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HIGHLIGHTS

• Ferroelectricity and domain dynamics of emerging ferroelectric AlScN films were discussed.

• The performance optimization of ferroelectric AlScN films grown by different deposition techniques was comprehensively analyzed.

• The challenges and perspectives regarding the commercial avenue of AlScN-based memories and in-memory computing applications 
were summarized.

ABSTRACT Ferroelectrics have great potential in the field of non-
volatile memory due to programmable polarization states by external 
electric field in nonvolatile manner. However, complementary metal 
oxide semiconductor compatibility and uniformity of ferroelectric 
performance after size scaling have always been two thorny issues 
hindering practical application of ferroelectric memory devices. The 
emerging ferroelectricity of wurtzite structure nitride offers opportu-
nities to circumvent the dilemma. This review covers the mechanism 
of ferroelectricity and domain dynamics in ferroelectric AlScN films. 
The performance optimization of AlScN films grown by different tech-
niques is summarized and their applications for memories and emerg-
ing in-memory computing are illustrated. Finally, the challenges and 
perspectives regarding the commercial avenue of ferroelectric AlScN 
are discussed.
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1 Introduction

In the era of big data, artificial intelligence (AI) has made 
breakthroughs in the application of facial recognition, driv-
erless driving, intelligent robots and other fields. At pre-
sent, the implementation of AI is mainly based on algo-
rithms, which require chips with large computational power 
for data processing. The computational power of the chip 
and the development of AI are complementary to each 
other [1–5]. The separation of the central processing unit 
(CPU) and memory in traditional von Neumann architec-
ture causes latency and energy consumption during data 
transfer (Fig. 1a) [6, 7]. Furthermore, although CPU per-
formance (ns level processing) has been greatly improved 
with the development of integrated circuit technology, the 
low access speed (μs level) of memory leads to severe time 

consumption and limits the whole performance [8–11]. In 
order to break through these bottlenecks, NVIDIA’s multi-
core graphic processing unit (GPU) and Google’s tensor pro-
cessing unit (TPU) with a processing near memory architec-
ture, and in-memory computing (IMC) technology based on 
nonvolatile memory (NVM) have emerged in recent years 
(Fig. 1b) [12, 13]. In-memory computing within artificial 
neural networks enables highly efficient data-intensive com-
putation due to the elimination of data migration and access. 
The vector–matrix multiplication (VMM) is a key operation 
in artificial neural networks. The crossbar array constructed 
with NVMs can perform VMM operation in one step fol-
lowing circuit laws [14]. The programmable conductance 
matrix is multiplied by the inputing voltage vector applied 
at the input wordlines in parallel to obtain current based 
on Ohm’s law, and the accumulated current at each bitline 
obeys Kirchhoff’s current law. Thanks to the science and 

Fig. 1  a Memory and CPU in von Neumann architecture. b The technical roadmap to improving computing efficiency. c The performance com-
parison of existing NVM. Here, “FeRAM:10/10” means that the read/write time of FeRAM is 10/10 ns, and the remaining definitions follow 
similar rules. Data are obtained from Ref. [19–24]



Nano-Micro Lett.          (2024) 16:227  Page 3 of 31   227 

1 3

technology advancement, a large number of NVMs emerge, 
including NAND flash, resistive random-access memory 
(RRAM), magneto-resistive RAM (MRAM), phase change 
RAM (PCRAM) and ferroelectric memory (FeM) [15–18]. 
Among them, FeM devices have unique superiorities with 
respect to power consumption, operation speed and endur-
ance (Fig. 1c). For example, ferroelectric RAM (FeRAM) 
has faster read/write speeds and better endurance than other 
RAMs, and the read/write speed and endurance of ferro-
electric field effect transistors (FeFETs) are also better than 
commercially available NAND flash. However, as will be 
discussed below, there is still space for the cell size of FeMs 
to shrink, thereby facilitating higher integration density.

Ferroelectric materials have spontaneous polarization 
that is switchable by electric field. Notably, multiple stable 

polarization states can be configurated by precisely control-
ling the parameters of electric field (e.g., amplitude, fre-
quency and duration) [25–28]. It should be noted that the 
ferroelectric polarization states are regulated by the elec-
tric field, which avoids joule heating caused by current and 
significantly reduces energy consumption. The fast speed 
and low energy cost of polarization switching allow a high 
computational power of FeMs. For instance, the ferroelec-
tric tunnel junction (FTJ) array has been reported to reach 
100 tera-operations per second per watt [29]. An ideal FeM 
demands the involved ferroelectric materials to possess the 
following characteristics: (1) Good CMOS compatibility 
[30–32]. (2) Suitable remanent polarization (Pr) to achieve 
more bits memory [33, 34]. (3) Optimized coercive elec-
tric field (Ec) for long-term retention and large memory 

Fig. 2  Retrieved data from Web of Science. a Publication, b citation frequency and c citation frequency/publication ratio of AlScN, AlScN fer-
roelectricity and AlScN ferroelectric memory. d The publication of AlScN in various research areas. Searching keywords [AlScN ferroelectric: 
(aluminum scandium nitride/scandium aluminum nitride/Sc-doped aluminum nitride/AlScN/ScAlN) ferroelectric; AlScN ferroelectric memory: 
(aluminum scandium nitride/scandium aluminum nitride/Sc-doped aluminum nitride/AlScN/ScAlN) ferroelectric memory]
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window, as well as excellent endurance and low operation 
voltage [35–37]. (4) Stable ferroelectric phase ensures the 
high device-to-device uniformity. Few ferroelectric materi-
als except wurtzite-structured nitrides (e.g., AlScN, AlBN, 
GaScN) [38] and oxides (e.g., ZnMgO) [39], meet all above 
requirements simultaneously. Ferroelectricity discovered in 
AlScN films since 2019 brings new prosperity into FeM 
[40].

Despite the fact that the number of articles about AlScN-
based FeM has increased significantly with an average num-
ber of citations per article up to 17.44 since the first report 
of AlScN-based ferroelectric in 2019 (Fig. 2), the review 

article on the topic of AlScN-based FeM is rare. Therefore, 
it is necessary to systematically review the conspicuous 
and booming progresses of AlScN-based FeM. This review 
summarizes the latest advances in AlScN-based FeM. Chap-
ter 2 reviews the development history of ferroelectrics and 
FeM. In chapter 3, the ferroelectric mechanism and domain 
dynamics of AlScN are discussed, and the performance 
optimization of AlScN thin films by various deposition 
methods is summarized. Chapter 4 provides an overview of 
AlScN-based FeM and its application in the field of IMC. 
In chapter 5, the challenges and perspectives of ferroelectric 
AlScN are discussed. This review will play a role of guiding 

Fig. 3  a Development history of ferroelectric materials and FeM. The top illustration shows the crystal structure of AlScN, and the bottom illus-
tration exhibits the structure of FeM, wherein FeSFET, FeD and FFD represent ferroelectric–semiconductor FET, ferroelectric diode and fer-
roelectric fin diode, respectively. b Comparison of Pr and Ec between AlScN and other common ferroelectrics. c Comparison of permittivity and 
Tc among different ferroelectrics.  PbZrxTi1−xO3 [41–46],  BaTiO3 [47–49],  SrBi2Ta2O9 [50],  BiFeO3 [51–53],  KxNa1−xNbO3 [54, 55],  HfxZr1−xO2 
[56–58], AlScN [59–62], PVDF [63–66], molecular ferroelectric [67, 68]
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the future development of AlScN-based memory and neu-
romorphic devices.

2  History of Ferroelectric Materials and FeM

It has been 104 years since ferroelectricity was first dis-
covered in Rochelle salt in 1920 (Fig. 3a) [69]. Essentially, 
Rochelle salt was the first molecular ferroelectric crystal, 
but the concept of molecular ferroelectrics was proposed by 
Xiong et al. in the 2010s [70].  KH2PO4 was found to be fer-
roelectric in 1933, but it was soluble in water like Rochelle 
salt [71]. It was not until the 1940s that the emergence of 
 BaTiO3 (BTO) and  PbZrxTi1−xO3 (PZT) provided the basis 
for the research of FeM [22, 72, 73]. In 1980, ferroelectric-
ity was discovered in the copolymer of vinylidene fluoride 
and trifluoroethylene (P(VDF-TrFE)), and subsequently, 
poly(vinylidene fluoride) (PVDF)-based ternary and qua-
ternary copolymers were derived. Ferroelectric polymers are 
widely used in wearable devices due to their good flexibility 
[74]. The concept of FeM was first proposed in 1952 [75], 
and the first commercial FeRAM based on PZT was manu-
factured in 1990 [76]. Immediately afterward, RAMTRON 
(1993), Samsung (1996) and Panasonic released their 
FeRAM products. However, perovskite-type ferroelectric 
materials are incompatible with CMOS back-end-of-line 
(BEOL) [77], and their performance seriously deteriorates 
at 130 nm or smaller process node [78, 79].  SrBi2Ta2O9 
was used as a substitute of PZT to prepare FeRAM and its 
FeFETs was demonstrated, but weak oxygen binding made 
its performance slowly fade away [50].

Compared with the commercial development of FeRAM 
in the business community, other FeMs are still undergoing 
laboratory research. The concept of FTJ was first proposed 
in 1971 [80], but the requirement for high-quality ultra-
thin ferroelectric films in FTJ prevented its realization until 
three decades later [81]. Its nondestructive conductance 
read mode and simple structure of FTJ are appealing for 
high-density memory and IMC applications. On the other 
hand, the poor endurance issue (usually <  104) due to the 
ultra-thin thickness for direct quantum tunneling hinders its 
commercialization. The following ferroelectric diode (FD) 
and new-emerging ferroelectric fin diode (FFD) provide 
avenues to overcome the direct-tunneling limitation of FTJ 
memory [27]. In FFD, a ferroelectric capacitor and a fin-like 
semiconductor channel are combined to share both top and 

bottom electrodes. The intended Schottky barrier at one of 
semiconductor–electrode interfaces renders lateral field on 
the vertical semiconductor channel, resulting in ferroelec-
tric domains-dominated resistive switching. The thickness 
of the ferroelectric defined by channel length does not suffer 
the direct quantum tunneling limit, avoiding the endurance 
issue in FTJ.

The prototype of FeFETs was initially proposed in the 
mid-1950s, which utilizes ferroelectric polarization to regu-
late the conductance of the semiconductor channel [82]. In 
1974, Sugibuchi et al. prepared a metal–ferroelectric–semi-
conductor (MFS)-structured FeFETs, employing bismuth 
titanate as the ferroelectric layer and silicon as the channel 
[83]. It is noteworthy that the charge injection from silicon 
into the ferroelectric layer impacts the device performance 
[84]. To address this issue, Kijima et al. introduced  SiO2 
between Si and ferroelectric layer, creating a metal–ferro-
electric–insulator–semiconductor (MFIS) structure [85]. 
However,  SiO2, with low permittivity, tends to dissipate 
more voltage and cause breakdown, prompting the substitu-
tion of  SiO2 with  HfO2, which has higher permittivity [86]. 
Nevertheless, the poor interface quality of ferroelectric 
materials due to lattice mismatch between  HfO2 and perovs-
kite ferroelectric layers remains significant challenge. The 
emergence of two-dimensional (2D) ferroelectric semicon-
ductors has led to the proposal of a ferroelectric–semicon-
ductor field-effect transistor memory (FeSFET), aimed at 
addressing the interface issue [87].

In 2011, silicon-doped  HfO2 was demonstrated to be fer-
roelectric [88].  HfO2-based ferroelectrics can have high 
Ec and Pr at ultra-thin scale (below 5 nm) and is compat-
ible with CMOS process [88, 89]. Immediately afterward, 
 HfO2-based FeFETs [90], FTJ [91] and FeRAM [92] were 
demonstrated one after another. In 2023, Yang et al. dem-
onstrated a 9-Mb HZO-based FeRAM with  1012 cycle 
endurance [93]. However, the formation of metastable fer-
roelectric phase in  HfO2-based materials requires additional 
post-annealing treatment, tensile stress and the presence of 
oxygen vacancies [94, 95]. The competition among differ-
ent crystalline phases always leads to polymorphisms [96, 
97], which leads to uneven performance over small area of 
thin film [98], and poses a problem for massively integrated 
circuits. Therefore, there is an urgent need for alternative 
ferroelectric materials.
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In 2019, Simon et al. demonstrated ferroelectricity in 
AlScN [99], and its polar wurtzite phase had the lowest 
thermodynamic energy [100], ensuring uniform ferroelec-
tric performance at nanoscales. It is worth mentioning that 
AlScN has several times larger Pr and Ec value compared 
with traditional ferroelectric materials (Fig. 3b). The Pr and 
Ec of 10 nm AlScN film reached 100 μC  cm−2 and 11.1 
MV  cm‒1, respectively [101]. The ferroelectricity of AlScN 
remains stable at 1100 °C [61], making it potential for appli-
cations in aerospace and other high-temperature environ-
ments (Fig. 3c) [102]. In addition, AlScN has the lowest 
permittivity among known inorganic ferroelectric materi-
als [103]. A low-permittivity ferroelectric layer can reduce 
the voltage sharing of non-ferroelectric layers, beneficial 
for increasing the sensing margin of FeRAM. In addition, 
ultra-thin AlScN film with thickness of 5 nm still has fer-
roelectricity [104, 105]. Schönweger et al. reported that the 
switching voltage of sub-5 nm AlScN was reduced to 1 V 
[106], enabling AlScN-based ferroelectric NVM devices to 
be operated by low voltage [107]. AlScN can be grown using 
magnetron sputtering technology below 400 °C, ensuring 
compatibility with CMOS manufacturing processes. The 
lack of volatile elements in AlScN mitigates the risk of any 
detrimental contamination during the COMS process [108]. 
In summary, AlScN is the first ferroelectric material with 
all following merits of stable-phase ferroelectricity, CMOS 

BEOL compatibility, third-generation semiconductor com-
patibility and sustainable scaling, etc., and has broad pros-
pects for commercial applications (Fig. 4) [109].

3  Ferroelectricity of AlScN

In order to understand the ferroelectricity of AlScN, this 
section will start with the crystal structures of ScN and AlN, 
and then introduce the relationship between ScN and AlN. 
Next, it will introduce the origin of AlScN’s ferroelectricity, 
the influence of in-plane stress on AlScN’s ferroelectricity 
due to the Sc doping, the temperature and film thickness 
dependence of AlScN’s ferroelectricity, and the domain 
switching dynamics of AlScN.

3.1  Origin of Ferroelectricity of AlScN

In common sense, ScN has stable nonpolar rock salt struc-
ture, which is difficult to connect with wurtzite AlN. How-
ever, Farrer et al. predicted existence of metastable hex-
agonal ScN with nearly five-times coordination through 
local-density approximation (LDA) calculations [110]. 
Subsequently, Ranjan et al. conducted LDA calculations to 
predict the structural phase transition of hexagonal ScN from 
nonpolar to polar under continuous compressive strain [111]. 

Fig. 4  Physical properties of ferroelectric AlScN
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The above prediction of hexagonal ScN provides a prereq-
uisite for the birth of ferroelectric Sc–Al–N in the future.

AlN with wurtzite structure (space group P63mc) has 
polarization along [001] direction, arising from the sepa-
ration of  Al3+ cation and  N3‒ anion centers [112, 113]. 
Therefore, there are two antiparallel polarization directions: 
N-polar and Al-polar [114]. Pure AlN is piezoelectric rather 
than ferroelectric material, because polarization cannot be 
switched by an electric field lower than dielectric breakdown 
limit [115, 116]. In other words, the polarization of wurtz-
ite AlN would be switchable if reducing the energy barrier 
between the two polarization states.

Owing to the ultra-high thermal stability of wurtzite 
AlN, it is difficult to directly study the phase transition 
process as a function of temperature [60]. However, the 
pressure-induced phase transition process in AlN will 
bring some new ideas [117]. Vollstädt et al. demonstrated 
the phase transition from wurtzite to rock salt structure at 
14–22 GPa [118]. Zagorac et al. predicted the first-order 

phase transition of AlN from wurtzite to rock salt at a 
pressure of 19 GPa [119]. Regarding the phase transition 
path of AlN from wurtzite to rock salt, most scholars sup-
port the view that layered hexagonal phase serving as an 
intermediate phase is energetically favorable [120, 121].

Tasnádi et al. revealed that Sc doping can flatten the 
energy landscape of AlN [122]. Wang et al. predicted that 
the ferroelectric switching barrier of AlScN decreased 
with the increase in Sc content, enabling the switching 
between Al-polar and N-polar in AlScN [123]. Zhang 
et al. speculated that AlScN shows stable polar wurtzite 
phase when Sc content is lower than 0.56, and nonpolar 
rock salt phase when Sc content is higher than 0.56 [116]. 
The ferroelectricity of AlScN is suggested to be related 
to the existence of metastable layered hexagonal phase of 
ScN (space group P63/mmc) [99], which plays the role of 
the transition state between the two polarization orienta-
tions of wurtzite structure to reduce the energy barrier 
between two polarization states (Fig. 5) [110].

Fig. 5  Polarization switching process of AlScN and the change of double-well potential after Sc doping
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3.2  Factors Affecting the Ferroelectricity of AlScN

Despite theoretical predictions as a guide, it is challenging to 
lower the polarization switching barrier while maintaining 

the dielectric breakdown strength of the material. Until 
2019, Fichtner et al. demonstrated the ferroelectric polari-
zation switching in AlScN with Pr of 110 μC  cm−2 [99]. 
Immediately afterward, a large amount of research work 

Fig. 6  Material properties of  Al1−xScxN as a function of the Sc concentration. a Rocking curve FWHM, b c/a, c Pr, d Ec and e permittivity. Data 
from Ref. [59, 99, 103, 124–129]
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explored the factors affecting the ferroelectricity of AlScN. 
In order to more objectively evaluate the impact of Sc con-
tent on the ferroelectricity of AlScN, the research data from 
different groups are compiled here for comparison (Fig. 6). 
As mentioned in Sect. 3.1, Sc doping can reduce the energy 
barrier between the two polarization states of  Al1−xScxN, 
allowing polarization reversal under external voltage. This 
has been experimentally confirmed. With the increase in 
Sc content, the Ec of AlScN decreases (Fig. 6d), implying 
that the switching barrier of AlScN is indeed lowered with 
the incorporation of Sc. The evolution of Ec in  Al1−xScxN 
with the Sc content (x) satisfies the following relationship: 
E
c
(x) = −15x + 8.35 (MV  cm‒1) (0 < x < 0.43) [130]. How-

ever, when the Sc content is greater than 30%, the full width 
at half maximum (FWHM) of the rocking curve for (0002) 
diffraction peak shows a step increase, indicating that crys-
tallization deterioration is observed (Fig. 6a). The reduction 

of the switching barrier of AlScN through the incorporation 
of Sc is generally regarded to relate with the in-plane tensile 
strain generated by the structural distortion of the wurtzite 
crystal, which can be confirmed by the decrement of c/a 
values in Fig. 6b [131]. As the Sc content further increases, 
 Al1−xScxN gradually transforms from the ferroelectric 
wurtzite phase to the non-ferroelectric rock salt phase, and 
the Pr value rapidly decays (Fig. 6c). In-plane mechanical 
stress on AlScN film yielded similar impacts. With the in-
plane mechanical stress changes from − 0.8 to + 0.5 GPa, Ec 
decreases from 5 to 4 MV  cm−1 [99]. Both Sc doping and 
tensile stress have a tendency for fivefold coordination in a 
ScN-like planar hexagonal structure, leading to a sufficient 
energetic destabilization of the wurtzite structure to allow 
for ferroelectric switching. In addition, the permittivity of 
 Al1−xScxN slightly increases with the increase in Sc con-
tent (Fig. 6e). To obtain better ferroelectric performance, Sc 

Fig. 7  Material properties of  Al1−xScxN as a function of the film thickness. a c/a, b permittivity, c Pr and d Ec. The material properties of 
 Al1−xScxN as a function of temperature. e c/a, f permittivity, g Pr and h Ec. Data from Ref. [99, 101, 103, 104, 126, 127, 133–139]
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content and in-plane stress should be optimized for reducing 
the Ec and leakage current and maintaining the breakdown 
strength [100, 132].

The thickness dependence of ferroelectricity of  Al1−xScxN 
films was comprehensively explored. For the case of in-
plane tensile strain generated by the substrate, the strain 
will relax with the increase in film thickness. Correspond-
ingly, the c/a of  Al1−xScxN decreases with the increase in 
film thickness within 50 nm and tends to be stable for film 
thickness greater than 50 nm (Fig. 7a). The dielectric con-
stant of  Al1−xScxN is slightly affected by the film thickness 
(Fig. 7b). As the film thickness decreases, the measured Pr 
value of  Al1−xScxN decreases. This decay phenomenon of 
polarization in thinner films is mostly related to the dead 
layer at interface (Fig. 7c). A good epitaxial quality can 
endow a high Pr value of 100 μC  cm−2 at 100 °C for a 9-nm 
 Al1−xScxN films [101]. Following a nucleation dynamics, the 
scaling of the Ec with thickness in traditional ferroelectric 
films obeys E

c
∝ d

−2∕3 , where d is thickness of the ferro-
electric films [140]. In  Al1−xScxN thin films, as the thick-
ness decreases, the Ec remains relatively stable and begins 
to increase when the film thickness reaches below 20 nm 
(Fig. 7d) [141].

Vast reports reveal that  Al1−xScxN exhibits stable temper-
ature dependence. The c/a of  Al1−xScxN slightly change with 
temperature (Fig. 7e) [60]. As the temperature increases, 
the permittivity of  Al1−xScxN also changes very little, less 
than 5% within 600 °C (Fig. 7f). Within 400 °C, the Pr of 
 Al1−xScxN shows good temperature stability (Fig. 7g). In 
addition, the Ec of  Al1−xScxN decreases with the increase 
in temperature. From room temperature to 300 °C, the Ec of 
 Al1−xScxN decreases by half (Fig. 7h). However, compared 
with other ferroelectric materials, this Ec value is still too 
large.

3.3  Polarization Switching in Ferroelectric AlScN

It is important to explore the polarization switching mecha-
nism of ferroelectric AlScN. The regions with uniform spon-
taneous polarization in ferroelectrics are called domains, and 
the boundaries between domains with different polarization 
directions are called domain walls. Generally, according to 
whether the angle between the spontaneous polarization 
directions of two adjacent domains is 180°, they are divided 
into 180° domain walls and non-180° domain walls [143]. 

Common non-180° domain walls include 90° domain walls, 
represented by the tetragonal and orthorhombic phases, and 
71° and 109° domain walls represented by the rhombohedral 
phase [144]. The polarization switching process of ferro-
electrics includes domain nucleation and growth. Lu et al. 
used piezoresponse force microscopy (PFM) that combines 
a pulse testing to reveal the evolution of the domain structure 
of  Al0.72Sc0.28N capacitors over time under different voltages 
[142].  Al0.72Sc0.28N capacitors have Pr exceeding 150 μC 
 cm−2, and its hysteresis loop has a steep slope (Fig. 8a). With 
the increase in voltage (from 11.5 to 15.5 V), the switching 
time of  Al0.72Sc0.28N capacitor decreases by three orders of 
magnitude, which is consistent with the changes in domain 
structure displayed by PFM over time at different voltages 
(Fig. 8b, c). Zhang et al. observed the formation of ferro-
electric domains in AlN that has some Sc content, through 
4D-STEM differential phase contrast mapping [145]. The 
same characterization method also revealed the distribution 
of ferroelectric domains in single-crystal AlScN nanow-
ires [146]. Kim et al. confirmed that the domain nucleation 
growth mechanism of AlScN satisfies the inhomogeneous 
field model (IFM) [147]. The characteristic switching time 
limit of AlScN (5.98 ×  10−14 s) is more than three orders of 
magnitude faster than that of HZO (1 ×  10−10 s), while its 
activation field (96 MV  cm−1) is one order of magnitude 
higher than that of HZO (8.94 MV  cm−1), accounting for the 
high Ec of AlScN. Schönweger et al. firstly reported inver-
sion domain boundaries in single crystal of AlScN, which 
supports the domain reversal theory of gradual domain-wall 
driven switching process (Fig. 9a) [106].

Polarization switching of AlScN on a macroscopic scale 
has been observed. The crystal cell orientation of wurtzite 
semiconductors (GaN, AlN, etc.) can be verified through 
acid–base etching  (H3PO4, KOH, etc.) [149]. The surface 
of N-polar is easy to be etched by acid and alkali, with coni-
cal shape remaining on the surface, while the metal-polar 
surface is almost not etched (except for local defects and 
reverse domains) [150]. Niklas et al. confirmed the conver-
sion of N-polar to metal-polar after ferroelectric polariza-
tion by  H3PO4 etching method. The corresponding scanning 
electron microscope (SEM) shows the conical morphology 
of the N-polar surface after etching and transition from 
N-polar surface to metal-polar surface after polarization 
reversal (Fig. 9b).

At the atomic scale, when ferroelectrics undergo polariza-
tion switching under the action of an electric field, it is often 
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accompanied by the relative displacement of anions and cati-
ons [152]. For example,  BaTiO3 is the displacement  of  Ba2+ 
cations relative to Ti–O octahedron, while in  HfO2-based 
ferroelectrics it is the displacement of  O2− anions relative 
to metal cations [141]. As we know, the polarity of AlN is 
derived from the relative separation of  Al3+ and  N3‒ anions. 
Combined with the previous experience of traditional fer-
roelectrics, the polarization switching of AlScN under the 

action of an electric field is also accompanied by the relative 
displacement of metal cations and  N3‒ anions.

The transformation of N-polar to metal-polar after fer-
roelectric polarization is confirmed from the atomic scale 
by STEM. The green frame line is the initial N-polar sur-
face and the red frame line is the metal-polar surface after 
inverted polarization (Fig. 10a). The images of high angle 

Fig. 8  a P–V loops of  Al0.72Sc0.28N at various frequencies. b Switching time as a function of the pulse amplitude. c PFM phase images of 
 Al0.72Sc0.28N after exerting voltage pulse with amplitude of ‒9 V, ‒12 V and ‒13 V.  Reproduced with permission from Ref. [142]. Copyright 
2024 Wiley-VCH GmbH
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annular dark field (HAADF) in the green area show obvious 
N-polar (Fig. 10b), while the images of HAADF in the red 
area show that the unit cell polarity is reversed from N-polar 
to metal-polar (Fig. 10c) [148]. Sebastian et al. successfully 
observed the atomic-scale polarization switching process of 
AlN-based ferroelectrics during voltage application through 
in situ STEM, that is, from the initial (N-polar), interme-
diate (nonpolar) and final (Al-polar) switching sequence 
(Fig. 10d) [151]. So, the polarization switching of ferroelec-
tric AlScN is the mutual switching between metal-polar and 
N-polar under the action of an electric field, and this process 
is accompanied by the relative displacement of metal  (Al3+ 
and  Sc3+) cations and  N3‒ anions under the action of an 
electric field.

The above insights into the macroscale and in  situ 
atomic-scale processes of polarization switching in AlN-
based ferroelectric materials provide guidance for future 
research on other wurtzite-structured ferroelectric materi-
als, and it also provides a strong theoretical support for the 
future commercial application of AlN-based ferroelectrics.

3.4  Performance Optimization of AlScN Films Grown 
by Different Deposition Techniques

It is essential to fabricate high-quality AlScN films to meet 
the application requirements. So far, AlScN thin films can 
be deposited through the various techniques, including 
molecular beam epitaxy (MBE), magnetron sputtering (MS), 
metal–organic chemical vapor deposition (MOCVD) and 
pulsed laser deposition (PLD). First of all, it is important to 
understand that both Al and Sc have high oxygen affinity, so 
AlScN needs to be grown in a high vacuum environment to 
avoid oxygen defects. Substrates, such as typically Pt (111), 
Mo (110), Al (110), GaN, AlN,  Al2O3 and other substrates 
can provide a hexagonal template for AlScN.

The advantages of MS include relatively low cost, good 
repeatability, strong adhesion between the film and the sub-
strate, and the ability to deposit films with different element 
content [153]. MS deposition of AlScN commonly uses Al/
Sc alloy targets or employing co-sputtering via two metal 

Fig. 9  a STEM micrographs of the M- and N-polar domain boundaries of  Al0.74Sc0.26N. Reproduced with permission from Ref. [106]. Copy-
right 2023 Wiley-VCH. b Schematic diagram of determining local metal or N-polar by  H3PO4 etching method. Reproduced with permission 
from Ref. [148]. Copyright 2021 AIP Publishing
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targets. The alloy target offers a higher deposition rate, 
which can ensure uniform composition across the entire 
wafer and thus is suitable for industrial applications. How-
ever, adjusting the scandium content in the alloy target can 
be challenging, and the complex metallurgical processes 
involved may result in higher costs. Co-sputtering can tune 
the Sc concentration by adjusting the power of the single 
target, which is lower in cost. However, reducing the power 
of the single target can compromise the uniformity and crys-
tallinity of the film. Parameters such as power,  N2/Ar ratio, 
background pressure and growth temperature during sputter-
ing affect the sputtering rate, film quality, surface roughness 
and electrical properties of AlScN. For example, the  N2/Ar 
ratio governs both the sputtering rate and nitridation reac-
tion, while the sputtering power regulates the sputtering rate 
and crystallinity. Background pressure impacts the sputter-
ing rate, whereas growth temperature influences the grain 
size, film surface stress and crystallinity. Chiu et al. studied 
the effect of sputtering conditions on the crystal quality of 
AlN thin films [154]. They identified the optimal deposi-
tion conditions for AlN as follows: power = 1400 W,  N2/

Ar = 80%, background pressure = 0.8 Pa and growth tem-
perature = 400 °C. A few studies have reported the impacts 
of different deposition conditions on the ferroelectricity 
of AlScN. For example, increasing the  N2/Ar ratio leads 
to higher values of both Pr and Ec increase, alongside the 
decreased film roughness and increase the stress [155]. The 
AlScN film is deposited at 400 °C exhibits the highest Pr 
[156]. Ryoo et al. systematically investigated the effects 
of different magnetron sputtering parameters (power,  N2/
Ar ratio, background pressure and growth temperature) on 
the ferroelectric properties of  Al0.7Sc0.3N. The exploration 
of depositional conditions is outlined in Table 1, and will 
not be further discussed here. The optimum deposition con-
ditions of  Al0.7Sc0.3N on TiN were determined as follows: 
power = 500 W,  N2/Ar = 100%, background pressure = 20 
mTorr and growth temperature = 300 °C. Under these dep-
osition conditions, the maximum saturated 2 Pr of 120 μC 
 cm−2 for 25-nm films was observed, which was about half 
of that in 50-nm-thick films (≈ 220 μC  cm−2) [135]. The 
substrates with different thermal expansion coefficients also 
impact the ferroelectric properties of AlScN films. Due to 

Fig. 10  a STEM image of deposited Pt area with polarization switched to metal-polar and unswitched area (N-polar). b HAADF micrographs 
show the atomic structure of N-polar. c HAADF micrographs show the atomic structure of metal-polar after polarization reversal in the depos-
ited Pt region. Reproduced with permission from Ref. [148]. Copyright 2021 AIP Publishing. d Atomic models, STEM image simulations and 
experimental images for the N-polar, nonpolar and Al-polar states. Reproduced with permission from Ref. [151]. Copyright 2023 AAAS
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the existence of thermal stress, the lattice parameters of the 
films are affected. Results demonstrate that the Pr and Ec 
of the AlScN film decrease with the decrease in the ther-
mal expansion coefficient of the substrate [157]. High Sc 
content can lead to impurities (rock salt) formation and an 
increase in defect density, which can affect crystal quality 
and elevate leakage current. In addition, the MS technique 
used to deposit AlScN epitaxial films on single-crystal GaN 
substrates is accompanied by a competition between M-polar 
and N-polar, especially when AlScN exceeds 30 nm, result-
ing in the coexistence of multiple domains [127]. Table 2 
summarizes the conditions for depositing AlScN with MS 
and the corresponding ferroelectric properties of AlScN.

The epitaxial growth of AlScN on GaN, AlN, SiC,  Al2O3 
and Mo substrates can be achieved through MBE, MOCVD 
and PLD techniques. The advantage of MBE is that ultra-
thin epitaxial films with high uniformity can be prepared, 
and multilayer structure with different dopants or compo-
nents can be realized [166]. At present, the temperature 
for depositing AlScN by MBE is typically above 500 °C. 

Wang et al. grew AlScN epitaxial films on GaN substrates 
by MBE, and confirmed that the optical bandgap of AlScN 
decreased with the increase in Sc content. The  Sc0.20Al0.80N 
grown by MBE almost matches the GaN lattice, showing a 
Ec of ~ 4.2 MV  cm‒1 and a Pr of ~ 135 μC  cm−2. The polari-
zation retention time of  Sc0.20Al0.80N is more than  105 s and 
there is no fatigue behavior with 3 ×  105 cycles [109]. In 
order to meet the requirements of low-power memory and 
CMOS compatibility, devices need to operate at low volt-
ages, grow on Si substrates at low-temperature. Reducing the 
film thickness can reduce the operating voltage [167]. Wang 
et al. have grown 5–100-nm-thick  Al0.7Sc0.3N epitaxial film 
on Mo/Si substrate. With the decrease in film thickness, 
the Ec increases while the Pr decreases. Specifically, 5 nm 
thick  Al0.7Sc0.3N can achieve Pr of 23 μC  cm−2 at 2–3.8 V 
[104]. Growth in a nitrogen-rich environment can ensure 
the phase purity and crystal quality of wurtzite AlScN, but 
can lead to increased film roughness [168]. Hardy et al. 
grew high-quality AlScN films at 390 °C, enabling growth 
of AlScN at COMS compatible process temperature [169]. 

Table 1  Effect of MS deposition conditions on the ferroelectric properties of AlScN. Data collected from Ref. [135]

c (Å) a (Å) Lattice volume (Å3) Deposition 
rate (nm 
 min−1)

Grain 
diameter 
(nm)

Roughness (nm) Sc/(Sc + Al) Pr (μC  cm−2) Ec (MV  cm‒1)

Power
 300 W 4.981 3.211 133.411 1.02 13.154 0.403 0.304 145.84 5.69
 400 W 4.986 3.198 132.453 1.632 12.258 – 0.308 153.33 5.78
 500 W 4.988 3.194 132.181 2.28 13.338 0.725 0.306 153.5 5.83
 600 W 4.997 3.19 132.076 2.928 14.392 0.733 0.316 134.18 5.94

N2/Ar
 20% 4.99 3.218 134.248 2.97 12.418 0.593 0.308 113.45 5.62
 40% 4.999 3.214 134.133 2.562 – 0.668 – 141.8 5.75
 60% 4.997 3.203 133.173 2.28 14.072 0.685 0.297 153.35 5.8
 80% 5.005 3.202 133.289 2.25 – 0.802 – 159.35 5.81
 100% 5.017 3.192 132.768 2.1 13.832 0.992 0.300 156.2 5.92

Pressure
 5 mTorr 5.001 3.192 132.405 2.04 13.646 0.977 0.296 142.9 6
 10 mTorr 5.001 3.186 131.866 1.806 12.29 0.817 0.312 161.6 6.1
 15 mTorr 5.031 3.198 133.663 1.548 10.936 0.773 0.298 159.71 6.2
 20 mTorr 5.064 3.203 134.995 1.35 9.136 0.717 0.302 177.83 6.37

Temperature
 RT 5.052 3.189 133.501 1.272 10.626 0.898 0.308 161.5 6.34
 150°C 5.024 3.185 132.431 1.272 11.2 0.822 0.303 174.7 6.12
 300°C 5.015 3.195 133.01 1.29 12 0.392 0.296 201.43 6
 400°C 5.012 3.2 133.333 1.26 11.8 0.301 0.297 186.2 5.9
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Table 2  MS deposition of AlScN

Substrate Target Sc composition Growth 
temperature 
(°C)

Thickness (nm) FWHM (°) Pr (μC  cm−2) Ec (MV  cm‒1) References

AlN/Pt AlSc alloy 0.27–0.43 400 400–1000 – 75–110 2–5 [99]
Pt/TiOX/SiO2/Si Al and Sc 0.1–0.34 400 9–140 2–2.7 3.8–135 – [126]
Pt/Si Al and Sc 0.29 350 100 – 80 – [158]
Pt(111)/Ti/

SiO2/Si(100)
Al and Sc 0.36 – 20 2.8 30 6.5 [159]

Al2O3 Al and Sc 0.16 350 363 – 135 4.2 [103]
Pt/Si Al and Sc 0.36 350 20 – 25 6.5 [160]
Mo/Si Al and Sc 0.27 – 400–2000 – 138 4.1 [60]
Mo/AlN/Al2O3 Al and Sc 0.25 450 550 2.6 – – [148]
Al/Al0.80Sc0.20N 

/Si
Al and Sc 0.32 150 45 – 115 − 4.3/5.3 

(10 kHz)
[161]

Pt/SiO2/Si or 
 Al2O3 or 
MgO

Al and Sc 0.2 400 100 115–127 6.5–7.2 [157]

n-GaN Al and Sc 0.19–0.28 450 40–300 0.28–0.38 ≤ 120 6–12 [127]
Pt/Ta/SiO2 Al and Sc 0.2–0.45 400 90–200 – – – [162]
Pt(111)/TiOX/

SiO2/Si(100)
Al and Sc 0.2 400 12–130 –  ~ 135 5–7 [133]

Al Al and Sc 0.32 375 45 – 120 – [163]
Pt/TiN Al and Sc 0.38 RT or 400 15 – – – [164]
Pt/GaN Al and Sc 0.28 500 100 2.44  ~ 175 5 [61]
Pt (111)/Ti/

SiO2/Si
Al and Sc 0.32–0.36 350 20 2 140 6.5 [62]

TiN Al and Sc 0.22 400 and RT 50 9.7 at 
400 °C, 
15.2 at RT

113 at 400 °C, 
70 at RT

8.1 at 400 °C, 
6.5 at RT

[130]

Pt/TiOX/SiO2/Si Al and Sc 0.2 400 9–130 –  > 100 6–10 [101]
Pt/TiOX/SiO2/Si Al and Sc 0.22 25–500 120–190 – 10–129 6–8 [165]
Pt/GaN Al and Sc 0.28 450 10–100 0.1–2 – 5.5–6.5 [107]
Pt Al0.7Sc0.3 alloy 0.3 400 225 2.694 100 4.3 [102]

Table 3  Epitaxial deposition of AlScN

Method Substrate Sc composition Growth 
temperature 
(°C)

Thickness (nm) FWHM (°) Pr (μC  cm−2) Ec (MV  cm‒1) References

MBE n-GaN 0.17–0.25 600 100 0.03–0.05 – – [129]
Si <111> 0.03–0.26 – 400–800 1.1 – – [170]
Si-doped-GaN 0.2 – 200 – 70–80 4.6 [171]
n-GaN 0.18–0.4 600–750 25–30 0.09–0.12 – – [172]
Si 0.12 – 400 1.2 – – [173]
AlN 0.06–0.32 700/390 200 – – – [169]
GaN/AlN 0–0.34 400–900 50–100 – – – [174]
Si-doped-GaN 0.14–0.36 – 100 – 135 3.4–5.7 [59]
Si-doped-GaN 0.21 – – 0.31 90 4.9 [175]

MOCVD GaN/Al2O3 0.05–0.17 1000–1200 6.5–16.9 – – – [176]
GaN/Al2O3 0.2–0.3 1000 10–100 0.07 – – [177]

PLD Mo/Si 0.3 – 100 – 140 5 [178]
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It is noteworthy that the ferroelectric properties of AlScN 
grown by MBE are comparable to those of AlScN grown by 
MS. Table 3 summarizes the epitaxial deposition of AlScN 
and its ferroelectric properties under corresponding deposi-
tion conditions.

MOCVD can control the composition and doping level 
of compounds by quickly switching gas source. It facilitates 
the growth of the single-crystal film over large area with 
high uniformity and repeatability, achieving a relatively high 
growth rate (micron  h−1), so it stands as the preferred tech-
nology for the manufacturing   nitride semiconductors (AlN, 
GaN) [179]. However, a significant challenge of growing 
AlScN by MOCVD lies in the lack of Sc precursors capable 
of providing sufficient vapor pressure. In 2019, Stefano et al. 
successfully deposited  Al1−xScxN (x = 0.05–0.17) epitaxial 
film on GaN substrate at 1000–1200 °C using tris-cyclopen-
tadienyl-scandium as the precursor of Sc for the first time 
[177].  SiNX-passivated AlScN/GaN heterostructures are 
used to fabricate a high-electron mobility transistor based 
on AlScN, demonstrating a transconductance of nearly 500 
mS  mm−1 [176]. Moreover, the purity of the Sc precursor 
source affects the leakage current [180]. However, there is 
currently no report on the ferroelectricity of AlScN grown 
by MOCVD. Recently, Liu et al. deposited 100-nm-thick 
 Al0.7Sc0.3N thin film on Mo substrate by PLD, with Pr of 
140 μC  cm−2 and Ec of 5 MV  cm‒1 [181]. The advantage of 
PLD is its capability to obtain multi-component films with 
desired stoichiometry, but it is not easy to produce large-area 
films [178].

In addition, the preparation of 10 nm AlN with a Pr of 3 
μC  cm−2 using atomic layer deposition (ALD) technology 
has been reported [182], and with  deposition carried out at 
300 °C [183]. Deposition of AlScN by ALD hold promise, 
as it is compatible with existing CMOS processes and has 
the potential to be used for the fabrication of complex struc-
tures such as 3D NAND and gate-all-around FET. However, 
it is necessary to prepare a Sc precursor source with low 
evaporation temperature, and overcome problems such as 
oxygen defects caused by the poor vacuum level (~ 5 Pa) of 
ALD. Each of the aforementioned deposition techniques has 
its own advantages. However, it is no doubt that MS is the 
most favorable technology for depositing AlScN thin films 
from the perspectives of cost, reproducibility, adhesion of 

films to substrates, flexibility of deposition target materials 
and potential for wafer-level manufacturing.

4  AlScN FeM and Its Application in IMC

Research interest in ferroelectric AlScN has been aroused 
due to its potential in low-power memory and neuromor-
phic computing. This chapter aims to present an overview 
of AlScN-based FeM from the perspective of commercial 
memory requirements, and to explore its application in IMC.

4.1  Potential Application of AlScN in FeRAM

The current commercial DRAM mainly adopts the memory 
cell structure of one transistor plus one capacitor (1T1C). 
The capacitor is like a "cistern" responsible for storing the 
charge as information, and the transistor works as a "faucet" 
to avoid the loss of charge over time [92, 184, 185]. FeRAM 
shares similar structure with DRAM, except that the dielec-
tric layer is replaced by ferroelectric material with the rema-
nent polarization charge encoded as information [186]. Since 
FeRAM adopts metal–ferroelectric–metal (MFM) structure 
in which the ferroelectric polarization is nonvolatile, data 
retention is extended and the refresh operation to prevent 
data loss can be omitted, therefore reducing power consump-
tion. Besides, the nanosecond or even sub-nanosecond polar-
ization switching speed endows fast operation in FeRAM. 
Despite these advantages of FeRAM, several issues remain 
to be resolved. With the density scaling of FeRAM, it would 
be preferred to use ferroelectric materials of high Pr and low 
dielectric constant to increase the sensing margin. Besides, 
the reading operation of FeRAM is destructive as DRAM 
[187]. The charge stored in the capacitor is selectively turned 
on by the transistor and released to the sense amplifier to 
determine the storage state. After each reading, reprogram-
ing is indispensable to restore information; therefore, the 
capacitor should have sufficiently high endurance and mod-
erate Ec is desirable. Because of pulse-width dependence of 
the switching voltage, the trade-off between operating speed 
and voltage necessitates an electric field twice that of the 
coercive field for operation. On one hand, a large Ec permits 
a big memory window and excellent retention behavior. On 
the other hand, given that operation voltage scales with the 
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coercive field Ec and the thickness of ferroelectric film thick-
ness, the Ec of thin AlScN films should be reduced for com-
patibility with CMOS logic [187]. The wurtzite-structured 
ferroelectrics with high Pr and low ε seem to be promising 
for FeRAM only if moderate Ec can be achieved in thin films 
through optimizing doping concentration and strain level 
[188].

Despite FeRAM based on wurtzite ferroelectrics has not 
been reported, MFM capacitors with ferroelectric AlScN 
are under intensive investigations. Wang et al. designed 
Al/Al0.68Sc0.32N/Al ferroelectric capacitor with Pr of 115 
μC  cm−2, which can achieve switching operation within 
200 ns, and has no obvious fatigue behavior after 8.7 ×  103 
cycles [161]. In the process of reducing the thickness of 
AlScN, Schönweger et al. achieved switching operation of 
sub-5 nm AlScN at 1 V voltage. Liu et al. unveiled that the 
electron emission and hopping assisted by N vacancies in the 
 Al0.7Sc0.3N MFM capacitor dominate the leakage current in 
Pt/Al0.7Sc0.3N/Mo capacitor [178].

4.2  AlScN‑Based FeD and FTJ

Although FeDs share similar MFM structure with FeRAM, 
the nondestructive read operation of FeDs is performed by 
sensing the current across the heterostructure. Taking the 
interfacial energy band into account, the barrier height/width 
modulation at the ferroelectric–electrode interface through 
polarization reversal was proposed for resistive switching 
mechanism, usually accompanied by diode-like rectifying 
characteristics. The polarization-dominated mechanism 
requires ferroelectric layer with high Pr. Liu et al. fabricated 
Pt/insulator/Al0.64Sc0.36N/Pt FeD with memristor behavior, 
the current on/off ratio is 5 ×  104 (Fig. 11a, b) [160]. The 
leakage currents of HRS and LRS are trap-assisted conduc-
tion. The ferroelectric polarization charges modulate the 
band diagram, with a lower barrier height for polarization 
directed to electrode interface than that for polarization anti-
orientated to electrode interface. For the so-called “LRS,” 
injected electrons jump from occupied traps to empty traps, 

Fig. 11  a  Al0.64Sc0.36N-based FeD. b Semi-log I–V curve characteristics of the FeD. Electronic band diagrams of c HRS and d LRS in the FeD. 
Reproduced with permission from Ref. [160]. Copyright 2021 AIP Publishing
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resulting in high current. Conversely, the electron jumping 
rate significantly decreases (Fig. 11c, d). Asymmetric struc-
tures are usually designed at both ends of FeD to improve 
the switching ratio and rectification, such as metal–ferroelec-
tric–insulator–metal (MFIM), MFS, MFIS, etc. Large rec-
tifying ratio combined with high nonlinearity can eliminate 
the need for an access transistor or ovonic threshold switches 
in array integration. Of course, the depolarization field in the 
MFIM structure cannot be ignored, which requires a ferroe-
lectric material with a suitably large Ec to offset the depolari-
zation field. Wang et al. further increased the ON/OFF ratio 
to  105 by introducing an oxide layer at the interface between 
the electrode and AlScN. Since the thickness of ferroelec-
tric layer in FDs generally ranges from tens to hundreds of 
nanometers, the high switching voltages hinder integration 
with advanced CMOS nodes and the readout currents limit 
their miniaturization. Moreover, some experimental results 
have shown that the resistive switching behavior in FDs 
could be attributed to filament forming/rupture induced by 
atomic–ionic transport, which are polytropic in nature, thus 
suffering from small ON/OFF ratio, undesirable variations, 
poor retention and large cycle-to-cycle/device-to-device 
randomness. In some cases, both polarization-dominated 
mechanism and filament-dominated mechanism are known 
to co-dominate the resistive switching.

As the thickness of the ferroelectric layer is reduced to 
a few nanometers, quantum mechanical tunneling through 
ferroelectrics becomes possible, and the electrical conduc-
tivity is greatly enhanced for quantum mechanical tunneling 
through ferroelectrics and the operating voltage is decreased. 
These devices with a ferroelectric tunnel barrier sandwiched 
between two electrodes are called FTJs [189]. The height 
of the tunneling barrier of FTJ is determined by the state 
of polarization, so the domain configurations can control 
the tunneling conductance. Generally, ferroelectric materi-
als with high Pr can deplete the charge at the interface of the 
FTJ electrode, which increases the width of the tunneling 
barrier and suppresses the off-state current, giving a large 
ON/OFF ratio [190]. Of course, by artificially designing 
asymmetric structures (for example, designing MFS and 
MFIS) to control the band offset of the tunneling barrier, 
this can lead to inconsistent shielding lengths at the elec-
trode interfaces on both ends of the device, which can also 
increase the switching ON/OFF ratio. However, the depo-
larization field of the above asymmetric structures tends to 

be large, which requires the ferroelectric layer to have a high 
Ec to shield the depolarization field. Considering the require-
ments of the ferroelectric layers in FTJs, AlScN with large 
Pr and high Ec has great potential for FTJ-based products.

4.3  AlScN‑Based FeFETs

In pervasive metal–oxide–semiconductor field effect tran-
sistor (MOSFET), the gate voltage applied across the oxide 
insulator would accumulate or deplete carriers in semicon-
ductor channel, realizing the essential transistor functions of 
switching and gain, and remaining the backbone of modern 
electronics. With ferroelectrics as gate insulator, FeFETs 
yield impressive advances. The polarization charge of tra-
ditional ferroelectrics is one or two orders higher than that 
of oxide dielectrics, inducing more effective modulation of 
channel conductance in nonvolatile manner. In addition, the 
continuous and reversible conductance states of FeFETs can 
be achieved by gradually changing the arrangement of fer-
roelectric domains. The multiple storage capacity is suitable 
for high-density data storage and neuromorphic computing. 
Remarkably, the two-terminal ferroelectric devices have 
intrinsic drawback for a single shared reading and writing 
path. FeFETs effectively alleviate this issue by the separation 
of reading (drain) and writing (gate) terminals.

The most significant performance merits of FeFETs 
device are ON/OFF ratio, memory window (MW), retention 
and endurance. The AlScN films with high Pr of ~ 100 µC 
 cm−2 support larger carrier density modulation of approxi-
mately  1014  cm−2 than  SiO2 gate dielectric of only about 
 1013  cm−2, achieving high ON/OFF ratio of  106 (Fig. 12a). 
It should be noted that depolarization field (EDEP) can also 
be increased if Pr is too high, resulting in poor retention. 
The high Ec of AlScN makes EDEP/Ec low enough, and thus 
good retention can be obtained (Fig. 12b). Both MW and 
operating voltage are proportional to Ec and thickness of fer-
roelectric films. Large MW facilitated by high Ec is essential 
to correctly distinguish the stored states. However, the high 
Ec causes high driving power value and a typical endur-
ance of <  105 cycles. Based on the above analysis, to achieve 
better comprehensive performance, the Ec of AlScN film 
should be modified by changing the Sc concentration, strain 
engineering and/or superlattice/multilayer construction. It 
is worth mentioning that the low permittivity of AlScN is 
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favorable to reduce the electric field in the interfacial layer 
and improve endurance cycling in MFIS-structured FeFETs.

During the preparation process of FeFETs, there may be 
defects in the ferroelectric–semiconductor interface, result-
ing in interface reaction or diffusion, which weakens the 
quality of ferroelectric layer, and affects the modulation 
efficiency of FeFETs. Therefore, the ferroelectric–semicon-
ductor interface quality is the key factor determining the 
performance of FeFETs. As mentioned in Sect. 3.4, most 

reported  Al1−xScxN films have been on highly oriented fcc 
or bcc metals or TiN, which provide a hexagonal template 
for growing [001]-direction wurtzite ferroelectrics. There 
are various wide-bandgap semiconductors such as GaN and 
SiC that are some degree of lattice matching with  Al1−xScxN 
films, but their integration efforts are mainly focused on 
high-frequency and high-electron mobility devices. 2D 
materials provide a solution due to free from dangling 
bonds, low short-channel effects and ability to be transferred 

Fig. 12  a ON/OFF ratio and normalized storage window of FeFETs (HZO, PZT and AlScN). b Simulated values of the ratio of EDEP/Ec for 
HZO, PZT and AlScN FeFETs. c Schematic of AlScN/MoS2 based FeFETs. d I–V transfer curve. e Endurance and f retention of AlScN/MoS2-
based FeFETs. Reproduced with permission from Ref. [158]. Copyright 2021 American Chemical Society. g Schematic diagram of AlScN/
MoS2 based FeFETs. h I–V transfer curve. i Comparison of normalized MW and on-state conductivity of FeFETs with different ferroelectric 
materials and  MoS2 as channel. Reproduced with permission from Ref. [191]. Copyright 2023 Springer Nature
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onto different substrates. Liu et al. demonstrated high-per-
formance FeFET with AlScN as dielectric and 2D  MoS2 as 
channel (Fig. 12c–f), exhibiting a record normalized mem-
ory window (30–40 V) and ON/OFF ratio  (106), simultane-
ously with good retention  (105 s), cycling endurance (>  104) 
and CMOS BEOL compatible processing temperatures 
(approximately 350 °C) [158]. In this work,  MoS2 flake was 
mechanically exfoliated from its bulk crystal, a poor option 
in terms of large-scale applications. Kim et al. adopted CVD 
and MOCVD methods to prepare large-area  MoS2 films 
with accurate thickness control (Fig. 12g–i) [191]. A large 

array of high-performance and scalable FeFETs was demon-
strated. Impressively, thanks to the high Pr value of AlScN, 
the FeFETs hold a large MW of ~ 8 V and an ON/OFF ratio 
greater than  106. The FeFETs display stable retention up to 
10 years by extension, and endurance greater than  104 cycles. 
Through voltage-tunable partial switching of ferroelectric 
domains, 4-bit pulse-programmable memory function and 
7-bit operation as artificial synapses are explored. All these 
merits of  MoS2/AlScN FeFET arrays pave the way toward 
the ferroelectric memory with silicon CMOS logic.

Fig. 13  a and b Two-FeD TCAM cell for search operation. c Benchmark comparison chart of lateral footprint of various TCAM cells vs. search 
delay. d AlScN FD crossbar array implementation of VMM. e Retention properties of 16 conductance states. f Topology diagram of convolu-
tional neural network. Reproduced with permission from Ref. [163]. Copyright 2022 American Chemical Society. g Fitting of the I–V curves. 
h and i Schematic of a logarithmic driver which maps linear Vdr to nonlinear Vde for AlScN memristors. Reproduced with permission from Ref. 
[135]. Copyright 2022 Wiley-VCH
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The unavoidable depolarization field in FETs, the low Ec 
of conventional ferroelectrics and the unsatisfactory ON/
OFF ratio hinder the commercial application of FeFETs 
[192]. Fortunately, ferroelectric AlScN has large Ec to shield 
the depolarization field and large Pr to modulate the chan-
nel conductance withe large ON/OFF ratio, and meets the 
requirements of CMOS compatibility. Meanwhile, compared 
with other ferroelectric materials, AlScN has lower permit-
tivity, which increases the voltage loading in the ferroelec-
tric layer. The fatigue characteristics of AlScN FeFETs are 
already comparable to flash memory, and the read and write 
speeds are faster than flash memory. Note that flash memory 
has extremely high integration density and reliability, from 
the potential commercial view, 3D integration of AlScN 
FeM needs to be explored.

4.4  AlScN‑Based FeM for IMC

As mentioned in Sect. 1, IMC is a solution to solve the mem-
ory wall problem [193]. The memory and processor in a von 
Neumann computer system are separated. The overhead of 
frequent processor access to memory forms a memory wall 
[194]. The basic idea of IMC is to improve the computing 
power of memory through circuit innovation, thereby reduc-
ing the frequency of processor access to memory [195]. AI 
computing requires several basic operations, such as on-chip 
storage, on-chip parallel search and on-chip VMM, which 
poses challenges to the reconfigurability and operational 
flexibility of IMC architectures. On-chip storage is a basic 
function of all NVM. On-chip parallel search operations 
require multiple devices to work together and these devices 
can store states. For example, the operation of ternary con-
tent addressable memory (TCAM) requires 16 transistors in 
CMOS circuits. However, the operation of TCAM based on 
RRAM also requires 2T2R to complete. Recently, Liu et al. 
demonstrated that TCAM operation using two AlScN-FeD 
with opposite polarity as the basic unit (0.12 μm2/cell) can 
support three states: "match," "mismatch" and "don’t care," 
with search latency within 100 ps (Fig. 13a–c).

On-chip VMM requires multiple states (such as con-
ductance states) of devices, which is the foundation for 
neuromorphic computing. Liu et al. developed an AlScN-
based FeD crossbar array for IMC, and realized different 
conductance states by adjusting the polarization states of 

AlScN-based FeD. This allows the VMM of the input volt-
age of a word line with the conductance matrix to read the 
accumulated current on the FeD bit line (Fig. 13d). The 
FeD unit can be modulated into 16 different conductance 
states with excellent retention characteristics (Fig. 13e). The 
conductance is normalized as a weight and stored in the 
FeD array for VMM. The accuracy of digital recognition 
(95.5%) for FeD in situ training is only 2% lower than that 
of software simulation. (Fig. 13f) [163]. For crossbar arrays 
with good linearity, matrix operations can be directly per-
formed, while nonlinear FeMs require additional fitting of 
the nonlinear output signal with the linear input pulse signal 
to obtain linear conductance. Wang et al. designed an ultra-
thin ScAlN (5 nm)/GaN heterojunction memristor with good 
retention (>  105 s) and cycling endurance (>  104), and can 
be programmed to eight stable conduction states (Fig. 13g). 
The I–V characteristics are fitted using an exponential func-
tion, and constant β and linear α values are observed at the 
conductance level. A mapping function is used to scale the 
nonlinear device voltage (Vde) to a linear drive voltage (Vdr). 
The mapping results demonstrate the realization of linear 
conductance (Fig. 13h, i). The ScAlN ferroelectric memris-
tor has achieved convolutional processing operations such 
as main extraction, edge extraction and sharpen, and the 
accuracy of digital recognition has reached 92.9% [196]. 
It should be noted here that this memristor was grown on 
GaN/sapphire substrate, but the n-GaN layer can be replaced 
with other metals such as Al or Mo, which can be prepared 
on Si through CMOS compatible processes. Therefore, the 
memristor and peripheral circuits can be manufactured 
using BEOL processes. In the latest report of this group, 
the GaN/ScAlN/Mo/Sc2O3/Si heterostructure has been used 
to simulate the spike-time-dependent plasticity of biologi-
cal synapses, demonstrating the prospects of ScAlN-based 
heterostructures for integration with CMOS processes and 
neuromorphic computing [197].

It is important to emphasize that accurate weights and 
weight updating are essential for neuromorphic device that 
is capable of multi-bit operations. When manufacturing 
ferroelectric-based neuromorphic devices, it is necessary 
to understand the relationship between conductance and 
domain states. Thus, the domain dynamics play an impor-
tant role for realizing these synaptic characteristics of weight 
updating.
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5  Conclusions and Outlook

Ferroelectric AlScN has advantages such as CMOS 
back-end of line compatibility, sustainable miniaturiza-
tion, intrinsic and stable-phase ferroelectricity, which has 
spurred researchers to extensively explore its physical 
properties. This review provides a comprehensive sum-
mary of AlScN-based ferroelectrics, covering aspects such 
as the ferroelectric mechanism and domain dynamics, 
FeMs and their IMC applications. Despite these advance-
ments, the properties of AlScN still require further refine-
ment and development to realize their full potential in 
future commercial applications.

5.1  The Challenges at the Material Level

The doping of the group III elements can induce stress 
and reduce the free energy barrier in III-nitrides, lead-
ing to polarization reversal of III-nitrides before hard 
breakdown and accompanied by huge Pr. It is imperative 
to systematically analyze the influence of factors such 

as vacancies, temperature, strain, doping concentration, 
impurities, uneven domains and surface adsorption on 
ferroelectric properties of AlScN. Currently, in situ PFM 
combined with pulse testing has confirmed the domain 
inversion dynamics in AlScN, and the presence of AlScN 
ferroelectric domain walls has been confirmed with STEM 
and other methods. However, further investigation using 
high-precision in situ X-ray diffraction (XRD) and in situ 
STEM characterization methods is necessary to unravel 
the origin of AlScN’s ferroelectricity and the temperature 
dependence of ferroelectric properties.

5.2  Demand for AlScN in Commercial Memory

Based on the actual demand of FeM mentioned in Sect. 4, 
huge Ec is a double-edged sword. The MW of FeFETs 
is mainly determined by the coercive voltage (Vc) of the 
ferroelectric layer, proportional to the thickness of the fer-
roelectric film and the Ec. The miniaturization of devices 
necessitates a reduction in the gate thickness. Therefore, 
in order to maintain the required MW, the ferroelectric 

Fig. 14  Advantages of ferroelectric AlScN in NVM and its future application in the field of IMC and in-sensor computing
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gate material in FeFETs devices needs to possess large 
Ec. Moreover, the incomplete shielding by semiconductor 
channels in FeFETs introduces large depolarization field, 
resulting in poor data retention time. High Ec is beneficial 
for improving the retention characteristics of the device. 
However, the extremely large Ec requires higher operating 
voltages and limits the endurance ability of FeRAM. The 
cycling at high voltages can lead to performance degrada-
tion. Consequently, moderate Ec is deemed optimal for 
achieving balanced performance in ferroelectric applica-
tions. The huge Ec of AlScN can be reduced by adjusting 
the concentration of cations such as the incorporated Ga, B 
and Sc. Changing the substrate or employing rapid anneal-
ing to increase in-plane tensile stress can also decrease 
Ec [198]. Additionally, the adoption of ultra-thin film is 
necessary to lower the required voltage level. Should the 
operating voltage of AlScN be tailored to be compatible 
with the silicon process, it would unlock boundless poten-
tial of AlScN in advanced electronics manufacturing.

The remanent polarization Pr is another critical parameter 
of ferroelectric materials. While large Pr offers advantages, 
it also poses challenges. The substantial Pr exhibited by 
AlScN expands the range of remanent polarization options 
and enables the generation of strong local electric fields for 
effective electrostatic doping [12, 26]. For instance, adjust-
ing the amplitude of the applied voltage can yield numer-
ous inner hysteresis loops with varying Pr values. However, 
in FeFETs, large Pr can result in significant depolarization 
field. Therefore, in FeFETs applications, a suitable Pr is pre-
ferred to balance performance and stability.

When the applied electric field approaches close to Ec, 
AlScN experiences significant leakage current, resulting 
in poor cyclic durability. This issue is usually attributed to 
nitrogen defects, dislocations and uneven domains. A high 
vacuum deposition system is required to grow thin films 
in an environment with high nitrogen content to inhibit the 
formation of nitrogen vacancies. Additionally, fit substrates 
which can not only provide epitaxial templates to suppress 
dislocations and uneven domains but also induce appropriate 
strain to flatten polarization energy profile are indispensa-
ble. Furthermore, it is also important to systematically study 
wake-up effect, imprinting effect, fatigue failure mechanism 
and cyclic durability mechanism that need to be addressed 
for the storage application of wurtzite ferroelectric thin 
films.

In order to meet the demand for AlScN in commercial 
chips, it is imperative to focus on cost reduction while main-
taining the quality of AlScN wafers. Additionally, meeting 
the requirements of the deep hole filling process is essential. 
As discussed in Sect. 3.4, the ALD process of AlScN can 
be employed for deep hole filling of intricate structures, but 
the defects such as lattice oxygen caused by poor vacuum 
condition in ALD remain significant concerns. Furthermore, 
leveraging the performance advantages of wurtzite ferroelec-
tric materials opens avenues for designing novel memory 
structures and chip architectures.

5.3  Demand for FeM Chips for IMC

In performing VMM computation, the uniformity across 
devices and cycles is paramount. This underscores the criti-
cal need for devices that exhibit consistent performance and 
high durability, necessitating a deep understanding of the 
intricate connections between polarization states, domain 
dynamics, and resistance within the device. At present, 
AlScN-based devices remain relatively rudimentary, often 
existing in simplistic configurations as single units. To 
advance toward IMC, there is a pressing demand for high-
quality, large-scale fabrication of device arrays. For FTJ and 
FeD, achieving sufficiently compact unit sizes and enabling 
multilevel states are crucial for optimal performance. In the 
case of FeFETs, adapting NAND-like structures presents a 
viable approach to enhance storage density.

In summary, ferroelectric AlScN demonstrates excellent 
ferroelectricity and has broad application prospects in the 
field of ferroelectric NVM. While addressing the afore-
mentioned challenges, it is crucial to focus on adjusting the 
electrical properties of ferroelectric AlScN and exploring an 
integrated process compatible with both front-end and back-
end technologies. Of course, it is essential to expand the 
application of AlScN in IMC (such as search operation, vec-
tor–matrix multiplication, logical operation, machine learn-
ing and graphic computing) and in-sensor computing (such 
as artificial vision, hearing, touch, smell and taste sensors) 
(Fig. 14). Despite the potential time required for commer-
cialization, it is anticipated that the outstanding performance 
of AlScN will lead to widespread applications once its films 
and devices achieve critical mass.
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