Material Performance 
of Gel‑Based TENGs for Flexible Sensing

As previously indicated, gel-based TENGs have demon-
strated significant benefits and application potential in flex-
ible sensing owing to the unique merits of gels, including 
electrical conductivity and stretchability. However, tradi-
tional gels have obvious deficiencies in the aforementioned 
properties, which makes it difficult to ensure that gel-based 
TENGs maintain good output performance in complex and 
variable scenarios. To enhance the sensitivity, stability, and 
durability of gel-based TENGs for flexible sensing appli-
cations, it is necessary to optimize the performance of the 
gel materials. The conductivity, mechanical properties, and 
environmental adaptability of gel materials are important 
factors that affect the sensing performance and durability 
of flexible triboelectric sensors. This section focuses on 
the performance optimization of three types of gel-based 
TENGs that are in high demand for flexible sensing.

3.1  Hydrogel‑Based TENGs

Hydrogels are polymers with three-dimensional network 
structures formed by different mechanisms, such as physical 
entanglement, electrostatic interactions, and covalent chemical 
cross-linking using natural or synthetic materials [39]. Based 
on the differences in crosslinking mechanisms, hydrogels are 
categorized into physically crosslinked, chemically crosslinked, 
and physical–chemical hybrid hydrogels [67]. Most TENG 
studies investigate chemically crosslinked and hybrid hydro-
gels [169]. The matrix materials used for TENG gels are PAM, 
PVA, and cellulose [66]. As soft ion conductors, the conduc-
tivity, mechanical properties (toughness, strength, and elonga-
tion), and self-healing ability of hydrogels should be further 
optimized [170–172], so as to ensure good mechanical durabil-
ity and output stability of flexible triboelectric sensors [173]. 
Further design optimization is expected to yield multifunctional 
hydrogel-based TENGs with self-cleaning and smart responses, 
making them suitable for sensing in special environments.

3.1.1  Conductivity

Since hydrogels are typically used as electrode layers in the 
development of flexible triboelectric sensors, their conduc-
tivity is the most important material property. However, 
hydrogels typically have intrinsic conductivities of  10–5–10–1 
S  cm−1, which is 6–9 orders of magnitude lower than that 
of metallic materials. This low conductivity renders them 
unsuitable as flexible triboelectric sensors. Therefore, it is 
important to increase the conductivity of hydrogel electrodes 
to enhance the sensing effect of flexible triboelectric sen-
sors. Generally, common strategies to enhance conductiv-
ity include the introduction of conductive fillers or dopants 
[174–177], free ions [178, 179] and conductive polymers 
into the gel matrix [180–182].

Conductivity enhancement by introducing conduc-
tive fillers or dopants is achieved by the generation of 
conductive transport channels inside the hydrogel, which 
accelerates ion transport, and increases the conductiv-
ity [136, 142, 150, 183]. Figure 4a shows a schematic of 
the structure of a PVA–MXene hydrogel [183]. MXene 
nanosheets possess abundant surface functional groups, 
providing additional hydrogen-bonding sites for the PVA 
molecular chains and forming primary cross-links. Addi-
tionally, borate salts were doped as cross-linkers, promot-
ing secondary crosslinking between MXene and PVA. 
Under the dual cross-linking of MXene and borate salts, 
the conductivity and tensile properties of the PVA hydro-
gel are greatly improved. The hydrogel was encapsulated 
in an Ecoflex silicone rubber to assemble a single-electrode 
TENG (Fig. 4b). Based on the streaming vibration potential 
model, the structure of the MXene nanosheets resembled a 
microchannel filled with water, facilitating the transport of 
positive ions in the MXene/PVA hydrogel after frictional 
charging, thereby enhancing the output performance. The 
TENG output was enhanced by a factor of four with a dop-
ing concentration of 4% MXene nanosheets (Fig. 4c). Fur-
thermore, the conductivity was enhanced by incorporating 
a carbonized metal–organic framework (CMOF) to repair 
the defect regions within reduction graphene oxide (rGO), 
which was used as a dopant for a carboxymethyl cellulose 
(CMC)/PVA/EG double-network hydrogel (DNH) [142]. 
The rGO-CMOF/CMC/PVA/EG DNH electrode exhibited 
an enhanced electron transfer capability, which was attrib-
uted to the conductive network formed by CMOF-rGO 
(Fig. 4d). Compared with pure DNH, the electrical output 
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of the TENG in rGO-CMOF/CMC/PVA/EG DNH assembly 
showed significant improvement (Fig. 4e, f). Furthermore, 
a flexible stable output-performance(SOP)-TENG was con-
structed based on the coupling mechanism of electrostatic 
induction and ionic conduction [184]. Figures 4g, h show 
that the SOP-TENG consists of a calcium chloride–cellulose 
nanofibers  (CaCl2–CNF) hydrogel film and graphite printed 
electrodes. Doping with  CaCl2 confered excellent electrical 
conductivity to the CNF hydrogel films (made from regen-
erated carotene). In addition, device aging had little impact 

on the performance of the SOP-TENG, which maintained an 
ultrastable electrical output after 120 days (Fig. 4i).

3.1.2  Mechanical Performance

To achieve skin adaptability, sensing stability, and 
device durability, wearable sensing devices have special 

Fig. 4  Conductivity optimization of hydrogel-based TENGs. a Molecular structure of PVA/MXene hydrogel. b PVA/MXene hydrogel-based 
TENG. c Output currents of PVA/MXene hydrogel-based TENG with various MXene doping levels. a–c Reproduced with permission from Ref. 
[183], Copyright 2021, Wiley–VCH. d Repair mechanism of rGO-CMOF/DNH TENG. e Output voltage of rGO-CMOF/DNH TENG. f Output 
current of rGO-CMOF/DNH TENG. d–f Reproduced with permission from Ref. [142], Copyright 2023, Elsevier. g Structure of SOP-TENG. h 
Photograph of SOP-TENG. i Effect of aging on the voltage output of SOP-TENG. g–i Reproduced with permission from Ref. [184], Copyright 
2021, American Association for the Advancement of Science
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requirements regarding the mechanical properties of hydro-
gel materials, particularly their integrity under large 
tensile deformations. However, the mechanical proper-
ties of most traditional hydrogels are still unsatisfactory 
(strength < 50 kPa, stiffness < 10 kPa, toughness < 10 J  m−2) 
[185]. The development of composite materials and energy-
dissipation are the primary methods for improving the 

mechanical properties of hydrogels [186]. In the strength 
optimization of hydrogel-based TENGs, the main concern 
is the material properties, such as tensile strength, fracture 
resistance, and flexibility.

The addition of nanofillers or dopants is a common strat-
egy for enhancing the mechanical strength of hydrogels. In 
composite materials, the main strengthening mechanism 

Fig. 5  Optimization of the mechanical properties of hydrogel-based TENGs. a Molecular structure of ZPcHLH. b Tensile stress–strain curves 
of ZPcHLH prepared with different ZIF-8 doping amounts (0, 1, 2, and 3 wt%). c Comparison of power densities of PcHLH-TENG and 2 wt% 
ZPcHLH-TENGs at various load resistances. a–c Reproduced with permission from Ref. [99], Copyright 2023, Wiley–VCH. d Structure of 
PP-TENG. e Images of PP-TENG in the pristine, tensile, warped, and twisted states. f Tensile stress–strain curves of PVA/P(AM-co-AA) and 
PVA/P(AM-co-AA)-Fe3+ hydrogels. d–f Reproduced with permission from Ref. [87], Copyright 2022, Elsevier. g Schematic of a BRCH con-
taining 8 wt% starch being pierced by a sharp steel needle and lifting a 1 kg weight. h Schematic of BRCH-TENG and control before and after 
hammering. i Output voltage of BRCH-TENG before and after hammering. g–i Reproduced with permission from Ref. [143], Copyright 2023, 
Elsevier
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involves the generation, copolymerization, or doping of 
nanomaterials into the internal polymer network of the gel. 
Under external loading conditions, nanomaterials resist and 
disperse high loads, thereby greatly significantly improv-
ing their fracture toughness [187, 188]. The zeolitic imi-
dazolate framework-8 (ZIF-8) was used as a nanofiller 
and incorporated into a lithium chloride (LiCl)-containing 
PAM-co-hydroxyethyl acrylate (HEA) hydrogel, abbrevi-
ated as ZPcHLH [99]. The ZPcHLH was used to assemble 
a single-electrode triboelectric nanogenerator (ZPcHLH-
TENG) (Fig.  5a). The ZIF-8 nanocrystals improve the 
physical crosslinking of the hydrogel by forming hydro-
gen bonds with the copolymer chains. Compared with the 
PAM-co-HEA-LiCl hydrogel (PcHLH) with undoped ZIF-8 
nanofillers, the ZPcHLH showed a 2.7-fold enhancement 
in tensile properties and a strain at break of up to 570% 
(Fig. 5b). Moreover, the double-layer charge-transfer mode 
significantly enhanced the performance of the ZPcHLH-
TENG, leading to a maximum power density of 3.47 W  m−2 
(Fig. 5c).

The energy-dissipation enhancement strategy is mainly 
achieved by developing DNHs. In these hydrogels, sacrificial 
“weak bonds” are introduced into the gel network, which 
are the first to break under an applied force, thereby con-
suming a significant amount of energy. Subsequently, the 
“strong bonds” that maintain the integrity of the gel break, 
leading to hydrogels demonstrating both high strength and 
high toughness [189–191]. A DNH comprising borax-
crosslinked PVA as the first network and  Fe3+-crosslinked 
PAM-polyacrylic acid (PAA) as the second network was 
proposed [87]. The DNH exhibited strong mechanical 
properties, with a tensile strain of 590% and tensile stress 
of 2.1 MPa. The PVA/P(AM-co-AA)-Fe3+ hydrogel-based 
TENG (PP-TENG) demonstrated high sensitivity (gauge 
factor of 2.3) and output stability (Fig. 5d–f). Moreover, 
based on the Hofmeister effect, a high-strength breakage-
resistant conductive hydrogel (BRCH) was created by sol-
vent substitution [143]. The hydrogel consisted of starch 
and hydroxyethyl methacrylate (HEMA), and the hydrogel 
electrode exhibited exceptional puncture and fracture resist-
ances, which were attributed to the bundled starch chains 
within the hydrogel (Fig. 5g, h). The maximum compres-
sive stress reached 6.83 MPa, which is significantly higher 
than that of conventional hydrogel electrodes. The hydrogel-
based TENG exhibited stable performance in high-impact 

environments (Fig. 5i), which fundamentally improved its 
mechanical durability.

3.1.3  Self‑Healing

High-strength and highly conductive hydrogels are suitable 
for use in TENGs for flexible sensing applications. How-
ever, to expand the range of applications to extremely harsh 
environments, flexible sensing devices with self-healing 
capabilities must be developed. Currently, the self-healing 
of hydrogel-based TENGs mostly relies on dynamic chemi-
cal and physical bonding [98, 144, 192–195].

A PAM–clay hydrogel that can heal over a wide tempera-
ture range (− 30 to 80 °C) within 1 s was developed [192]. 
The hydrogel-based TENG maintained a high output over 
a wide temperature range owing to the antifreeze electrode 
and ice-phobic triboelectric layer (Fig. 6a–c). A self-healing 
hydrogel composed of acrylic acid (AA) grafted with gum 
arabic (GA) was reported [144]. The hydrogel matrix was 
enriched with multiple dynamic covalent bonds, resulting in 
self-healing capabilities. A self-healing hydrogel-assembled 
single-electrode TENG was integrated into a hydrogel touch 
panel. The panel maintained a fast response, high resolu-
tion, and a quick self-repair function even at sub-zero tem-
peratures (− 20 °C) and high tensile states (1600% surface 
strain). In addition, a novel PVA–PAM/tannic acid-modified 
cellulose nanocrystalline double network hydrogel (PPC) 
was developed [98]. Owing to the hydrogen and boron ester 
bonds, PPC exhibits rapid self-healing ability, can stretch 
without breaking after 2 min of self-healing, and has excel-
lent electrical conductivity (Fig. 6d–f). The PPC-TENG was 
used to monitor instantaneous vehicle speeds in intelligent 
traffic-monitoring systems. Furthermore, an entirely self-
healing, transparent, and stretchable ionic hydrogel-based 
TENG (EHTS-TENG) was presented [194]. At room tem-
perature, this ionic hydrogel self-healed in two minutes and 
withstood 1500% strain after healing (Fig. 6g). Owing to 
the dynamic metal–ligand bonding and hydrogen bonding 
interactions, the EHTS-TENG achieved self-healing with-
out requiring heating and completely healed after 30 min 
at 900% strain (Fig. 6h). Moreover, even after 500 cycles, 
the TENG was able to regenerate and continue producing 
electricity.
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3.1.4  Other Properties

In addition to the aforementioned performance optimiza-
tions, significant advancements have been made in the devel-
opment of hydrogel-based TENGs in terms of their freez-
ing resistance, self-cleaning, and smart response functions. 
These advances are important for enhancing the sensing 
sensitivity and detection range of hydrogel-based TENGs 
in specific environments [196].

As shown in Fig. 7a, PAM/HEC/LiCl hydrogels were syn-
thesized through the one-step free radical polymerization 
of an acrylamide monomer (AM) in aqueous hydroxyethyl 
cellulose (HEC) solution doped with lithium chloride (LiCl) 

[197]. By adjusting the amount of LiCl added, the hydrogel 
could be prevented from freezing at − 69 °C (Fig. 7b). Fur-
thermore, HEC introduces hydrogen bonding interactions, 
which enhance the mechanical properties and water retention 
of the hydrogel. The TENG assembled with the PAM/HEC/
LiCl hydrogel operated efficiently at extremely low tempera-
tures. Furthermore, graphene oxide (GO) was introduced 
into a PVA–PAM–DNH (GPPD hydrogel) (Fig. 7c) [198]. 
The GPPD hydrogel demonstrated excellent resistance to 
low temperatures and an ultrahigh tensile strength (2000%). 
GPPD-based TENG maintained consistently high perfor-
mance at − 60 °C, highlighting its durability in extreme 
environments (Fig. 7d).

Fig. 6  Optimization of self-healing properties for hydrogel-based TENGs. a PAM–clay hydrogel self-healing process. b Resistance change of 
PAM–clay hydrogel-based TENG during cutting and healing at different temperatures. c Healing efficiency and output stability of PAM–clay 
hydrogel-based TENG at different temperatures. a–c Reproduced with permission from Ref. [192], Copyright 2021, Elsevier. d Self-healing 
mechanism of PPC. e Photograph of two different shapes of PPC healing into one piece, followed by stretching. f Photograph of PPC in a circuit 
with an LED bulb. d–f Reproduced with permission from Ref. [98], Copyright 2023, Wiley–VCH. g Self-healing behavior of the ionic hydrogel. 
h Self-healing mechanism of EHTS-TENG. g, h Reproduced with permission from Ref. [194], Copyright 2019, Wiley–VCH
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Furthermore, gel materials with self-cleaning and anti-
fouling properties must be designed to develop gel elec-
trode surfaces that are resistant to detachment and con-
tamination by continuous frictional contact. A hydrogel 
ionic conductor chemically bonded to PDMS and PAM/
LiCl was demonstrated [139]. HDFS ((heptadecafluoro-1, 
1, 2, 2-tetrahydrodecyl) trichlorosilane) was introduced 
into the TENG (Fig. 7e, f). The self-cleaning capability 
of the TENG was enhanced by HDFS, and its adhesion to 
the substrate was improved by PDMS. The hydrogel-based 
TENG design achieved both self-cleaning and antifouling 

properties (Fig. 7g), offering a new approach for enhancing 
the mechanical durability of the device.

Hydrogel materials with responsivity to changes in exter-
nal factors such as the pH, temperature, light, and heat, are 
valuable for soft robotics applications [199–202]. Similarly, 
the development of hydrogel-based TENGs with intelligent 
response behaviors is also a focus for flexible sensing. Hy-
TENG based on a PAM-agar-NaBO-tannin-modified black 
phosphorus composite hydrogel electrode material was 
developed [203]. The photothermal properties of black phos-
phorus enables the temperature-responsive behavior of the 
hydrogel. Hy-TENG decodes temperature-sensitive modes 

Fig. 7  Optimization of other properties of hydrogel-based TENGs. a Polymerization process of PAM/HEC/LiCl hydrogels. b Antifreeze prop-
erties of PAM/HEC/LiCl hydrogels with different LiCl dopant contens. a, b Reproduced with permission from Ref. [197], Copyright 2020, 
Royal Society of Chemistry. c Preparation of GPPD-hydrogel. d Output voltage of GPPD-TENG at different temperatures. c, d Reproduced with 
permission from Ref. [198], Copyright 2022, Tsinghua University Press. e Manufacturing process and f cross-sectional structure of an ion com-
municator. g Comparison of the self-cleaning effectiveness of an ion communicators (i) without and (ii) with HDFS treatment. e–g Reproduced 
with permission from Ref. [139], Copyright 2018, Springer Nature. h Schematic diagram of Hy-TENG used for smart response. Reproduced 
with permission from Ref. [203], Copyright 2023, Elsevier
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using infrared light, thereby contributing to the advancement 
of intelligent sensors (Fig. 7h).

3.2  Organogel‑Based TENGs

Similar to hydrogels, organogels are frequently used elec-
trode materials. Organogels are colloids, supramolecules, 
or polymer three-dimensional networks filled with organic 
liquids [39, 204]. Organogels exhibit greater solute selectiv-
ity than hydrogels. Gels composed of polar organic solvents 
mixed with water [148], ionic liquids, fats, and oils all fall 
under the category as organogels [154, 155]. Among them, 
the most studied TENGs are alcohol gels [205], ionogels 
[206], and organohydrogels [140, 207, 208]. Alcohol gels 
are particularly useful because of their tunable freezing and 
boiling points, which allow them to maintain a stable perfor-
mance over a wide temperature range [209], thereby improv-
ing the temperature adaptability of flexible TENGs. Ionogels 
composed of ionic liquids exhibit high ionic conductivity 
[210], freezing resistance [211], and thermal and chemical 
stability, providing good environmental tolerance in TENGs 
[212–214]. Organohydrogels can partially overcome typical 
disadvantages of hydrogels, such as water loss and weak 
conductivity. Organohydrogels are often applied in flexible 
TENGs as electrode materials [148, 215]. Further optimiza-
tion of the mechanical toughness, temperature resistance, 
and environmental adaptability of organogels can enhance 
the mechanical durability and sensing sensitivity of flexible 
triboelectric-based sensors [39].

3.2.1  Mechanical Toughness

Flexible sensors often need to withstand certain stresses and 
deformations, particularly under unconventional deforma-
tion conditions such as bending, stretching, and twisting. 
Designing materials with high mechanical toughness can 
help flexible sensors better adapt to complex environmen-
tal changes, to help prevent premature device failure and 
enhance their stability and lifespan. Similar to mechanically 
enhanced DNHs, a common strategy for achieving high 
toughness in organogels is to include energy-dissipation 
mechanisms. Some common methods include the introduc-
tion of sacrificial networks [79, 80], phase separation effects 

[81], polymer crystallization, and ion–dipole interactions 
[82, 83].

The fabrication of triple-network crosslinked struc-
tures can enhance the toughness of organogels. Figure 8a 
illustrates the doping of MXene–GO nanocomposites and 
ethylene glycol solvent into CNF/sodium alginate (SA)/
PVA triple-network organohydrogels for the preparation 
of MX-GO/CNF/SA/PVA organohydrogels [80]. The 
large number of hydrogen bonds formed by CNF, SA, 
and PVA significantly enhances the mechanical proper-
ties of MX-GO/CNF/SA/PVA organohydrogels, and the 
toughness reached 24.5 kJ  m−2, which is 7.2 times higher 
than that of the pure hydrogel (Fig. 8b). An MX-GO/CNF/
SA/PVA organohydrogel-based TENG demonstrated an 
exceptional electrical output and sensing sensitivity, with 
a gauge factor of 2.77. Additionally, researchers have used 
thiol-alkene click chemistry to create ionogels based on 
ionic liquids by forming a sacrificial network with poly 
(1-butyl-3-vinyl imidazolium fluoroborate) and benzene 
tetracarboxylic acid (BTCA) [79]. The ionogel-based 
TENGs demonstrated excellent sensitivity for detecting 
and monitoring finger-flexion movements, and the ionogels 
demonstrated exceptional mechanical toughness and elas-
ticity even after 10,000 fatigue cycles. The TENG exhib-
ited stable electrical output over a wide temperature range, 
from − 75 to 340 °C. The output current of the TENG was 
0.05 μA in its strain-free pristine state, which increased to 
0.2 μA after being stretched to a strain of 500% (Fig. 8c–f).

Another useful strategy for increasing the mechanical 
toughness of organogels is microphase separation [81]. 
Figure 8g shows that lithium bonds were formed through 
the interaction of lithium salts and carbonyl groups, lead-
ing to microphase separation, i.e., the formation of distinct 
rigid and soft regions in the ionogels. The soft zone pro-
vides high ionic conductivity and stretchability while the 
rigid region provides exceptional toughness and durabil-
ity. When 70 wt% of ionic liquid and 10 wt% of lithium 
bis(trifluoromethane)sulfonimide (LiTFSI) were added 
(referred to as  IG70%–10%), the resulting ionic conductiv-
ity reached 2.18 mS  cm−1, while the tensile strength and 
elongation at break were 2.29 MPa and 1062%, respec-
tively. These values are noticeably higher than those of 
other ionogels. The ionogel-based TENG showed a stable 
power output at high strain for extended periods, achiev-
ing a maximum power density of 157.1 mW  m−2 (Fig. 8h). 
Additionally, supertough and superstretchable ionogels 
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can be created by combining robust polymer crystalliza-
tion with weak ionic dipolar interactions, it is possible 
to create super-tough and super-stretchy ionogels [83]. 
The highly crystalline region dissipates energy during 
stress–strain processes, whereas the ionic dipole inter-
action of amorphous polymer chains with ionic liquids 
enhances the stretchability and elasticity of the gel mate-
rial. The ionic gel-based TENG (with a single electrode) 
demonstrated favorable electrical output properties.

3.2.2  Temperature Tolerance

Compared with hydrogels, organogels exhibit superior tem-
perature tolerance. Substances such as glycerol, ethylene 
glycol, lithium bromide, and proline are frequently added 
[216–219].

Solvent replacement is a common and helpful method 
for improving the overall efficiency of gel TENGs [75, 100, 
192, 198, 220]. For example, researchers prepared a PAM/
montmorillonite/carbon nanotube (CNT) organohydrogel 
(MMCOH) using solvent substitution [75]. The MMCOH 
was used as a tensile electrode (500% strain) in TENGs, 
which remained environmentally stable at temperatures 

Fig. 8  Optimization of mechanical toughness of organogel-based TENGs. a Preparation of MX-GO/CNF/SA/PVA organohydrogels. b Com-
parison of the toughness of MX-GO/CNF/SA/PVA with those of other organohydrogels. a, b Reproduced with permission from Ref. [80], 
Copyright 2022, Royal Society of Chemistry. c Preparation and structure of a thiol-enclosed ionogel. d Photographs of thiol-enclosed ionogel 
in stretching and compression. e Photographs of ionogel-based TENG under stretching. f Output currents of ionogel-based TENG in different 
stretching states. c–f Reproduced with permission from Ref. [79], Copyright 2019, American Association for the Advancement of Science. g 
Microphase separation structure of the ionogel. h Output electrical signals of the ionogel-based TENG at different external loading resistances. 
g, h Reproduced with permission from Ref. [81], Copyright 2023, Wiley–VCH
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of − 60 to 60 °C for 30 days (Fig. 9a–c). A self-polymer-
ized multifunctional organogel ionic conductor (MOIC) 
was constructed using a binary solvent of ethylene glycol 
and water [153]. The MOIC exhibited ultra-stretchability 
(9000%), resistance to drying and freezing (− 30 °C), and 
maintained high mechanical stability after 1800 cycles of 
loading and unloading at 600% strain. Metal–ligand bond-
ing  (Al3+) and polymer network cross-linking were used 
to create an ionic liquid gel based on an ionic-liquid/water 

binary solvent [221]. The ionogel showed superior resist-
ance to freezing compared to an ionic hydrogel without 
an ionic liquid. It remained transparent and flexible even 
at − 40 °C and powered a blue light-emitting device from 
− 30 to 40 °C (Fig. 9d, e). Owing to the anti-freezing and 
anti-drying properties of the ionic hydrogel, the TENG 
assembled with the ionic liquid gel as an electrode main-
tained a stable output voltage after exposed to air for 30 
d (Fig. 9f), demonstrating its excellent temperature toler-
ance. Furthermore, ion–dipole interactions can be utilized 

Fig. 9  Optimization of the temperature-tolerance of organogel-based TENGs. a Freezing resistance of MMCOH. b Composition of MMCOH-
TENG. c Eelectrical output of MMCOH-TENG at − 60 to 60 °C. a–c Reproduced with permission from Ref. [75], Copyright 2021, Wiley–VCH. 
d Comparison of freezing resistance of organogels with and without ionic liquids. e Conductivity of ionic liquid gels from − 30 to 30 °C. f Out-
put voltage change of ionic liquid gel-based TENG after 30 d of exposure to air. d–f Reproduced with permission from Ref. [221], Copyright 
2022, American Chemical Society. g Structure of ionogel-based TENG containing [EMI][DCA] ionic liquids. h Comparison of the low-tem-
perature tolerances of an ionogel-based TENG and typical hydrogel-based TENG. g, h Reproduced with permission from Ref. [222], Copyright 
2019, Elsevier
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to obtain temperature-tolerant organogels. For example, 
ionogels containing 1-ethyl-3-methylimidazolyl dicyan-
diamide ([EMI][DCA]) were synthesized in a single step 
by the in situ photopolymerization of 3-dimethylammo-
nium (methacryloyloxyethyl) propane sulfonate (DMAPS) 
and AA, using ammonium persulfate as the photoinitiator 
(Fig. 9g) [222]. The TENG prepared using the ionogel 
demonstrated long-term steady electrical output from 
− 20 to 100 °C because of the strong freezing resistance 
imparted by the ionic–dipole interactions between the 
ionic liquid and DMAPS that prevent [EMI][DCA] from 
crystallizing (Fig. 9h).

3.2.3  Other Properties

To expand their application potential, flexible sensing 
devices that can operate in complex liquid environments and 
under high-humidity conditions are required. For example, 
in the context of human motion monitoring, the high-humid-
ity and high-salt environment caused by excessive sweating 
can have a detrimental effect on the sensing performance of 
wearable TENGs [223]. Encapsulation methods are com-
monly used to protect gel electrodes from harsh environ-
mental conditions such as acidity, alkalinity, and saltwater. 
However, the inevitable damage caused by encapsulation 
rupture can lead to sensing failures [224]. To address this, 
self-healing fluorinated poly(urethane urea) (SF-PUU) using 
isocyanate-terminated PDMS was developed. SF-PUU was 
assembled with self-healing ionogels to form a sandwich 
structure, creating a fully self-healing triboelectric nanogen-
erator (FSI-TENG) that could withstand corrosion from 1 M 
hydrochloric acid, sodium hydroxide solution, and seawa-
ter. Owing to the self-healing properties of both the encap-
sulation layer and ionogel, the FSI-TENG exhibited good 
reliability and durability (Fig. 10a–c) [225]. Additionally, 
hydrophobic organogels enhance the moisture resistance of 
flexible triboelectric sensors, thereby enabling steady output 
humid conditions. This enhances the stability, accuracy, and 
durability of the sensor [149, 226]. Poly (ethylene glycol 
methyl ether acrylate) (PMEA) and poly (isobornyl acrylate) 
(PIBA) were used to fabricate a highly hydrophobic ionogel 
containing the ionic-liquid 1-ethyl-3-methylimidazolium 
bis(trifluoromethylsulfonyl)imide  ([C2mim][NTf2]) [157]. 
Owing to the high hydrophobicity, high ionic conductiv-
ity, and low viscosity of the  [C2mim][NTf2] ionic liquids, 

the ionogels exhibited a wide operating temperature range 
(− 60 to 200 °C) and strong interfacial adhesion to elasto-
mers. In addition, the ionogel resisted moisture absorption 
in high relative humidity environments (25 °C/90% RH) and 
retained its liquid components under prolonged mechanical 
loading (Fig. 10d). TENGs developed using ionogels can 
be fabricated into iono-skins that can simultaneously sense 
temperature, deformation, and pressure changes, thereby 
demonstrating excellent environmental adaptability.

To tackle the problem of cracking or leaking in metal 
or liquid electrodes, researchers have prepared leak-proof 
gel electrode-based fiber (GS-fiber) by photocrosslink-
ing organogel in transparent organosilicon hollow fiber 
[77]. The GS-fibers had a gel electrode/silicon core/shell 
structure and were woven into TENG textiles to detect 
human motion (Fig. 10e). The flexible but solid organo-
gel electrode avoids issues such as cracking and leakage 
that are typical limitations of metal and liquid electrodes, 
respectively, thereby offering an effective solution for 
the implementation of TENGs in textiles. Furthermore, 
enhancing the bonding strength between the gel and elas-
tomer is beneficial for improving environmental durabil-
ity [78, 102]. The precured gel solution was poured onto 
the rough and smooth surfaces of the PDMS layers. Com-
pared to a smooth PDMS layer, the gel/elastomer interface 
had a higher surface area because of the in-situ curing of 
the gel solution poured onto the rough PDMS layer. The 
TENG with the rough interface did not exhibit significant 
delamination after various deformations. The device struc-
ture remained intact, and the output electrical properties 
remained stable after 40 d of storage (Fig. 10f–h).

3.3  Aerogel‑Based TENGs

Aerogels are ultra-lightweight porous solid scaffolds with 
a very low density (0.003–0.15 kg  cm−3), high specific 
surface area, and high porosity (> 99%) [227]. The porous 
structure of the aerogels enables good compressibility 
[228, 229], thermal insulation [74, 230], and electromag-
netic shielding properties [231–233]. The high specific 
surface area and porosity enables aerogels to store and 
transfer numerous charges, resulting in a high surface 
charge density. The multi-stage porous structure enables 
the aerogel to effectively block air convection and reduce 
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heat radiation and conduction, resulting in the superior 
thermal insulation performance, which meets TENG’s 
sensing needs in high-temperature environments. Simi-
larly, with the advantages of a lightweight and porous 
structure, aerogel has certain compressible resilience 
and electromagnetic shielding performance, which pro-
vides a reliable choice for gel-based TENG to broaden 

the application scenarios. In order to meet the demands 
of aerogel-based TENG for flexible sensing applications, 
the relevant properties of aerogels need to be further opti-
mized [234, 235]. In this section, we discuss previous 
research on enhancing the output performance, thermal 
insulation, electromagnetic shielding, and strength of 
aerogel-based TENGs for flexible sensing applications.

Fig. 10  Optimization of other properties of organogel-based TENGs. a Structure of FSI-TENG. b Open-circuit voltages of FSI-TENG 
immersed in seawater solution, 1 M hydrochloric acid solution, and 1 M sodium hydroxide solution on days 1 and 20. c Comparison of open-cir-
cuit voltages of FSI-TENG after immersion, rinsing, and drying. a–c Reproduced with permission [225]. Copyright 2023, Elsevier. d Schematic 
of the change in weight of the ionogel over time under a stress of ~ 4 kPa and a relative humidity of 90%. Reproduced with permission from Ref. 
[157], Copyright 2021, Wiley–VCH. e Preparation process of GS-TENG. Reproduced with permission from Ref. [77], Copyright 2021, Elsevier. 
f Comparison of smooth and rough gel/elastomer interfaces. g Stress–strain curves of organogel/PDMS hybrids with rough and smooth inter-
faces. h Images of rough-interface organogel-based TENG in its initial state, after deformation, and after 20 and 40 d of storage. f–h Reproduced 
with permission from Ref. [78], Copyright 2023, Wiley–VCH
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3.3.1  Dielectric‑Enhancement

The dielectric constant describes the capacity of triboelec-
tric materials to produce and retain triboelectric charges in 
TENGs [236]. Dielectric modulation has proven to be highly 
effective in enhancing the triboelectric output of aerogel-
based TENGs [237]. High-output dielectric-enhanced aero-
gel-based TENGs can be achieved by adjusting the porosity 
and filler doping [238].

The porous structure of the aerogel enables it to trap extra 
charges and facilitate the transport of free ions, effectively 
increasing the surface charge density. Figure 11a shows 

a porous aerogel-based TENG consisting of a cellulose 
nanofiber (CNF) or chitosan (CTS) aerogel film as the tribo-
positive layer and a PDMS or polyimide (PI) aerogel film 
as the tribo-negative layer [84]. Figure 11b shows that the 
presence of pores enables the aerogel-based tribolayer to 
store and transfer a large amount of charged material. The 
power density of the porous chitosan aerogel-based TENG 
was 11 times higher than that a dense film-based TENG. 
However, the dielectric enhancement does not always scale 
with increasing porosity. The triboelectric performance of a 
polyurethane (PU) aerogel-based TENG gradually increased 
with increasing porosity up to 33%, after which point the 

Fig. 11  Optimization of dielectric properties of aerogel-based TENGs. a Structure and physical diagram of porous chitosan aerogel-based 
TENG. b Working principle of porous chitosan aerogel-based TENG. a, b Reproduced with permission from Ref. [84], Copyright 2018, Wiley–
VCH. c Different openings of PU aerogel-TENGs with different output voltage. d Effect of open porosity on the dielectric constant of PU aero-
gel films. c, d Reproduced with permission from Ref. [73], Copyright 2019, Elsevier. e Structure of PI aerogel-based TENG. f Comparison of 
output voltages of PI aerogel-based TENG aerogel base at 0%, 40%, and 50% porosity, respectively. e, f Reproduced with permission from Ref. 
[167], Copyright 2019, Springer Nature. g Structure of CCA-TENG. h Voltage and dielectric constant of CCA-TENG at different external load 
resistances. g, h Reproduced with permission from Ref. [88], Copyright 2023, Elsevier. i TENG assembled with PI aerogel and CNF composite 
aerogel. j Output voltage of CNF aerogel-based TENG versus CNF/RF aerogel-based TENG. i, j Reproduced with permission from Ref. [239], 
Copyright 2018, Royal Society of Chemistry
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dielectric constant decreased because of the high amount of 
air inside the aerogel at higher porosities (Fig. 11c, d) [73]. 
Similarly, Fig. 11e shows a polyethyleneimine aerogel-based 
TENG [167]. As the open porosity of the aerogel increases 
from 0 to 50%, the electrical output increases (Fig. 11f), 
followed by a reduction in the dielectric constant and output 
when the open porosity exceeds 50% due to an excessive 
amount of air inside the material and a reduction in the num-
ber of polarizable groups per unit volume.

In addition, researchers optimized dielectric-enhanced 
aerogel-based TENGs by adding fillers that are synergis-
tic with their porous structures [88, 239, 240]. Figure 11g 
shows a single-electrode cellulose-CNT aerogel-based 
TENG (CCA-TENG) [88]. The cellulose aerogel doped with 
CNT exhibited a higher dielectric constant than the pure 
cellulose aerogel (Fig. 11h), and the CCA-TENG exhibits a 
power density of 1237 mW  m−2. Owing to the high density 
and biodegradability of cellulose, the CCA-TENG exhibited 
high humidity stability, long-lasting performance, and high 
cycling efficiency. The performance remained unchanged 
after 64,800 cycles over 12 months, and 91.04% of its ini-
tial output was maintained after cycling. The triboelectric 
properties of CNF aerogels were enhanced by incorporat-
ing silica fibers, human hair, and rabbit fur (RF) into cel-
lulose nanofiber aerogels [239]. The output of the CNF/RF 
composite aerogel-based TENG was significantly enhanced, 
yielding an output voltage of 110.0 V, which was substan-
tially higher than that of the pure CNF-aerogel-based TENG 
(Fig. 11i, j).

3.3.2  Thermal Insulation

Temperature variations in the surrounding environment 
can interfere with the sensing results of flexible sensors. 
Therefore, it is necessary to identify triboelectric materi-
als with thermally insulating properties to enable flexible 
TENGs that are resistant to the effects of temperature drift 
and heat conduction [241]. Aerogels have excellent ther-
mal insulation properties, with a thermal conductivity of 
0.012–0.024 W  m−1  K−1, which is 2–3 orders of magnitude 
lower than conventional insulation materials. The multilay-
ered fractal pore structure of the aerogel effectively prevents 
air convection, minimizes thermal radiation, and reduces 
thermal conduction, leading to superior insulating prop-
erties [242–244]. Optimizing thermal insulation improves 

the high-temperature adaptability of the flexible triboelec-
tric sensor while maintaining its sensitivity and sensing 
threshold.

Poly (p-phenylene benzobisoxazole) (PBO) is a highly 
stable refractory material with a decomposition tempera-
ture of up to 650 °C. A PBOA/PEO-TENG was fabricated 
using a PBO aerogel (PBOA) as the tribo-negative layer and 
poly (ethylene oxide) (PEO) as the tribo-positive layer mate-
rial (Fig. 12a) [151]. The electrical output properties of the 
TENG remained stable when the temperature was increased 
from room temperature to 350 °C (Fig. 12b, c). Compared 
to traditional tribo-negative materials such as polytetra-
fluoroethylene (PTFE) and PDMS, PBOA has a much wider 
operating temperature range. Figure 12d shows an aerogel-
fiber-based self-powered fire alarm e-textile (SFA e-textile) 
containing a TENG [74]. Aerogel fibers were produced 
by integrating  Fe3O4 nanoparticles  (Fe3O4NPs) and silver 
nanowires (AgNWs) into a calcium alginate hydrogel, fol-
lowed by solvent replacement and freeze-drying. Compared 
with regular cotton fibers, the SFA e-textile demonstrates 
enhanced flame-retardant properties and thermal insulation 
(Fig. 12e). SFA e-textile has the potential to be utilized in 
firefighting clothing to monitor the surface temperature. 
When the temperature increased from 25 to 250 °C, the out-
put voltage of SFA e-textile decreased but normal operation 
was maintained (Fig. 12f). Additionally, Fig. 12g shows the 
preparation of a carbon-based nanocomposite aerogel [72]. 
First, crystalline polymerization and sol–gel reactions of 
GO nanosheets, formaldehyde, resorcinol, and electrospun 
polyacrylonitrile (PAN) nanofibers were used to prepare 
a hydrogel. Subsequently, the hydrogel was subjected to 
supercritical drying and carbonization to produce a carbon-
ized aerogel. The FR-TENG assembled with this aerogel 
exhibited excellent flame retardancy and high-temperature 
resistance (Fig. 12h, i). The FR-TENG maintained excellent 
output stability below 200 °C, as well as self-extinguishing 
functions.

3.3.3  Other Properties

In addition to the aerogel-based TENGs previously dis-
cussed, aerogels with compressibility and elasticity are par-
ticularly suitable for fabricating flexible sensors because of 
their extensive deformation range and high contact area [42]. 
For example, GO/carboxy multi-walled carbon nanotube 
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(GO/CMWCNT) hybrid aerogels were demonstrated [150]. 
Owing to the good elasticity and compressibility of the 
aerogel, the conductive inner surface was alternately loaded 
and unloaded with external pressure to achieve contact and 
separation. The assembled gas–solid TENG demonstrated 
stable performance over 20,000 loading/unloading cycles 
(Fig. 13a, b). The TENG assembled with this aerogel dem-
onstrated the potential for use in human physiology and 
motion monitoring applications.

Electromagnetic interference (EMI) can have detrimental 
effects on the accuracy of sensing systems, especially in the 
case of TENG-based wearable sensors, where noise interfer-
ence caused by electromagnetic waves reduces the reliability 
of sensor operation and can also affect human health. EMI 
can be mitigated by designing barriers made of conductive 
or magnetic materials. Porous aerogels with high electri-
cal conductivity are resistant to microwave irradiation [166, 
232]. Aerogel-based TENGs with EMI shielding capabilities 

Fig. 12  Optimization of thermal insulation properties of aerogel-based TENGs. a Structure of PBOA/PEO-TENG. b Voltage and c current den-
sity of PBOA/PEO TENG at different temperatures. a–c Reproduced with permission from Ref. [151], Copyright 2019, Elsevier. d TENG based 
on SFA e-textile. e Vertical burning test of SFA e-textile using an alcohol lamp flame. f Output voltage change of SFA e-textile TENG at dif-
ferent temperatures. d–f Reproduced with permission from Ref. [74], Copyright 2022, American Chemical Society. g Preparation of carbonized 
aerogel. h Output electrical properties of FR-TENG at different combustion times. i Output voltage of FR-TENG at different temperatures. g–i 
Reproduced with permission from Ref. [72], Copyright 2019, Elsevier
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can limit the signal interference-induced sensitivity damage 
to flexible sensors. An MXene  Ti3C2TX/CMC aerogel pre-
pared by using freeze-drying exhibited good EMI shielding 
performance (80.36 dB) owing to the electrical conductivity 
provided by the MXene  Ti3C2TX nanosheets [166]. The EMI 
shielding effect is achieved by the attenuation and dissipation 
of electromagnetic waves through multiple reflections and 
scattering between the pores and pore walls (Fig. 13c). The 
single-electrode TENG assembled with the MXene  Ti3C2TX/

CMC aerogel as the tribolayer was demonstrated for health 
monitoring and EMI shielding. Furthermore, ANFs/CNFs/
AgNWs (ACA) aerogels prepared by directional freeze-
drying and moderate compression can effectively control 
the pore structure and electrical conductivity of the aerogels 
[232]. As the AgNWs content increased, the EMI shielding 
performance of the ACA aerogel significantly increased up 
to a maximum of 34.34 dB (Fig. 13d, e). TENGs containing 

Fig. 13  Optimization of other properties of aerogel-based TENGs. a Basic composition and working mechanism of gas solid TENGs. b Output 
voltage of a gas solid TENG at different compressive strains. a, b Reproduced with permission from Ref. [150], Copyright 2022, Wiley–VCH. c 
Electromagnetic shielding mechanism of MXene  Ti3C2TX/CMC aerogels. Reproduced with permission from Ref. [166], Copyright 2022, Else-
vier. d EMI shielding mechanism of ACA aerogel films. e Comparison of EMI shielding efficiency of ACA aerogel.  SET,  SEA, and  SEM rep-
resent the total electrical shielding efficiency, shielding efficiency of microwave reflection, and shielding efficiency of microwave absorption, 
respectively. d, e Reproduced with permission [232]. Copyright 2023, Elsevier. f TENG structure prepared using a salting-out-treated cellulose 
aerogel. g Compressive stress strain curve of salting-out-treated cellulose aerogel. f, g Reproduced with permission from Ref. [86], Copyright 
2023, Wiley–VCH. h Structure of CNF-PEI aerogel-based TENG. Reproduced with permission from Ref. [31], Copyright 2018, Elsevier
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aerogel-film electrodes have the potential for use in health 
monitoring, EMI shielding, and sensing applications.

It should be noted that although aerogels are compress-
ible, their structures are also prone to collapse, which 
limits their use in applications where they are exposed to 

Table 2  Optimized material properties and output performance of gel-based TENGs

CA, Calcium Alginate; [EMIM][OAC], 1-Ethyl-3-Methylimidazolium Acetate; EMIM/TFSI, 1-Ethyl-3-Methylimidazolium Bis(Trifluoromethyl 
Sulfonyl) Imide; MOF, Metal–Organic Framework; PACMO, Poly (4-Acryloyl Morpholine); PAN, Polyacrylonitrile; PANI, Polyaniline; PC, 
Propylene Carbonate; PEGDA, Polyethylene Glycol Diacrylate; PUA, Polyurethane Acrylate; PVP, Polyvinylpyrrolidone; σ, Electrical Conduc-
tivity; Temp, Temperature

Types Property Basic Materials Key Parameters Voc (V) Isc (μA) Refs

Hydrogel Conductivity PAA/sodium alginate σ: 0.34 S  m−1 30 0.5 [250]
CMC/MOF/PVA σ: 2.42 S  m−1 269 17.9 [142]
PAM/Lignin σ: 1.22 mS  cm−1 265 2.7 [251]

Mechanical performance PAM/HEA/ZIF-8 Strain: 570%; Stress: 88 kPa 232 – [99]
PVA/PAM/PAA Tensile stress: 2.1 MPa;

Toughness: 6.5 MJ  m−3
238 1.2 [87]

Starch/HEMA Compressive strength: 6.83 MPa 87 0.59 [143]
PAM/Clay Healing within 1s (− 30 to 80 °C) 157 16 [192]
PAA/GA Healing efficiency: 94.7% 123 5.1 [144]
PVA/PAM/CNC Healing efficiency: 97.4% 0.3 – [98]
PVA/Sodium tetraborate Full healing in 30 min 20 – [194]

Self-cleaning HDFS Average transmittance: 94.4% 277 – [139]
Frost-resistance PAM/HEC Frost-resistance: − 69 °C 285 15.5 [197]

PAM/PVA Frost-resistance: − 60 °C 200 13.1 [198]
Organogel Toughness CNF/PVA/SA Toughness: 24.5 kJ  m−2 145 8.7 [80]

PIL-BF4/BTCA Tensile stress: 2.28 MPa – 0.2 [79]
ACMO/PUA/EMIM/LiTFSI Tensile strength: 2.29 MPa Breaking 

strain: 1062%
101 1.32 [81]

PVDF/EMIm TFSI Toughness: 37.5 kJ  m−2 10 0.05 [83]
Temperature tolerance PAM/Montmorillonite/CNT Temp: − 60 to 60 °C 86.4 1.1 [75]

PEGDA/PAM/PVP Temp: − 30 to 60 °C 160 7 [153]
PAA/DMAPS/ [EMIM][OAc] Temp: − 30 to 40 °C 48 4 [221]
PAA/[EMI][DCA]/ DMAPS Temp: − 20 to 100 °C 120 15 [222]

Humidity resistance PMEA/PIBA/[C2mim][NTf2] Weight retention: 100% (90%RH, 240 h) 4 0.4 [157]
Leak-proof PC/LiTFSI Water retention: 97% (after 30 d) 44 – [77]
Interfacial adhesion PC/ PACMO Interface peeling strength: 60 N  m−1 87 – [78]

Aerogel Dielectric enhancement CNF/CTS Regulating porosity: 92% 60.6 7.7 [84]
PUA Regulating porosity: 33% 105.6 20.3 [73]
PEI Regulating porosity: 50% 40 5 [167]

Thermal insulation PBO/PEO Temp: 350 °C 40 – [151]
CA/AgNWs Temp: 250 °C 3.5 – [74]
PAN/rGO Temp: 200 °C 80 – [72]

Compressibility CNT/GO Stable performance after 20,000 loading/
unloading cycles

98.4 2.89 [150]

Electromagnetic shielding CMC/MXene  Ti3C2Tx SET: 80.36 dB 54.37 1.22 [166]
CNF/ANF/AgNWs SET: 34.34 dB 100 1.52 [232]

Srength PVA/CNF Young’s modulus: 142.9 MPa – 6 [86]
CNF/PEI Tensile stress ~ 1.4 MPa 106.2 9.2 [31]
CNF/PVA/CNT Compression stress: 48.5 N 160 – [152]
CNF/PANI Tensile stress: 104 MPa 130 – [252]
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significant deformation. The formation of hierarchical pore 
structures is an effective and commonly used strategy to 
meet the demands for high-strength aerogels [245, 246]. 
Nanocellulosic triboelectric aerogels were prepared by mul-
tiscale structuring via the Hofmeister effect [86]. Figure 13f 
shows the basic structure of a self-powered sensor assem-
bled using this aerogel as a tribolayer. Based on the synergy 
between the Hofmeister effect and salting-out treatment, 
the compressive strength of the aerogel was significantly 
higher than that of the control group (Fig. 13g). In addition, 
amino-acid modification effectively improves the mechani-
cal strength of cellulose aerogels. TENGs comprising a 
CNF-PEI (polyethylenimine) aerogel as the tribo-positive 
layer and polyvinylidene fluoride (PVDF) as the tribo-neg-
ative layer as shown in Fig. 13h [31]. The incorporation of 
20% PEI effectively enhanced the mechanical properties of 
the CNF–PEI aerogel, resulting in a 60.8% increase in the 
tensile strength and a 237.4% increase in the compression 
modulus compared to the pure CNF aerogel. In addition, 
compared to the pure CNF aerogel, the aerogel-based TENG 
with 10% PEI showed a 14.4-fold increase in power density.

Overall, the optimization of gel-based TENGs has 
achieved the development requirements of flexible sensors 
in terms of device assembly and output performance. Table 2 
summarizes the material optimization and the output char-
acteristics of three types of gel-based TENGs. In gel-based 
TENGs, the three-dimensional skeleton components of gel 
are mostly composed of polymers (such as PAA, PVA, and 
PAM), carbon-based materials, and biomass materials (cel-
lulose, chitosan, etc.). Among them, PAA, PVA, and PAM 
are the most widely used in hydrogel- and organogel-based 
TENGs, mainly because these polymers have advantages 
such as good biocompatibility, high transparency, adjust-
able elasticity, and simple synthesis processes [247]. In addi-
tion, the high water solubilities of PAA, PVA, and PAM 
facilitate the performance enhancement of hydrogel-based 
TENGs. For example, adding conductive substances [248], 
polysaccharides [197], or protein polymers to PAM [249] 
and strenghening network structures based on hydrogen 
bonds or intermolecular forces significantly improves the 
conductivity, tensile performance, and durability of hydro-
gels, enhancing their application advantages as electrodes in 
flexible TENG sensors.

Similarly, similar polymers are also widely used in 
organogel-based TENGs, and their functions and mecha-
nisms are similar to those of hydrogels, with the main 

difference being that the solvent system changes from an 
aqueous phase to an organic solvent or ionic liquid. This 
transition in the solvent system can effectively solve the 
problem of decreased mechanical and conductive proper-
ties caused by dehydration in traditional hydrogels, making 
TENGs better suited for flexible sensing requirements in 
extreme environments. Carbon-based materials are mainly 
used as functional additives doped into the gel matrix to 
enhance the conductive, mechanical, and temperature resist-
ance properties of gel-based TENGs, with similar mecha-
nisms and effects among the three types of gel materials. 
Cellulose (CMC, CNF) can be obtained as environmentally 
friendly hydrogels through dissolution or cross-linking, fur-
ther transformed into organic gels through solvent replace-
ment, or prepared as aerogels through drying. Cellulose 
mainly serves as a skeletal support in gels, but since it is also 
a good triboelectric positive material itself, cellulose-based 
aerogels can be used as friction layers in TENGs [84, 165]. 
The discussion above highlights the differences in the per-
formance and applications of the different types of gels made 
from the same raw materials. To promote the application and 
development of gel-based TENGs for flexible sensing, it is 
important to develop strategies to design and manufacture 
traditional gel materials with appropriate modifications to 
meet the various application requirements.

4  Gel‑Based TENGs for Flexible Sensing 
Applications

A high-performance gel-based TENG should offer strength, 
conductivity, environmental resistance, and thermal insula-
tion, to enhance the sensitivity, detection range, and device 
durability of flexible triboelectric sensors. The enhanced 
performance significantly broadens the potential applica-
tions of gel-based TENGs. Gel-based triboelectric sensors 
are lightweight and compact, and can detect physical stim-
uli such as limb movement, touch forces, temperature, and 
humidity as well as chemical compositions such as sweat and 
gas [253]. Gel-based TENGs have diverse applications in 
fields such as human motion sensing, tactile sensing, health 
monitoring, environmental monitoring, human–machine 
interactions, wound dressings, implantable sensors, and 
intelligent traffic monitoring.
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4.1  Human‑Motion Sensing

With the widespread application of flexible TENG in the 
new generations of electronic products, various flexible 
stretchable devices have been developed, such as sports 
watches and smart bracelets. These devices can sense and 
monitor the motion status of the users, helping individuals 
keep track of their physical activity and achieve personal 
health goals. Motion monitoring sensors based on gel-based 
TENGs can convert motion signals into electrical signals, 
thereby realizing the monitoring of human motion, such as 
limb, joint, and muscle movements.

Owing to the unique properties of the human skin, it is 
crucial to select materials for motion sensors that exhibit 
excellent biocompatibility and degradability. A PVA 
hydrogel was prepared by freeze thawing, encapsulated in 
a hemispherical electrode with PDMS and nickel fabric, 
and assembled into a single-electrode TENG with alu-
minum electrodes (Fig. 14a) [65]. Interestingly, the PVA 
hydrogel was used as a flexible substrate rather than as an 
electrode or tribolayer. The PVA hydrogel-based TENG 
was utilized as a self-powered sensor to track quantitative 
data regarding the human body, including movement of 
the arms, knees, and throat (Fig. 14b). Given that PVA is 
an environmentally friendly material and does not require 

Fig. 14  Gel-based TENGs for human motion sensing. a Structure of tubular PVA hydrogel-based TENG. b Voltage signal plot of PVA hydro-
gel-based TENG for monitoring bending. a, b Reproduced with permission from Ref. [65], Copyright 2017, Wiley–VCH. c Response signals 
of PAM/PAA hydrogel-based TENG monitored for cheek and cheek joint flexion. Reproduced with permission from Ref. [87], Copyright 2022, 
Elsevier. d Eutectogel-based TENG for finger flexion monitoring and wrist flexion monitoring at different temperatures. Reproduced with per-
mission from Ref. [254], Copyright 2022, Elsevier. e Schematic diagram of a self-powered dance mat and its voltage signal for monitoring 
dance steps. Reproduced with permission from Ref. [88], Copyright 2023, Elsevier. f Schematic of PSI aerogel-based TENG mounted to an 
insole. Reproduced with permission from Ref. [255], Copyright 2022, Wiley–VCH. g Structure of cellulose aerogel-based TENG. h Schematic 
of attaching cellulose aerogel-based TENG to a sock. g, h Reproduced with permission from Ref. [240], Copyright 2020, Wiley–VCH
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the addition of other chemicals, the PVA hydrogel-based 
TENG demonstrated good environmental performance, 
with fully recycled and remanufactured motion-sensor 
devices retaining up to 92% of the output of the original 
device. Furthermore, the interfacial adhesion and fatigue 
resistance of gel materials can significantly improve the 
sensitivity and applicability of motion monitoring. A con-
ductive DNH was constructed using PVA and PAA–PAM 
as the first and second network, respectively. By leveraging 
the interactions between hydrogen bonds, free hydroxyl 
groups, and carboxyl groups, the mechanical and adhesion 
properties of the DNH were effectively enhanced [87]. The 
TENG using this hydrogel as the electrode, demonstrated 
high sensitivity and electrical output when monitoring 
the movement of the fingers, knees, cheeks, and elbows 
(Fig. 14c). In addition, a single-electrode TENG utiliz-
ing a eutectogel electrode was proposed for monitoring 
motion in subzero environments [254]. The eutectogel was 
composed of sulfonated lignin with  Fe3+ and ammonium 
persulfate and fabricated by the double autocatalytic ini-
tiation of gelation, followed by the replacement of deep 
eutectic solvents (DESs). The eutectogel-based TENG 
demonstrated outstanding freeze resistance and maintained 
excellent electrical properties at temperatures as low as 
− 80 °C. This device was used to monitor limb movements 
in extremely cold weather, such as finger flexion and arm 
bending (Fig. 14d).

It is worth mentioning that aerogels are the preferred 
materials for the preparation of foot motion sensors owing 
to the performance advantages of their high porosity, light 
weight, compressibility, and resilience. For instance, a cel-
lulose/CNT aerogel-based TENG (CCA-TENG) was used 
as both an electrode layer and a tribolayer to create a self-
powered dance mat that translate a dancer’s movements 
into a voltage signal [88]. This enables the evaluation of 
the dancer’s strength of movement and foot placement, 
which can be used as a grading standard for formal con-
tests or dance practices (Fig. 14e). Figure 14f shows a 
TENG based on a poly (succinimide) (PSI)-alginate aero-
gel [255]. The incorporation of PSI effectively improved 
the triboelectric properties and mechanical durability of 
the aerogel-based TENG. The TENG was integrated into 
an insole to assess the human locomotor gait by analyz-
ing the force distribution between the left and right feet. 
Furthermore, the heels of socks containing the cellulose 
aerogel-based TENG produced a significant electrical 

output upon contact with the ground. (Fig. 14g, h) [240]. 
Owing to its light weight (5 mm thick), excellent mechani-
cal flexibility, and high porosity, the cellulose aerogel-
based TENG minimally interferes with the wearer’s gait 
and allows breathability.

4.2  Tactile Sensing

With the emergence of smart industries, the popularity of 
electronic products with smart touchscreens has driven 
research on haptic interfaces. Touch sensing and recog-
nition are crucial for the development and optimization 
of wearable electronic devices, electronic skin, and intel-
ligent robots. Tactile sensing is essential for ensuring 
human safety through motion control, skill training, and 
the ability to recognize unknown signals. Gel materials 
have excellent flexibility and self-repair functionality, and 
are the preferred materials for the development of TENGs 
for tactile sensing. Gel-based TENGs in tactile sensors 
mainly respond to pressure to achieve energy conversion 
via the contact–separation mode [256].

Initially, gel-based TENGs were developed as electronic 
skins for tactile sensing applications. A single-electrode 
hydrogel-based TENG was fabricated by encapsulating a 
PAM–LiCl hydrogel inside a PDMS elastomer and connect-
ing it with wires (Fig. 15a) [89]. The PAM hydrogel exhib-
ited superior stretchability (uniaxial strain up to 1160%) and 
transparency (96.2%), making it suitable for use in electronic 
skin to conformally fit the back of the hand (Fig. 15b). The 
PAM–LiCl hydrogel-based TENG was capable of sens-
ing touch and pressures as low as 1.3 kPa. Additionally, a 
PAA–PAM ionic hydrogel doped with choline chloride and 
 NaNO3 ions using interpenetrating polymer networks and 
ion doping was proposed [256]. This hydrogel exhibited 
high transparency (85%), electrical conductivity (1.243 S 
 m−1), and stretchability (850%). The TENG assembled with 
the PAA/PAM ion-conducting hydrogel as an electrode was 
integrated with the skin to create an 8 × 8 tactile sensor array. 
Users were able to obtain the corresponding electrical sig-
nals by touching a position in the array and writing the word 
“GOOD” (Fig. 15c, d).

Typically, hydrogels and organogels require elastomer 
encapsulation to fabricate single-electrode TENGs. There-
fore, it is important to consider the interfacial bonding 
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between the gel and elastomer, which can require complex 
preparation processes. Simplifying the structure of the 
device improves the functionality of tactile sensors. Fig-
ure 15e shows the structure and working mechanism of a sin-
gle-layer gel-based TENG composed of a polyvinyl chloride 
(PVC) gel modified by a plasticizer treatment which acts as 
both the electrode and tribolayer, and is grounded by wires 
[257]. The single-layer PVC-TENG is a simple and easy-
to-fabricate structure with significantly enhanced material 
properties. The adipate plasticizer modification increased 
the transmittance of the PVC gel up to 91%, increased the 
dielectric constant by 90–300 times compared to that of the 

pure PVC gel, and improved the electrical conductivity. 
These advantages enabled the PVC-gel-based TENG to be 
integrated into tactile sensors to realize the tactile sensing 
of position and pressure (Fig. 15f).

In a recent study, a tunable anisotropically structured 
ANF aerogel was fabricated using a magnetically ori-
ented self-assembly strategy (Fig. 15g) [90]. The aero-
gel exhibited excellent thermal stability, and a thermally 
stabilized anisotropic aramid triboelectric gel was assem-
bled into a wearable self-powered sensor device to ena-
ble tactile sensing in a high-temperature environment at 
300 °C (Fig. 15h). To address the problem of hydrogel 

Fig. 15  Gel-based TENGs for tactile sensing. a Structure of PAM-LiCl hydrogel-based TENG. b Schematic of PAM-LiCl hydrogel-based 
TENG for tactile sensors. a, b Reproduced with permission from Ref. [89], Copyright 2017, American Association for the Advancement of Sci-
ence. c Fabrication process of an 8 × 8 tactile sensor array. d Electrical response signal when the word “GOOD” is written on the haptic sensing 
array. c, d Reproduced with permission from Ref. [256], Copyright 2022, Elsevier. e Structure and working mechanism of a single-layer TENG. 
f Schematic of PVC gel tactile sensor. e, f Reproduced with permission from Ref. [257], Copyright 2022, Wiley–VCH. g Schematic diagram of 
a high-temperature tactile sensor. h Output voltages are generated by a high-temperature tactile sensor when touching an object at different tem-
peratures. g, h Reproduced with permission from Ref. [90], Copyright 2023, Wiley–VCH. i Electrical signals generated by TENG tactile sensors 
in response to finger touches. Reproduced with permission from Ref. [258], Copyright 2019, Elsevier
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dehydration, TENG tactile sensors were developed using 
an ionogel as the electrode and patterned PDMS as the 
tribolayer [258]. The high conductivity of the ionogel 
and excellent mechanical properties of PDMS provided 
the sensor with good stretchability (121%) and transpar-
ency (83%). The tactile sensor could detect finger touches, 
bending, blowing, and pulses (Fig. 15i). Furthermore, the 
sensor detected impact forces in the range of 0.1–1 N, with 
a maximum sensitivity of 1.46 V   N−1.

4.3  Health Monitoring

Health monitoring is important for disease prevention, 
health management, personalized treatment, and health 
awareness. With the effective combination of wireless net-
works and sensing technologies, flexible triboelectric sen-
sors provide effective tools for monitoring, assessing, man-
aging, and improving health. Flexible triboelectric sensors 
integrated with gel material can sense and monitor internal 

Fig. 16  Gel-based TENGs for health monitoring. a CPPH as an electrode used as a sensor for monitoring  Na+,  K+, and  Ca2+ elements in sweat. 
b Output voltage profile of CPPH for monitoring  Na+ content in sweat. a, b Reproduced with permission from Ref. [91], Copyright 2022, 
Wiley–VCH. c GAH-TES for monitoring glucose levels in sweat. d GAH-TES to measure the amount of glucose in real sweat samples taken 
both before and after meals. c, d Reproduced with permission from Ref. [147], Copyright 2023, Elsevier. e Structure of R-TENG. f Filtration 
mechanism of self-powered air filters. e, f Reproduced with permission from Ref. [92], Copyright 2022, Elsevier. g CCDHG-TENG for Parkin-
son’s disease diagnosis. Reproduced with permission from Ref. [262], Copyright 2021, Elsevier
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physiological signals such as respiration, perspiration, blood 
pressure, and heart rate, which helps monitor the health sta-
tus of the human body in real time [259].

Sweat contains biomarkers such as electrolytes, metabo-
lites, and trace elements [260], making it a valuable analyte 
for health monitoring. A triboelectric sweat sensor with a 
cellulose-based conductive hydrogel as the electrode was 
presented (Fig. 16a) [91]. The CPPH hydrogel formed by 
dynamic cross-linking between polyaniline (PANI) polymer-
ized in situ with 2,2,6,6-tetramethylpiperidine-1-oxyl radical 
TEMPO-oxidized CNFs (TOCNF) and PVA/borax (PVAB). 
The sweat sensor was able to measure trace elements such as 
 Na+,  K+, and  Ca2+ in sweat (Fig. 16b) and showed high sen-
sitivity  (K+ sensitivity down to 0.082  mmol−1). Monitoring 
glucose levels in humans is essential for managing diabetes, 
preventing complications, and assessing dietary health sta-
tus. Monitoring of glucose levels provides an opportunity 
to understand and adjust glucose levels in a timely manner 
to maintain a healthy blood glucose range [261]. A self-
healing glucose-adaptive hydrogel based triboelectric bio-
sensor (GAH-TES) inspired by the enzymatic reaction of 
glucose was developed [147]. The GAH-TES consisted of a 
PVA matrix doped with β-cyclodextrin (β-CD)-encapsulated 
glucose oxidase. GAH-TES was highly selective and sensi-
tive for measuring the glucose concentration in human sweat 
before and after a meal (Fig. 16c, d), and is suitable for the 
health monitoring of diabetic patients.

Furthermore, monitoring respiration can provide informa-
tion on the general health of the user. Figure 16e shows a 
respiration-driven TENG (R-TENG) comprising a cellulose 
aerogel/conducting metal–organic framework (Ni-HITP) 
and a PVDF film [92]. The R-TENG was integrated into 
a mask to create a self-powered mask filter. Based on the 
stacked CNF with a large number of three-dimensional 
micro-nano-scale pores, together with the open metal sites 
on the Ni-HITP and electrostatic interactions, the filter ena-
bled real-time monitoring of the respiratory status and can 
was demonstrated for the efficient filtration of submicron 
particles (Fig. 16f). Additionally, evaluating the health status 
of the human body requires monitoring sweat and respira-
tion and diagnosing conditions. A catechol-chitosan-diatom 
hydrogel (CCDHG) was combined with an M-shaped Kap-
ton film to develop self-powered tremor sensor [262]. The 
M-shaped Kapton film can shorten the contact–separation 
time during wire contact, which improves the electrical out-
put and sensitivity of the sensor. This CCDHG-TENG sensor 

measured low-frequency vibratory movements of patients to 
assess the condition of individuals with Parkinson’s disease 
(Fig. 16g).

4.4  Environmental Monitoring

Flexible sensor technology is playing a crucial role in global 
environmental management systems. Gel materials are 
excellent flexible sensing materials because they respond 
to various specific stimuli. To date, gel-based TENGs have 
been used to detect temperature, humidity, water quality, and 
gases in the environment.

The highly porous structure of the aerogels creates favora-
ble conditions for water absorption. Therefore, aerogel-based 
TENGs are increasingly utilized for monitoring environmen-
tal humidity. An all-printed 3D hierarchically structured cel-
lulose aerogel-based TENG (AP-TENG) is shown in Fig. 17a 
[165]. The 3D hierarchical micro/nanostructured cellulose 
aerogel provides a high contact area and surface roughness 
in the device, leading to enhanced electrical output. The AP-
TENG was used in a self-powered humidity sensor with a 
response ratio up to 5:1, which sensed moisture-induced sur-
face potential changes and monitored environmental humid-
ity (Fig. 17b, c). Furthermore, aerogels are highly valued for 
their superior thermal insulation and flame-retardant proper-
ties, making them ideal for firefighting applications [121]. 
Figure 17d shows the working principle of TENG e-textiles 
based on MXene/AgNW/ANF (MAA) aerogel fibers for 
fire-warning systems [94]. ANFs combine the advantages 
of high-performance aramid and polymer nanofibers with 
excellent heat resistance, strength, and flame retardancy. 
Through the synergistic carbonization of MXene and ANFs, 
the MAA e-textiles exhibited significant flame retardancy 
and insulation. Figure 17e illustrates a fire first-aid simula-
tion with three labeled locations to demonstrate the utility 
of the MAA aerogel-based TENG. The MAA textile sensed 
temperatures of 100–400 °C and was used to fabricate fire-
resistant suits that provide a rapid alarm response within 
1.6 s after being exposed to fire.

As human activities continue to expand, and indus-
trialization accelerates, marine ecosystems are fac-
ing increasing threats and challenges. To maintain the 
ecological balance, it is crucial to enhance the detec-
tion of marine environmental conditions. To this end, a 
liquid–solid TENG was used in a self-powered sensing 
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system for marine environmental monitoring (Fig. 17f) 
[93]. The liquid–solid TENG comprised an ethylene 
chlorotrifluoroethylene (ECTFE) film, a PVA-ethylene 
glycol hydrogel electrode, and a PVC substrate. Rely-
ing on the wave-driven effects on seawater levels, this 
gel-based TENG produces energy based on changes in 
the contact area of seawater on the ECTFE surface. The 

integrated processing of electrical signals from TENGs 
enables self-powered sensors to monitor environmental 
factors in real time, such as the  SO2 concentration, tem-
perature, humidity, and water quality, while facilitating 
the calibration of temperature and humidity to reduce 
errors in gas sensors. Triboelectric cellulose aerogels 
have also demonstrated advantages for applications in 

Fig. 17  Gel-based TENGs for environmental monitoring. a Fabrication process of AP-TENG. b Voltage signals of AP-TENG humidity sen-
sors in dry and humid environments. c Voltage response of AP-TENG humidity sensors in different humidity conditions. a–c Reproduced with 
permission from Ref. [165], Copyright 2019, Elsevier. d Operating mode of MAA aerogel-based TENG e-textile in fire warning system. e Sche-
matic diagram of MAA aerogel-based TENG for the fire first aid simulation. d, e Reproduced with permission from Ref. [94], Copyright 2023, 
Elsevier. f Liquid–solid TENG for self-powered marine environment monitoring. Reproduced with permission from Ref. [93], Copyright 2022, 
Elsevier
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gas monitoring. By introducing heterogeneous interfacial 
engineering between TEMPO-oxidized CNF (TOCNF) 
and CNTs, a hierarchical porous structure and compress-
ible triboelectric aerogel were fabricated [152]. The 3D 
porous microchannels of this aerogel provide many active 
sites that facilitate the adsorption and desorption of gases. 
The triboelectric aerogel exhibited sensitive monitoring 
of ammonia gas, with a detection range of 20–150 ppm, 
which is suitable for the food quality monitoring.

4.5  Human–Machine Interactions

The joint development of wireless sensors and the Internet 
of Things requires improved systems for human–machine 
interactions, which are expected to realize autonomous 
perception and intelligent decision-making [263]. Flex-
ible triboelectric sensors based on gel materials have made 
great progress in human–machine interaction, mainly in the 

Fig. 18  Gel-based TENGs for human–machine interactions. a TENG-based ion communicator for tactile sensing of gestures and applications 
in human–computer interaction. Reproduced with permission from Ref. [139], Copyright 2018, Springer Nature. b Output voltage of PVA/PA 
hydrogel-based TENG when expressing the term hunger with different combinations of gestures. Reproduced with permission from Ref. [95], 
Copyright 2023, Elsevier. c Antifreeze hydrogel-based TENG for binary conversion for gesture recognition. Reproduced with permission from 
Ref. [96], Copyright 2021, Elsevier. d PEDOT: PSS-PGA hydrogel-based TENG for Morse code encrypted communication and output voltage. 
Reproduced with permission from Ref. [264], Copyright 2022, Elsevier. e Schematic diagram of PTSM-TENG for object recognition and confu-
sion recognition test curves. Reproduced with permission from Ref. [265], Copyright 2023, American Chemical Society
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development of human–machine interfaces, information pro-
tection and encryption, and intelligent robotic arms.

Gel-based TENGs are inevitably contaminated by the 
environment under continuous friction operation, which 
reduces the effectiveness of human–machine interactions. 
To address this, the surface of a PAM–LiCl hydrogel was 
coated with HDFS, encapsulated with PDMS, and con-
nected to wires to obtain hydrogel-based TENGs [139]. 
The HDFS coating improved both the hydrophobicity 
of the gels and the sensitivity of the devices. The self-
cleaning behavior of the hydrogel-based TENG ensured 
the output stability of the device. Hydrogel-based TENG 
sensors were attached to each finger and the combined 
signals were interpreted as an alphabet by encoding the 
five finger sensors for processing, thereby promoting real-
time communication using a microcontroller (Fig. 18a). 
In addition, a flexible and stretchable PVA/PA (phytanic 
acid) hydrogel-based TENG was developed and placed 
on human joints [95]. The slight bending motions of the 
patient’s fingers were converted into electrical signals by 
the TENG, which were connected to a cloud interface 
to express the word “hunger”. Hydrogel-based triboelec-
tric sensors can be used in emergency distress calls. In 
response to the limited interfacial interaction ability of 
hydrogels at subzero temperatures, a PAM–clay organo-
hydrogel was prepared using an ethylene glycol–water 
binary solvent [96]. Ethylene glycol acted as an anti-
freeze to maintain stable properties at − 30 °C by forming 
molecular clusters with water and disrupting the hydrogen 
bonding network. A single-electrode TENG assembled 
using this hydrogel was attached to a finger and recog-
nized tapping motions on the contact panel. The binary 
code was converted into letters and punctuation marks to 
display a signal on the monitor (Fig. 18c).

Information encryption is essential for safeguarding 
privacy and upholding rights and interests. Gel-based 
TENGs can be used to achieve information security by 
connecting sensors to human fingers to decode com-
munications and recognize gestures. Zhang et al. inte-
grated poly (3,4-ethylenedioxythiophene):poly(styrene 
sulfonate)(PEDOT:PSS) into γ-polyglutamic acid (PGA) 
hydrogels to produce electrically-conducting γ-PGA/
PEDOT:PSS hydrogels [264]. The extensive formation 
of hydrogen bonds between PGA and PEDOT:PSS greatly 
enhanced the mechanical characteristics, adhesion, and 
self-healing capacity of this hydrogel. Figure 18d shows 

the Morse code communication achieved by finger tap-
ping with the hydrogel directly attached to human skin. 
Similarly, based on multiple hydrogen-bonding interac-
tions, PAM/TA/SA/MXene hydrogels were prepared using 
a one-pot method [265]. With the DNH structure formed 
using PAM/SA and tannic acid, coupled with the syner-
gistic effect of MXene, the hydrogel exhibited enhanced 
mechanical properties and electrical conductivity. The 
PTSM-TENG was prepared using a PAM/TA/SA/MXene 
hydrogel as the electrode and integrated with a microcon-
troller as a wireless control system for a robotic hand. The 
robotic glove achieved object recognition and classifica-
tion by gathering feature information from five spherical 
objects through touch. The confusion matrix test results 
indicated an accuracy of 98.7% (Fig. 18e).

4.6  Other Applications

Gel-based TENGs also have applications beyond the five 
fields mentioned above. Hydrogels and organogels, which 
are biocompatible and have a cell structure similar to that of 
human tissues, have shown significant potential in wound 
healing and implantable self-powered devices. An ionic 
TENG (iTENG) patch that served as both an electrode and a 
wound dressing was developed [97]. The patch is composed 
of an organogel encapsulated within an elastic membrane. 
The iTENG accelerated wound healing through electrical 
stimulation (Fig. 19a–c). Additionally, a hydrogel was fab-
ricated by incorporating sodium borate and CNTs modified 
with polydopamine into PVA, which was used as a single 
electrode in a TENG [164]. When mechanically damaged, 
the TENG device repaired itself within 10 min at room tem-
perature because of the repairable network of dynamic imine 
and borate ester bonds. This design has the potential for use 
in photothermal therapy to restore human joint motion under 
near-infrared laser irradiation (Fig. 19d–f).

Implantable flexible sensors are an important develop-
ment for in-vivo medical applications. Unlike the common 
in-vitro flexible sensors, implantable flexible sensors are 
capable of in-vivo disease monitoring and provide more 
accurate and effective information for treatment [266]. 
Triboelectric sensors based on gel materials with similar 
structures to those of human tissues, flexibility, and bio-
compatibility, have demonstrated advantages for in-vivo 
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Fig. 19  Other fields. a Organogel-based TENG for ionic patches. b Organogel-based TENG for ionic fabrics. c Remaining wound area after 3, 
7, 10, and 14 days of treatment with ionogel-based TENG. a–c Reproduced with permission from Ref. [97], Copyright 2021, Elsevier. d Sche-
matic of PDA-CNTs/PVA hydrogel-based TENG for photothermal wound treatment. e Photothermal images of TENG made with (i) pure PVA, 
(ii) PDA-CNTs/PVA hydrogel, and (iii) MF-TENG as electrodes under near-infrared (NIR) laser irradiation. f Photothermal contrast curves. d–f 
Reproduced with permission from Ref. [164], Copyright 2021, American Chemical Society. g Structure of OFS-TENG and its application to 
knee ligament monitoring. Reproduced with permission from Ref. [76], Copyright 2022, American Chemical Society. h Schematic diagram of 
HENG measurements of rat vagal electrocardiogram (ECG) and signal response plots. Reproduced with permission from Ref. [146], Copyright 
2021, Elsevier. i Structure of the PPC-TENG sensor. j Changes in the output signal of the PPC-TENG to monitor the vehicle speed. i, j Repro-
duced with permission from Ref. [98], Copyright 2023, Wiley–VCH
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disease treatment. For example, a TENG composed of 
organogel and silicone fibers (OFS) entangled in a dou-
ble-helix structure was demonstrated (Fig. 19g) [76]. The 
OFS-TENG was implanted into the patellar ligament of 
a rabbit knee for real-time monitoring of knee ligament 
pull and muscle stress to assess muscle injury status and 
recovery training. Moreover, in-vivo and in-vitro tests of 
an organogel-based triboelectric sensor showed that it pro-
vided a proliferative microenvironment for cardiomyocytes 
with good biocompatibility. A high-performance hydrogel 
nanogenerator (HENG) was developed with polyacryla-
mide/graphene hydrogel electrodes [146]. The HENG is 
a novel liquid-based TENG that can be integrated into an 
implantable self-powered neurostimulator. The neurostim-
ulator was implanted subcutaneously into rats and stimu-
lated their vagus nerves to respond to ultrasound-driven 
stimulation (Fig. 19h), and showed the ability to inhibit the 
growth of proinflammatory cytokines, which could be used 
as an anti-inflammatory treatment for sepsis.

Furthermore, gel-based TENGs have demonstrated dis-
tinct advantages in multifunctional intelligent transportation. 
For instance, a PL-TENG was fabricated using a PAM–LiCl 
hydrogel as an electrode and PDMS as an elastomer tri-
bolayer [267]. Attaching the PL-TENG to a driver’s face and 
neck enables the assessment of driver fatigue and distraction 
by monitoring motion signals such as eye closure, mouth 
closure, and neck rotation. Functionalized gel-based TENGs 
were developed for intelligent traffic monitoring of vehicle 
speed [98]. A DNH named PPC composed of PVA-PAM and 
tannic acid-modified cellulose nanocrystals was developed. 
A TENG was fabricated using a PDMS-encapsulated PPC 
hydrogel as the tribo-positive layer as well as an electrode, 
and PTFE as the tribo-negative layer (Fig. 19i). The devel-
oped sensor could monitor vehicle speed and weight while 
exhibiting long-term output stability (Fig. 19j).

5  Summary and Outlook

The unique three-dimensional dynamic network structure 
enables gels to be tailored to meet the diverse requirements 
of flexible sensing devices in terms of material conductivity, 
flexibility, environmental adaptability, and biocompatibility. 
The emergence of gel-based triboelectric flexible sensors has 
promoted the development of self-powered wearable and 

flexible sensors. This review comprehensively summarized 
the recent research progress in gel-based TENGs for flexible 
sensing from the perspectives of principles, performance, 
and applications. The flexible triboelectric sensors com-
prising the three types of gel materials each have their own 
characteristics and advantages, can be tailored for various 
sensing applications and have demonstrated extraordinary 
research value in flexible TENG research.

Although gel-based TENGs have been extensively stud-
ied for flexible sensors, many challenges remain. Therefore, 
the optimization of the materials and triboelectric properties 
remains an effective way to consolidate the development of 
gel-based TENGs for flexible sensors. This section discusses 
the existing challenges of gel-based TENGs for flexible sen-
sors in terms of materials, electrical output properties, and 
proposes feasible strategies for broadening their application 
potential based on existing research.

5.1  Material Challenges of Gel‑Based TENGs

Although the material performance of gel-based TENGs 
has shown significant progress, obtaining gel materi-
als with excellent overall performance remains a major 
research focus. The incorporation of conductive polymers 
and carbon-based fillers can effectively increase the con-
ductivity of gels used as electrode materials. However, this 
may lead to poor transparency, which does not meet the 
design requirements for electronic skin and implantable 
sensors [140]. In addition, the gel material must exhibit 
excellent mechanical properties, such as high flexibility, 
elasticity, and durability, to withstand various impact 
deformations encountered during sensor operation. High-
strength gel-based TENGs based on energy-dissipation 
mechanisms often suffer from excessive aggregation of 
the conductive filler. This affects the ion-transport chan-
nels and reduces their conductivity [87]. Furthermore, 
challenges related to solute loss in hydrogels and inad-
equate anti-freeze and water retention capabilities have 
significantly affected the sensitivity and durability of 
flexible triboelectric sensors [197]. To meet the require-
ments of various challenging applications, the design of 
environmentally tolerant organogel-based TENGs requires 
improving their resistance to high humidity and solvent 
corrosion [224]. Furthermore, it is necessary to consider 
the balance between the flexibility, biodegradability, and 
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environmental tolerance of a material. Aerogel-based 
TENGs have the advantages of high porosity, compress-
ibility, and high specific area, leading to high triboelectric 
output and excellent deformation modulation. However, 
the aerogel structure is prone to collapse, and its strength 
must be increased to improve the mechanical durability 
and sensitivity of flexible triboelectric sensors. To reduce 
the environmental impact of flexible sensors, it is impor-
tant to optimize the performance of gel-based TENGs 
based on biomass materials [268, 269]. Therefore, future 
research should focus on developing gel materials with 
outstanding overall performance to satisfy the application 
requirements of flexible triboelectric sensors in challeng-
ing environments.

5.2  Optimization of the Output Performance 
of Gel‑Based TENGs

Compared with TENGs assembled with conventional 
metallic materials, the output of gel-based TENGs still 
requires improvement. Previous studies have focused on 
enhancing the design to promote triboelectric charge gen-
eration and storage. Strategies for achieving this include 
increasing the surface charge density through the surface 
microstructure [165], nanofiller addition, and surface 
functionalization. Additionally, the optimization of the 
device structure by utilizing a two-electrode mode [89, 
145, 270–272], monolayer TENGs [257, 270], integration 
with piezoelectric/piezoresistive sensors [238, 273–276], 
and power management are studied have been studied 
[277, 278]. Among these, the optimization of device 
structures has not yet been widely studied. Although the 
two-electrode mode effectively increases the charge-con-
version efficiency compared to single-electrode gel-based 
TENGs, such devices is not conducive to the integration 
with human skin, thus limiting their application in flexible 
wearable electronic devices. However, little progress has 
been made in enhancing the output of gel-based TENGs 
by suppressing triboelectric charge decay. The introduc-
tion of electret materials [277], multilayer structures [279], 
or intermediates can significantly enhance the electrical 
performance and suppress triboelectric charge decay. The 
development of strategies to further inhibit the decay of 

triboelectric charges in gel-based TENGs should promote 
their use in high-performance flexible sensors.

5.3  Further Development of Gel‑Based TENGs 
for Flexible Sensing

The application of gel-based TENGs has led to significant 
advancements in wearable electronics and implantable 
sensors. To maximize the potential of each gel type, it is 
necessary to develop hydrogel-based TENGs with smart 
responses. For example, the development of hydrogel-
based TENGs with intelligent response capabilities is a 
feasible approach to broadening the applications of flex-
ible TENGs in actuators, biomedicine, and other fields. 
The development of organogels for TENGs is expected 
to promote their application in monitoring food safety 
and cosmetic quality. Additionally, TENGs play a pivotal 
role in the development of self-powered gas sensors for 
environmental monitoring [280]. Aerogels with selective 
adsorption capacity can significantly enhance the sensitiv-
ity and accuracy of gas sensors, making them the preferred 
materials for gas sensitization. Therefore, the future devel-
opment of aerogel-based TENGs for gas-sensing appli-
cations is strongly encouraged. Multimodal sensing is a 
developing trend in flexible sensing. Gel-based TENG 
research should focused on improving their selectivity, 
mechanical durability, and sensitivity to function as mul-
timodal sensors, thereby increasing their practical value 
in flexible sensing.

Furthermore, the commercialization of gel-based TENGs 
is still in its early stages, owing to challenges in mass pro-
duction and cost control. It is necessary to consider not only 
the device durability, production cost, and core technology, 
but also the market demand, consumer psychology, and mar-
keting strategies to determine whether gel-based TENG flex-
ible sensors can be industrialized. The commercialization of 
gel-based TENGs for flexible sensing is expected to mature 
and gain popularity as technology continues to progress and 
the market demand grows.

In conclusion, all three gels have unique performance 
advantages and exhibit extraordinary research value in 
the study of TENGs for flexible sensing applications. This 
review aims to guide future research on gel-based TENGs 
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to promote their wider and deeper development in flexible 
sensing and other fields.
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