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HIGHLIGHTS

• An overview of advanced materials for  NH3 capture from the aspects of interaction sites and transport pathways is presented.

• The classifications, working principles, design ideas and structure–property relationships on materials for  NH3 capture are discussed 
in detail.

• The challenges and encouraging outlooks with worthwhile directions for  NH3 capture are proposed.

ABSTRACT Ammonia  (NH3) is a car-
bon-free, hydrogen-rich chemical related 
to global food safety, clean energy, and 
environmental protection. As an essential 
technology for meeting the requirements 
raised by such issues,  NH3 capture has been 
intensively explored by researchers in both 
fundamental and applied fields. The four 
typical methods used are (1) solvent absorp-
tion by ionic liquids and their derivatives, 
(2) adsorption by porous solids, (3) ab-
adsorption by porous liquids, and (4) mem-
brane separation. Rooted in the development 
of advanced materials for  NH3 capture, we 
conducted a coherent review of the design of different materials, mainly in the past 5 years, their interactions with  NH3 molecules and 
construction of transport pathways, as well as the structure–property relationship, with specific examples discussed. Finally, the challenges 
in current research and future worthwhile directions for  NH3 capture materials are proposed.
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Abbreviations
AA  Acetamide
ACs  Activated carbons
[Bmim][SCN]  1-Butyl-3-methylimidazolium 

thiocyanate
[Bmim][NTf2]  1-Butyl-3-methylimidazolium 

bis(trifluoromethylsulfonyl)
imide

[Bmim][Zn2Cl5]  1-Butyl-3-methylimidazolium 
chlorozincate

[Bmim]2[Co(NCS)4]  1-Butyl-3methylimidazolium 
tetraisothiocyanatocobaltate
(II))

[Bmim][MeSO3]  1-Butyl-3-methylimidazolium 
methanesulfonate

[Bmim]2[CuCl4]  Bis(1-butyl-3methyl imidazo-
lium) copper tetrachloride

[Bmim]2[NiCl4]  Bis(1-butyl-3methyl imidazo-
lium) nickel tetrachloride

[Bmim]2[SnCl4]  Bis(1-butyl-3methyl imidazo-
lium) stannum tetrachloride

[Bpy][NTf2]  N-butyl pyridinium 
bis(trifluoromethyl sulfonyl)
imide

[BOHmim][Zn2Cl5]  1-(4-Hydroxy-butyl)-3-meth-
ylimidazolium chlorozincate

[Bim][NTf2]  1-Butylimidazolium 
bis(trifluoromethylsulfonyl)
imide

BBTA  1H,5H-benzo(1,2d), (4,5-d′)
bistriazole

BTC  1,3,5-Benzenetricarboxylic 
acid

BTDD  Bis(1H-1,2,3triazolo[4,5-
b],[4′,5′-i])dibenzo[1,4]dioxin

CPMs  Crystalline porous materials
COFs  Covalent organic frameworks
CIPMs  Conventional inorganic 

porous materials
CHBs  Cooperative hydrogen bonds
ChCl  Choline chloride
CA  Cellulose acetate
COOH-MWCNTs  Carboxylic group functional-

ized multiple-wall carbon 
nanotubes

[choline][NTf2]  Choline 
bis(trifluoromethylsulfonyl)
imide

[CAM][Cl]  Carbamide chloride
DESs  Deep eutectic solvents

2D/3D materials  Two/three-dimensional 
materils

dodpdc  4,4’-Dihydroxybiphenyl-3,3’-
dicarboxylic acid

[DBU-PEG][NTf2]2  8,8′ (3,6Dioxaoctane1,8diyl)
bis(1,8Diazabicyclo[5.4.0]
undec7en8ium) 
bis(trifluoromethylsulfonyl)
imide)

[DMEA][Ac]  N,N-dimethylethanolammo-
nium acetate

[EtOHim][NTf2]  1-Hydroxyethyl-3-methyl 
bis(trifluoromethylsulfonyl)
imide

[EtOHim][BF4]  1-Hydroxyethyl-3-methyl 
tetrafluoroborate

[Emim][NTf2]  1-Ethyl-3-methylimidazolium 
bis(trifluoromethyl sulfonyl)
imide

[EtOHmim][NTf2]  1-(2-Hydroxyethyl)-
3-methylimidazolium 
bis(trifluoromethylsulfonyl)
imide

[Emim][BF4]  1-Ethyl-3-methylimidazolium 
tetrafluoroborate

[Emim][Ac]  1-Ethyl-3-methylimidazolium 
acetate

[Emim][EtOSO3]  1-Ethyl-3-methylimidazolium 
ethylsulfate

[Emim][SCN]  1-Ethyl-3-methylimidazolium 
thiocyanate

[EtOHim][SCN]  1-Hydroxyethyl-3-methyl 
thiocyanate

[EtOHmim][BF4]  1-(2-Hydroxyethyl)-3-methyl-
imidazolium tetrafluoroborate

[Eim][Li(NTf2)2]  1-Ethylimidazolium lithium 
bi(bis(trifluoromethylsulfonyl)
imide)

[Emim]2 [Co(NCS)4]  1-Ethyl-3-methylimidazolium 
tetraisothiocyanatocobaltate
(II))

EaCl  Ethylamine hydrochloride
EG  Ethylene glycol
[EtA][SCN]  Ethanolamine thiocyanate
EGDMA  Ethylene glycol 

dimethacrylate
ENIL  Encapsulated ionic liquid
FPMD  First-principles molecular 

dynamics
GCMC  Grand canonical Monte Carlo
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Gly  Glycerol
Gl-POSS  Octaglycidyl polyhedral oli-

gomeric silsesquioxane
HBAs  Hydrogen-bond acceptors
HBDs  Hydrogen-bond donors
HOFs  Hydrogen bond frameworks
HS  Hollow silica
HTCS  High throughput computa-

tional screening
[Hmim][BF4]  1-Hexyl-3-methylimidazo-

lium tetrafluoroborate
[Hmim]2 [Co(NCS)4]  1-Hexyl-3-methylimidazo-

lium tetraisothiocyanatocobalt
ate(II))

ILs  Ionic liquids
[Im][NO3]  Imidazolium nitrate
[Im][NTf2]  Imidazolium 

bis(trifluoromethylsulfonyl)
imide

[Li-TEG][NTf2]  Lithium triethylene glycol 
bis(trifluoromethylsulfonyl)
imide

MOPs  Metal–organic polyhedral
MOFs  Metal organic frameworks
MAA  N-methylacetamide
MMMs  Mixed matrix membranes
[2-Mim][NTf2]  2-Methylimidazolium 

bis(trifluoromethylsulfonyl)
imide

[2-Mim][Li(NTf2)2]  2-Methylimidazolium lithium 
bi(bis(trifluoromethylsulfonyl)
imide)

[MTEOA][MeOSO3]  Tris(2-hydroxyethyl)methyl-
ammonium methylsulfate

[MeOHim][NTf2]  1-Hydroxymethyl-3-methyl 
bis(trifluoromethylsulfonyl)
imide

[Me2C2
OHN]Cl/  Dimethyl-di(2-hydroxyethyl)

ammonium chloride
[MeC3

OHN]Cl  Methyl-tri(2-hydroxyethyl)
ammonium chloride

NA  Nicotinate
NIR  Near infrared spectroscopy
NMR  Nuclear magnetic resonance
OS  Organosilane
[Omim][BF4]  1-Octyl-3-MethylImidazolium 

tetrafluoroborat
PLs  Porous liquids
PM2.5  2.5-Micrometer particulate 

matter
POPs  Porous organic polymers

PhO  Phenol
PDAB-AA  Poly(divinylbenzene) acrylic 

acid
PIM-1-COOH  Polymers of Intrinsic Micr-

oporosity modified with 
carboxylic acid

PAA  Poly(amic acid)
PDF  Pair distribution function
PB  Prussian blue
PPc  Polyphthalocyanine
PDMS  Poly(dimethylsiloxane)
PVDF  Polyvinylidene difluoride
PEG  Polyethylene glycol
PIP  Porous ionic polymers
[P66614][NTf2]  Trihexyl(tetradecyl)

phosphonium 
bis(trifluoromethylsulfonyl)
imide

[Ph3ImH][NTf2]2  1,3,5-Tri(imidazolium-1-yl) 
bi(bis(trifluoromethylsulfonyl)
imide)

Res  Resorcinol
SOMP  Sulfonated and ordered 

mesoporous polymer
SCN  Thiocyanate
SILP  Supported ILs phase
SAXS  Small-angle X-ray scattering
TEG  Triethylene glycol
TA  Cobaltous thiocyanate
[1, 2, 3-TrizH2][NO3]2  1, 2, 3-Triazolium nitrate
[1, 2, 3-TrizH2][CF3SO3]2  1, 2, 3-Triazolium trifluo-

romethane sulfonate

1 Introduction

Ammonia  (NH3), an important basic chemical, is a feed 
stock for nitrogenous fertilizer production via the Haber 
process, which is important for global food safety [1–3]. 
It is also a promising clean energy source owing to its 
high hydrogen density and carbon-free nature, and it pro-
vides safer transport and storage compared with  H2 due 
to its easy liquefaction and low penetration rate toward 
transport equipment [4–8]. However,  NH3 is a toxic and 
irritating gas that is detrimental to human health. Specifi-
cally, it injures the human eyes, skin, respiratory tract, and 
liver when its concentration in the blood is higher than 25 
ppm [9]. Meanwhile, the excessive emission of  NH3 in 
the atmosphere will participate in chemical reactions to 
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form 2.5-µm particulate matter (PM2.5), causing negative 
effects such as haze and soil acidification, etc. [10, 11].

NH3-containing gases come from a wide range of sources. 
For example, it is inevitable to generate a large amount of 
 NH3-containing exhausted gas during urea manufacturing 
and ammonia synthesis processes. In addition to the men-
tioned chemical process, the direct  NH3 emission from agri-
culture such as compost and animal breed place also causes 
serious negative effects [11, 12]. Therefore,  NH3 capture 
and recovery from these sources benefit both resource uti-
lization and environmental protection. The traditional tech-
nologies for capturing  NH3 involve physical condensation 
and water/acid scrubbing. Physical condensation relies on 
a boiling point difference to achieve separation. In such a 
case,  NH3-containing gas should be cooled to a lower tem-
perature (e.g., − 15 °C) to liquify gaseous  NH3, while other 
compounds remain gaseous, which always consumes more 
energy. Water/acid scrubbing depends on the different solu-
bilities of gases in liquid solvents to achieve gas separation. 
However, the  NH3 recovery from water is energy-intensive, 
and large quantities of  NH3-containing wastewater are inevi-
tably produced, causing serious secondary pollution. Inor-
ganic acid solutions, such as  H2SO4 and  H3PO4 are highly 
corrosive, and the reaction of inorganic acids with  NH3 is 
almost irreversible and generates the low-valued salts.

Based on the above analysis, it is necessary to develop 
novel green technologies for  NH3 capture and recovery, in 
which the design and controllable fabrication of advanced 
materials are crucial. To date, many materials have been 
developed, including ionic liquids (ILs), crystalline porous 
materials (CPMs), porous organic polymers (POPs), and 
their composites. However, most reviews have focused on 
a single topic such as ILs for  NH3 absorption [13–15] or 
metal–organic frameworks (MOFs) for  NH3 adsorption 
[16–19]. Overall reviews of both developed and emerg-
ing  NH3 capture materials are still limited. Rooted in the 
development of the advanced materials for  NH3 capture, we 
aimed to provide a coherent review of the design of different 
materials mainly over the past 5 years, and their interac-
tions with  NH3 molecules, and the construction of transport 
pathways. This review first presents a summary of the cat-
egories of materials, including functional solvents, porous 
solids, porous liquids and emerging membranes, along with 
brief working principles and evaluated parameters. Then, the 
recent advancements in such materials are briefly reviewed 
in detail. Functional solvents including ILs and deep eutectic 

solvents (DESs), have been introduced due to their struc-
tural tunability, negligible vapor pressure, and lower energy 
consumption compared with traditional solvents. As for 
various  NH3-containing gases separation system, balanc-
ing the absorption–desorption ability, costs, and variations 
in physical properties of functional solvents is challenging. 
As an alternative strategy, porous solids involving conven-
tional inorganic porous materials (CIPMs), porous organic 
polymers (POPs), crystalline porous materials (CPMs), and 
composite adsorbents have been proposed, and their per-
formances have been analyzed based on the pore properties 
and type of interaction sites. Such solids are difficult to be 
implemented in conventional flow processes, and their per-
formance remains limited. And most of them faced with the 
problem of structural collapse. Based on the fluidity of liquid 
absorbents and the porosity of porous solids, an important 
direction for porous liquids (PLs) for  NH3 ab-adsorption was 
proposed. However, this technology is on the rise and not 
yet mature and requires to further development. Emerging 
organic, inorganic and hybrid membranes for  NH3 separa-
tion and their gas separation performance are discussed; 
however, it is difficult to meet the demands of industrializa-
tion, and the long-term stability of various membranes has 
still not been explored. In the conclusions and prospects of 
this review, challenges in current research and encourag-
ing outlooks for the future application of such materials in 
advanced  NH3 capture are analyzed and proposed.

2  Working Principles

The design and development of these materials are important 
for achieving efficient  NH3 capture. Excellent  NH3-capturing 
materials require two features. One is rich specific sites that 
can interact with  NH3 molecules to attain high affinity. It 
should be noted that the interaction cannot be too strong; 
otherwise, it is not conducive to the release of captured  NH3 
from the materials. The other is the introduction of transport 
pathways, which are expected to provide modulable diffu-
sion channels and rich accessible sites, thereby improving 
the  NH3 capture performance and reducing regeneration 
consumption.

According to the material characteristics and capture 
principle, the  NH3 capture materials can be divided into the 
following four types as shown in Fig. 1: absorbents (func-
tional solvents, Sect. 3), adsorbents (porous solids, Sect. 4), 
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ab-adsorbents (porous liquids, Sect. 5), and membrane mate-
rials (Sect. 6).

Functional solvents utilize gas with different solubilities 
in liquid solvents to achieve selective  NH3 absorption. The 
interaction sites (hydroxyl groups, acidic protons, amino 
groups, metal ions, etc.) on functional solvents play an 
important role in enhancing the  NH3 absorption perfor-
mance. The  NH3 absorption capacity of a given solvent, 
which is largely influenced by the pressure and temperature, 
can be determined by the gravimetric methods, vapor–liquid 
equilibrium apparatus, etc. [20, 21]. The regeneration ability 
of absorbents is another important evaluation parameter that 
is significantly related to the energy efficiency and economic 
benefits in practical applications.

The working principle of porous solids relies mainly on 
their confined micropores to accommodate gas molecules 
and the interaction sites in these pores to achieve selective 
 NH3 adsorption. The pore structures and interaction site 
strengths of porous solids can be obtained using a physical 
adsorption apparatus, temperature-programmed desorption 
of ammonia, and other methods. The  NH3 adsorption iso-
therm is normally measured using a gas adsorption instru-
ment that monitors the change in pressure of a sample held 
at a given temperature when exposed to different ammonia 
pressures [22]. The  NH3 adsorption dynamics of samples 
can be investigated either by breakthrough curves [16], 

which record the concentration curve of each component 
over time through a breakthrough column, or by dynamic 
mode measured on a gas adsorption instrument [23], which 
can provide the speed to reach equilibrium and the time-
dependent adsorption capacity at a given pressure and 
temperature.

Although porous solids offer major benefits, such as lower 
energy penalties in adsorption–desorption cycles, they are 
difficult to implement in conventional flow processes. To 
address this limitation, ab-adsorbents, i.e., PLs, have been 
developed by introducing permanent porosity into liquid 
materials. The existence of intrinsic micropores in PLs 
allows for rapid  NH3 adsorption–desorption (kinetics) while 
maintaining liquid fluidity and high adsorption capacity and 
selectivity (thermodynamics) resulting from both compo-
nents. Such a combination is also beneficial for reducing the 
regeneration consumption and thus increasing the energy 
efficiency compared with liquid absorption, owing to the 
introduction of a pore structure on the feasible gas diffusion 
pathways [24]. The gas uptake of PLs can be measured by 
gas adsorption equipment [25] and column breakthrough 
tests [26]. Annihilation lifetime spectroscopy (PALS) and 
density measurements [27, 28] are usually used to confirm 
the permanent porosity of PLs.

Membrane separation uses different gas permeation rates 
through membranes to achieve  NH3 selective separation. 

Fig. 1  Working principles of  NH3 capture materials
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Gas permeation tests usually use the differential pressure 
method; specifically, they can be divided into the constant 
pressure-variable volume and constant volume-variable 
pressure methods. Permeance and selectivity are key param-
eters for gas separation membranes [29, 30]. The permeance 
(Pi) and separation selectivity ( �i∕j ) can be calculated using 
the following equations:

where Pi and Pj represent the permeance of gases i and j, 
respectively  (cm3 (STP)/(cm2 s cm Hg)); 1 GPU = 1 ×  10–6 
 cm3 (STP)/(cm2 s cm Hg); Qi denotes permeate flow rate of 
gas i at the standard state  (cm3 (STP)  s−1); and A and Δpi 
represent the effective membrane area  (cm2) and transmem-
brane pressure difference of gas i, respectively.

3  Functional Solvents for  NH3 Absorption

As advanced solvents, ionic liquids (ILs) are prospective 
candidates for  NH3 capture. ILs are entirely composed of 
organic cations and organic/inorganic anions, which make 
them designable according to application requirements 
[13–15]. In addition, the unique properties of ILs, includ-
ing negligible vapor pressure, low specific heat capacity, 
and excellent recyclability, greatly reduce the regeneration 

(1)Pi =
Qi

AΔpi

(2)�i∕j =
Pi

Pj

energy consumption and solvent loss during the  NH3 cap-
ture process compared to water scrubbing [15, 31]. Current 
research on  NH3 capture using IL-based solvents involves 
the design and development of absorbents, mass-transfer 
investigation, process simulation and assessment, and indus-
trial applications. The development of task-specific absor-
bents for efficient and reversible  NH3 capture is fundamen-
tal and critical; thus, it has attracted the attention of many 
researchers. In this section, the  NH3 absorption–desorption 
performance, physical property variation, and absorption 
mechanism of task-specific ILs and their analogous DESs 
are briefly discussed from the perspective of the types and 
numbers of interaction sites for  NH3 absorption (Fig. 2).

3.1  Task‑Specific Ionic Liquids

Considerable efforts have been devoted to designing novel 
task-specific ILs for efficient  NH3 absorption. The interac-
tion sites between ILs and  NH3 molecules play an important 
role in efficient and reversible  NH3 absorption. The intro-
duction of hydroxyl groups, acidic protons, amino groups, 
sulfo-/carboxyl groups, and metal ions remarkably improves 
the  NH3 absorption capacity of ILs. Table 1 lists the  NH3 
absorption capacities of representative ILs.

The dissolution behavior of  NH3 in conventional ILs 
was firstly reported in 2007, and it was inferred that strong 
intermolecular complexes between  NH3 and ILs are formed 
[32]. Subsequently, it was found that cations had a greater 

Fig. 2  Interaction sites on functional solvents for  NH3 absorption
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influence on  NH3 solubility than anions and that the hydro-
gen bond between the acidic 2-H of the imidazole cation and 
N atom of  NH3 played a crucial role in  NH3 absorption [33]. 
Thus, a feasible strategy for designing task-specific ILs is to 
tune the hydrogen-donating ability of the cations by adjust-
ing the type and number of functional groups.

A series of task-specific ILs based on the hydrogen bond 
interaction were developed by introducing single hydroxyl 
functional groups and acidic protons into cations of ILs, 
and these ILs usually have higher  NH3 absorption capac-
ity (0.83–4.2 mol  NH3/mol IL) than that of conventional 
ILs (< 0.8 mol  NH3/mol IL), simultaneously showing great 
regeneration ability. Palomar et al. [34, 35] adopted the 

COSMO-RS calculation method to screen potential  NH3 
absorbents from 272 ILs and found that hydroxyl-function-
alized ILs  [EtOHmim][BF4] and  [choline][NTf2] are prom-
ising for  NH3 absorption. As expected, a higher absorption 
capacity was achieved by hydroxyl-functionalized ILs com-
pared with conventional ILs, and the separation mechanism 
of hydrogen bond interactions between ILs and  NH3 was fur-
ther proved by near-infrared spectroscopy (NIR) and nuclear 
magnetic resonance (NMR) spectroscopy [36, 37]. Shang 
et al. [38] proposed a new strategy for introducing an acidic 
proton onto a cation to improve the  NH3 absorption capacity. 
The protic ionic liquid (PIL)  [Bim][NTf2] (Fig. 3a) exhibited 
high  NH3 absorption capacity with a value of 2.69 mol  NH3/

Table 1  NH3 absorption capacity of representative ILs

ILs T (K) P (kPa) NH3 absorption capacity References

(mol  NH3/mol IL) (mg  NH3/g IL)

[Emim][BF4] 298 140 0.282 24 [34]
[Hmim][BF4] 298 220 0.485 32 [34]
[Omim][BF4] 298 120 0.389 23 [34]
[Bmim][SCN] 303 145 0.320 28 [34]
[Bmim][NTf2] 313 101 0.280 11 [38]
[Emim][Ac] 298.2 463 1.506 151 [32]
[Emim][EtOSO3] 298.1 421 1.075 77 [32]
[Emim][SCN] 298.1 307 0.799 80 [32]
[Bim][NTf2] 313 101 2.690 113 [38]
[Choline][NTf2] 293 100 1.857 82 [34]
[MTEOA][MeOSO3] 293 101 3.545 232 [35]
[DMEA][Ac] 298.1 278 1.604 183 [32]
[EtOHmim][NTf2] 313 128 0.830 35 [36]
[EtOHim][NTf2] 313 100 3.110 135 [21]
[EtOHim][BF4] 313 100 2.470 210 [21]
[EtOHim][SCN] 313 100 2.230 222 [21]
[MeOHim][NTf2] 313 100 3.040 136 [21]
[2-Mim][NTf2] 313 101 3.037 142 [41]
[Im]][NTf2] 313 101 3.461 169 [41]
[1, 2, 3-TrizH2][NO3]2 313 101 4.187 365 [20]
[Eim][Li(NTf2)2] 313 101 6.618 169 [41]
[2-Mim][Li(NTf2)2] 313 101 7.012 183 [41]
[EtA][SCN] 293 101 2.538 359 [45]
[Bmim][Zn2Cl5] 323 103.5 8.025 305 [47]
[Emim]2[Co(NCS)4] 303 101 5.990 178 [49]
[Bmim]2[Co(NCS)4] 303 101 6.030 163 [49]
[Hmim]2[Co(NCS)4] 303 101 6.090 151 [49]
[Bmim]2[CuCl4] 303 101 4.611 172 [50]
[Bmim]2[NiCl4] 343 101 4.559 195 [50]
[Bmim]2[SnCl4] 303 101 5.169 108 [50]
[Li-TEG][NTf2] 313 102.5 3.36 131 [51]
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mol IL at 313 K and 100 kPa. There was no evident decline 
in the absorption ability of the recycled  [Bim][NTf2] after 
being used four times. Notably, the viscosity of the IL–NH3 
system during the  NH3 absorption process first increased and 
then decreased sharply to a lower value [39], which is com-
pletely different from the increased viscosity caused by  CO2 
absorption. Furthermore, the  NH3 absorption mechanism of 
ILs was revealed through molecular dynamics (MD) simu-
lations [40]. The results indicated that the energy of strong 
N3–H···N(NH3) hydrogen bond between  [Bim]+ and  NH3 
molecules is up to − 79.0 kJ  mol−1, which is twice as strong 
as the hydrogen bond energy between C2-H of  [Bmim]+ 
and  NH3. This strong interaction induced the enrichment of 

cations at the PIL–gas interface, resulting in  NH3 molecules 
penetrating deeply into the bulk of the PILs and achieving 
selective absorption of  NH3 from gases containing  N2 and 
 H2. Besides, there are always other gases present, such as 
water in  NH3-containing gases in industrial streams. Trace 
water was also found to enhance  NH3 absorption owing to 
the cooperative absorption caused by  [Bim][NTf2] and  H2O.

Multiple hydrogen sites can be incorporated into the 
cations of ILs to improve their absorption performance 
through cooperative hydrogen bonding interactions. The 
 NH3 absorption capacity of imidazole-based ILs ([2-Mim]
[NTf2] and  [Im][NTf2]) (Fig. 3b) with two acidic protons on 
cations was up to 3.46 mol  NH3/mol IL. The  NH3 absorption 

Fig. 3  a Structures of  [Bim][NTf2] [38]. b [2-Mim][NTf2] and  [Im][NTf2] [41]. c Triazole cation-functionalized ILs [20]. d Dual-functionalized 
protic ILs [21, 42]
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capacity remained stable after five cycles of absorption and 
desorption [41]. Subsequently, Sun et al. [20] synthesized 
triazole cation-functionalized ionic liquids (TCFILs) con-
taining three acidic protons (Fig. 3c). These TCFILs showed 
a rapid transition from the initial solid to liquid state dur-
ing the  NH3 absorption process. Moreover, [1, 2, 3-TrizH2]
[NO3]2 exhibited an ultrahigh  NH3 absorption capacity of 
4.187 mol  NH3/mol IL (about 365 mg  NH3/g IL) at 303.15 K 
and 101 kPa and great recyclability benefiting from mul-
tiple hydrogen bonds, which is comparable to that of tra-
ditional water absorbents used in industry (300 mg  NH3/g 
 H2O at 313 K and 101 kPa). Meanwhile, [1, 2, 3-TrizH2]
[CF3SO3]2 showed faster absorption kinetics than that of 
[1, 2, 3-TrizH2][NO3]2. At the same time, the effect of water 
molecules on  NH3 absorption performance was studied. The 
results indicated that the addition of small amounts of water 
to [1, 2, 3-TrizH2][CF3SO3]2 had no obvious impact on the 
 NH3 capacity and shortened the absorption equilibrium time 
from 20 to 15 min, owing to the reduced viscosity of the 
systems. Additionally, simultaneously embedding acidic 
protons and hydroxyl groups on the cations of ILs is an effi-
cient strategy to further improve  NH3 absorption capacity. 
Yuan et al. [21, 42] found that these imidazole- and pyridin-
ium-based dual-functionalized PILs (DPILs) (Fig. 3d) pos-
sessed higher  NH3 solubility than ILs functionalized only 
by a single hydroxyl group. Specifically, the  NH3 solubility 

of  [EtOHim][NTf2] was as high as 3.110 mol  NH3/mol IL, 
which is approximately 30-fold greater than that of  [Emim]
[NTf2] and four-fold greater than that of the functionalized 
IL  [EtOHmim][NTf2]. These DPILs also exhibited outstand-
ing recyclability, an excellent  NH3/CO2 selectivity of 65, and 
 NH3/  N2 selectivity of 104.

There have been a few reports on the application of amino-
functionalized ILs for  NH3 absorption. For example, Luo 
et al. [43, 44] designed a series of cation-functional PILs 
with single or multiple amidino groups (Fig. 4). Reversible 
cooperative hydrogen bond (CHB) networks were formed 
by hydrogen bond interactions between ammonia and ami-
dino groups. The  NH3 absorption–desorption process was 
accompanied by the breakage and reformation of CHBs in 
the ILs, which led to a sigmoidal  NH3 absorption isotherm 
and energy-saving desorption. The  [BzAm][NTf2] showed 
 NH3 absorption with a threshold pressure of 0.28 kPa and 
capacity of 2.8 mol  NH3/mol IL at 100 kPa. The absorbed 
 NH3 could also be rapidly stripped at 323 K and 1 kPa 
within 30 min. In addition, the threshold pressure and  NH3 
ammonia production capacity could be tuned by varying 
the CHB interactions in the ILs. Similarly, Deng et al. [45] 
synthesized six protic ethanolamine-based ILs with multiple 
binding sites for efficient and reversible  NH3 uptake. Among 
them, ethanolamine thiocyanate ([EtA][SCN]) had suitable 
viscosity of 78.18 mPa s and exhibited the best absorption 

Fig. 4  Structures of cation-functional PILs with single or multiple amidino-groups [43, 44]
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ability of 2.538 mol  NH3/mol IL at atmospheric pressure 
and 293.15 K due to multiple hydrogen-bonding interac-
tions between acidic protons, hydroxyl groups, and thiocy-
anate with  NH3. In addition, the outstanding  NH3/CO2 ideal 
selectivity with a value of 365 was observed in [EtA][SCN], 
which provides a competitive way to selectively separate 
 NH3 from  CO2 in tail gas.

At the same time,  NH3 is typically an alkaline gas. The 
introduction of Brønsted acidic groups to react with  NH3 is 
expected to improve the absorption capacity of ILs. Recent 
studies have shown that imidazolium- and ammonium-based 
ILs with sulfo and carboxy groups exhibit higher  NH3 solu-
bilities than conventional and hydroxy-functionalized ILs. 
Moreover, the acidity of the Brønsted acidic group and 
the chemical structures of the acidic group and constitu-
ent ions also significantly affected the  NH3 capacity [46]. 
Another effective approach for improving the  NH3 absorp-
tion capacity is to develop metal ILs based on complexation 
with  NH3. Pioneering work on metal ILs for  NH3 absorption 
was reported in 2013, which used  [Bmim][Zn2Cl5] as an 
 NH3 absorbents and showed a superior absorption capac-
ity of 8.0 mol  NH3/mol IL at 323 K and 100 kPa, but the 
strong complex interaction between metal ILs and  NH3 
molecules led to irreversibility of the materials [47, 48]. To 
solve the above problems, Zeng et al. [49] designed a series 
of novel cobalt ILs,  [Cnmim]2[Co(NCS)4] (n = 2, 4, or 6), 
for reversible  NH3 absorption. The cobalt ILs exhibited a 
remarkable  NH3 absorption capacity of 6.09 mol  NH3/mol 
IL, which is more than 30 times higher than those of con-
ventional ILs  [Cnmim][SCN] without metals. This superior 
performance was attributed to the moderate Lewis acid–base 
interaction and cooperative hydrogen bonding between the 
MILs and  NH3 confirmed by experimental characterizations 
and density functional theory (DFT) calculations. At the 
same time, these cobalt ILs exhibited excellent recyclabil-
ity and maintained a stable  NH3 capacity after five cycles. 
Wang et al. [50] further systematically studied the effects 
of various metal centers on the physicochemical properties 
and  NH3 absorption capacity. Among the range of MILs, 
 [Bmim]2[SnCl4] not only showed a high absorption capacity 
of 5.169 mol  NH3/mol IL at 303.15 K and 100 kPa, which is 
much higher than that of conventional ILs, but also showed 
no obvious  NH3 capacity loss after five absorption and des-
orption cycles.

In addition to the above high-valence MILs, alkali metal 
ions, especially lithium (Li), have also been introduced into 

PILs to increase  NH3 absorption performance. Shang et al. 
[41] prepared novel sorbents that simultaneously incorpo-
rate acidic protons into cations and  Li+ ions into anions. 
The solid ILs gradually became liquids after  NH3 adsorp-
tion. An exceptional  NH3 capacity of 7.01 mol  NH3/mol 
IL was achieved using [2-Mim][Li(NTf2)2] at 313 K and 
atmospheric pressure, which is the highest  NH3 capacity 
reported for an IL to date. This superior capacity is attrib-
uted to the synergistic effect of hydrogen bonding between 
acidic protons and  NH3, as well as the Lewis acid–base 
interaction between the  Li+-based anion and  NH3. Inspired 
by this, Cai et al. [51] further synthesized liquid chelation-
activated multi-site ILs for reversible chemical absorption 
of  NH3, as shown in Fig. 5. The chelation of triethylene 
glycol (TEG) with  Li+ activates the hydroxyl sites in TEG 
for strong interaction with  NH3, resulting into an outstanding 
 NH3 absorption capacity of 3.36 mol  NH3/mol IL at 313 K 
and 102.5 kPa.

3.2  Deep Eutectic Solvents

Given the lone-pair electrons and alkalinity of  NH3, the 
DESs with strong hydrogen-bond donating ability or Brøn-
sted acidity are usually useful for capturing  NH3. DESs 
generally consist of two or three components capable of 
intermolecular interactions, particularly hydrogen bond 
interactions, which have lower melting points than those 
of each separate component [52]. They can be easily pre-
pared by simply mixing hydrogen bond acceptors (HBAs) 
with hydrogen bond donors (HBDs). The introduction of a 
second or third component effectively reduces the viscosity 
and improves the mass transfer efficiency. Because of the 
diverse structures of HBAs and HBDs, many DESs have 
been synthesized for  NH3 absorption. Table 2 lists the  NH3 
absorption capacities of representative DESs.

The current interest in DESs for  NH3 absorption is rooted 
in the pioneering work on hybrid ternary DESs with flex-
ible hydrogen-bonded supramolecular networks designed by 
Li et al. [53]. The reported DESs are composed of choline 
chloride (ChCl), resorcinol (Res), and glycerol (Gly), which 
break the trade-off between  NH3-DES interaction strength 
and the stability of traditional DESs. The  NH3 mass solu-
bility of ChCl/Res/Gly (1:3:5) DESs reached 130 mg  g−1 
at 313 K and 101 kPa, which exceeds those of hydroxyl-
functionalized ILs and ordinary DESs. More importantly, 
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this excellent performance was retained after ten absorp-
tion–desorption cycles. Additionally, the presence of  CO2 in 
melamine tail gases is unavoidable. Thus, the  CO2 absorp-
tion of optimized DESs was investigated. The results showed 
that the solubility of  CO2 was 0.91 mg  g−1, which is far 
lower than  NH3 solubility under the same conditions, show-
ing great potential for the separation of  NH3 and  CO2.

Subsequently, a series of DESs using ChCl as the HBA 
were developed for  NH3 capture owing to their excellent 
biodegradability and low price, including ChCl/Urea [54] 
and ChCl/dihydric alcohols [55]. Sun et al. [56] innovatively 
introduced metal chlorides, such as anhydrous  MgCl2,  NiCl2, 
 MnCl2, and  ZnCl2, into a binary Res/EG system to prepare 
ternary DESs, and the  NH3 capacity notably increased owing 
to the cooperating hydrogen bonding and Lewis acid–base 
interactions. In particular, the  NH3 absorption capacity 
of  MgCl2/Res/EG (0.1:1:2) was 289 mg  g−1 at 293 K and 
100 kPa. In addition, the introduction of hydroxyl, amide, 
and carboxyl groups into the structure of HBDs in DESs was 
an effective method to obtain  NH3 absorbents with excel-
lent performance [57–59]. ChCl-based DESs containing 
hydroxyl groups on HBDs exhibited higher  NH3 absorp-
tion capacity than DESs containing amide groups. The 

optimal  NH3 capacity of ChCl/EG (1:2) reached 46 mg  g−1 
at 303.15 K and 546.1 kPa. Moreover,  NH3 absorption in 
this system was thermodynamically spontaneous according 
to thermodynamic property calculations, including standard 
Gibbs energy, dissolution enthalpy, and dissolution entropy 
[60]. Huang et al. [61, 62] further proposed introducing an 
HBD component with weak acidity into a ChCl-based sys-
tem, which not only improved the  NH3 absorption capacity 
but also resulted in the reversible absorption of  NH3.

Considering the potential risk that toxic components in 
DESs pose to human health and the environment, Li et al. [63] 
proposed “natural DESs” composed of ChCl and sugar. These 
DESs exhibited higher  NH3 capacities at low pressure and 
increased temperature compared with other reported DESs, 
which is important for practical applications, especially for 
low-concentration  NH3 capture. Most studies have focused on 
the rational design of HBD structures in DESs to regulate the 
 NH3 absorption performance, whereas Kazarina et al. [64–66] 
considered the functional group modification of HBAs. The 
substitution of hydroxyl groups in ChCl, as shown in Fig. 6, 
remarkably decreased the toxicity and enhanced  NH3 solubility 
via hydrogen bond interactions. The  NH3 absorption capacity 
was enhanced by increasing the number of hydroxyl groups of 

Fig. 5  Structures and pictures of Li-TEG–chelated ILs.  Reproduced with permission from Ref. [51], Copyright 2022, John Wiley and Sons
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Table 2  NH3 absorption capacity of representative DESs

DES T (K) P (kPa) NH3 absorption capacity (mg  NH3/g 
DES)

References

ChCl/Res/Gly (1:3:5) 313 101 130 [53]
ChCl/urea (1:2) 298 95 38 [54]
ChCl/1,4-BD (1:4) 303 115.8 57 [55]
MgCl2/Res/EG (0.1:1:2) 313 100 205 [56]
Tz/Gly (1:3) 303 101.3 179 [57]
[TMPDA][Cl]2/PhOH(1:7) 298 93.1 156 [58]
[Emim][Cl]/Tetz (1:1) 313 10.0 79 [59]
ChCl/EG (1:2) 313 100.5 46 [60]
ChCl/PhOH/EG (1:5:4) 298 101.3 164 [61]
ChCl/TetrZ/EG (3:7:14) 313 104.9 169 [62]
ChCl/xylose (1.5:1) 343 101.3 66 [63]
[MeC3

OHN]Cl/EG (1:2) 313.2 101 73 [64]
[Me2COH

2C’OHN]Cl/Urea (1:1) 313.2 101.3 35.3 [65]
EaCl/AA (1:1) 313 96.4 65 [67]
EaCl/Gly (1: 2) 298 106.7 164 [68]
EaCl/PhOH (1:7) 298 101.3 85 [69]
EaCl/Res (1: 1) 298 101.2 182 [70]
3,4-DHAB + EG (1:3) 298 100 199 [71]
[Bmim][MeSO3]/urea (1:2) 313 172.6 18 [72]
[Im][NO3]/EG (1:3) 303 100 211 [73]
MAA/tetrazole (2:1) 313 102.9 136 [74]
KSCN/Gly (2:3) 313 100 101 [75]
NH4SCN/Gly(2:3) 303 100 223 [75]
GI/AT (1:2) 303 101 90 [76]

Fig. 6  Structure of HBAs modified by hydroxyl groups on cation and  NH3 absorption performance.  Reproduced with permission from Ref. 
[66]. Copyright 2022, American Chemical Society
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the choline cation. The absorption capacities of  [Me2COH
2N]

Cl/Urea with two hydroxyl groups and  [MeCOH
3N]Cl/Urea 

with three hydroxyl groups were 35.3 and 44.7 mg  NH3/g DES 
at 313.2 K and 101.3 kPa, respectively, which is approximately 
twice that of ChCl/urea (2:3) under the same conditions.

In addition to ChCl-based DESs, much less expensive eth-
ylamine hydrochloride (EaCl)-based DESs have also been 
developed. Similarly, the EaCl-based DESs with different 
hydrogen-bond donating ability or Brønsted acidity such as 
EaCl/AA [67], EaCl/Gly [68], EaCl/PhOH [69], and EaCl/
Res [70], were explored for  NH3 capture. The effects of EaCl/
HBD molar ratio, temperature, and pressure were investigated 
systematically. An appropriate EaCl/HBD molar ratio is ben-
eficial for obtaining DESs with low viscosity and high  NH3 
absorption capacity. Decreased temperature and increased 
pressure contributed to enhanced  NH3 absorption capacity.

However, the above-mentioned Cl-containing DESs have 
potential corrosivity hazards toward equipment in the practical 
applications. Zheng et al. [71] further proposed non-chloride 
DESs with multiple weak acidic sites (one carboxylic group 
and two phenolic hydroxyl groups) by dihydroxybenzoic acid 
(DHBA) and EG for selective  NH3 absorption. The DHAB/
EGs DESs provided multiple hydrogen bond sites with  NH3 
molecules, enabling exceptional and reversible  NH3 absorp-
tion with the value of 199 mg  g−1 at 100 kPa and 298.15 K. 
Additionally, imidazole-based ILs without chloride elements 
were prepared as DESs, such as  [Bmim][MeSO3]/urea [72], 
and  [Im][NO3]/EG [73]; protic imidazole IL-based  [Im][NO3]/
EG DES with a molar ratio of 1:3 exhibited the highest capac-
ity of 211 mg  NH3/g DES at 303 K and 100 kPa and great 
 NH3/CO2 selectivity of 139.6 along with good recyclability. In 
addition, non-ILs binary DES systems have been developed for 
 NH3 absorption, such as N-methylacetamide(MAA)/tetrazole 
[74],  NH4SCN/Gly [75], and GI/AT [76], in which the optimal 
 NH3 mass absorption capacity of  NH4SCN/Gly (2:3) was as 
high as 223 mg/g DES at 303 K and 100 kPa because of the 
cooperative hydrogen bond interactions between  NH4

+, OH, 
and  NH3 molecules.

4  Porous Solids for  NH3 Adsorption

Compared with liquid absorption materials, porous solids for 
 NH3 adsorption have been extensively studied [17, 77]. The 
abundant pores in solid materials provide the space for fast 
 NH3 transport, which also avoids the problems of corrosion 

and low mass transfer efficiency resulting from acid scrub-
bing and the high viscosity of ILs. The reported porous sol-
ids can be roughly divided into four types: CIPMs, POPs, 
CPMs, and composite adsorbents, as shown in Fig. 7. Gener-
ally, CIPMs, such as activated carbon (AC), are low-cost and 
easy to fabricate, but the interaction between these materials 
and  NH3 molecules is weak. As a potential solution, POPs 
have been exploited, by the disordered pores formed by poly-
mer segments/ordered pores and acidic groups enhance the 
 NH3 adsorption capacity. In addition, CPMs, such as MOFs, 
hydrogen-bonded organic frameworks (HOFs), and covalent 
organic frameworks (COFs, also belonging to POPs), usually 
exhibit high  NH3 adsorption capacities and fast adsorption 
kinetics owing to their ordered pore structures and strong 
interactions with  NH3. Furthermore, composite adsorbents, 
especially IL-based composites, which couple the high  NH3 
affinity of task-specific ILs with the porous properties of 
solid supports, are employed for  NH3 capture. In this section, 
we focus on the novel adsorbents reported in the last 5 years, 
covering the design ideas of the corresponding materials, 
 NH3 adsorption performance, and adsorption mechanism.

4.1  Conventional Inorganic Porous Materials

Conventional inorganic porous materials (CIPMs), including 
activated carbons (ACs) [78–80], zeolite [77], metal hal-
ides [81], and mesoporous silica/alumina [82], have been 
widely used for  NH3 capture because of their favorable char-
acteristics, such as diverse pore architectures, high stabil-
ity, and low cost. However, the  NH3 adsorption capacity 
of these materials is relatively low owing to their limited 
affinity toward  NH3 molecules. Therefore, the modification 
of functional groups to these CIPMs has been proposed to 
improve the  NH3 adsorption capacity. For instance, Zheng 
et al. [83] developed fiber-form AC modified by acidic oxy-
gen groups, which exhibited a high  NH3 adsorption capacity 
of 50 mg  g−1. Li et al. [84] found that AC modified by  HNO3 
exhibited the best  NH3 removal performance among three 
inorganic acid-modified ACs, with a maximum  NH3 adsorp-
tion amount of 40 mg  g−1, owing to the reduced adsorption 
energy caused by the co-adsorption of  NH3 with residual 
 HNO3 via a hydrogen bond network. More recently, Zhang 
et al. [85] demonstrated that ordered MS functionalized with 
a sulfonic group (OMS-SO3H) exhibited ultra-high preci-
sion for  NH3 reversible adsorption and separation, benefiting 
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from the high density of –SO3H superic acid sites in ordered 
mesochannels.

Zeolites are another popular material for  NH3 adsorption, 
and its properties, including acidity/basicity and hydrophilic-
ity/hydrophobicity, can be tuned by varying the Si/Al ratio. 
Therefore, through interaction between  NH3 and zeolites, 
 NH3 adsorption performance can be finely regulated. Martos 
et al. [86] revealed that hydrogen bonds play an important 
role in  NH3 capture with pure or high-silica zeolites, as con-
firmed by experimental and molecular simulations. Ouyang 
et al. [87] further indicated that  NH3 adsorption capacity 
was inversely proportional to the Si/Al ratio. Exchanging the 
counter cation from  Na+ to  Li+ led to a higher  NH3 adsorp-
tion capacity owing to stronger interactions between  Li+ and 
 NH3. In addition, the Al distribution in the nanopores and 
synthetic materials also affected the  NH3 adsorption perfor-
mance [88, 89].

Metal halides can effectively capture  NH3 molecules by 
forming metal–ammonia complexes; however, regeneration 
at low temperatures is difficult [81]. Recently, Shen et al. 
[90] further studied the effect of metal halide types with the 
same metal cation and number of cycles on  NH3 adsorption 

capacity. The  NH3 adsorption capacity followed the order 
 CuCl2 >  CuBr2 > CuI, and these materials underwent severe 
sintering during the high-temperature regeneration process, 
causing difficulty in recycling. Cao et al. [91] exploited a 
novel porous  SrCl2 structure with 96 wt% loading scaf-
folded by reduced graphene oxide networks to avoid sin-
tering, which showed superior  NH3 adsorption capacity 
(50.5 mmol  g−1) and rapid absorption–desorption kinetics 
and maintained a porous structure accommodating the vol-
ume without disintegration during cycling experiments.

4.2  Porous Organic Polymers

Porous organic polymers (POPs) are among the most widely 
studied materials for gas separation owing to their various 
monomer geometries and excellent thermal/chemical stabili-
ties derived from the covalent nature of polymers [92, 93]. 
The functionalization of POPs with tunable and strong acid 
sites is an effective way to improve  NH3 adsorption perfor-
mance. In 2014, Van Humbeck et al. [94] firstly presented 
a series of diamondoid POPs densely functionalized with 

Fig. 7  Interaction sites and transport ways of four types of porous solids
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carbonylic acids for  NH3 capture. Among various polymers, 
BPP-5 with a multiply interpenetrated structure dominated 
by pores smaller than 6 Å pores exhibits an  NH3 uptake of 
17.7 mmol  g−1 at 1 bar, and BPP-7 with larger pore size 
shows improved  NH3 absorption kinetics at low pressure 
(3.15 mmol  g−1 at 480 ppm), but the recyclability of these 
POPs is not clear. Since then, various POPs modified by 
acid groups have been developed for  NH3 adsorption, such 
as COOH-copolymer PDAB-AA [95], PIM-1-COOH [96], 
 H3PO4 modified POPs [97],  H2SO4-modified ethylene glycol 
dimethacrylate (EGDMA) polymers [98, 99] and sulfonated 
POPs [100], and the regeneration abilities of most materials 
have also been investigated systematically. Table 3 presents 
the  NH3 adsorption performance and regeneration properties 
of representative POPs.

Recently, Kan et al. [101] further reported a sulfonated 
and ordered mesoporous polymer (SOMP). The strong 
affinity of the –HSO3 group with  NH3 in sequential pore 
space of SOMPs, as shown in Fig. 8, not only enhances the 
molecular recognition ability but also facilitates  NH3 fast 
diffusion inside SOMPs so that favorable  NH3 adsorption 
capacity (15.09 mmol  g−1 at 25 °C and 1 bar) and excellent 
reversibility could be achieved. Additionally, a multi-step 
post-modification strategy was proposed to further improve 
the  NH3 adsorption performance of POPs. Kang et al. [102] 
found that a high  NH3 adsorption capacity, especially at low 
pressures, and excellent recyclability were obtained owing 
to the formation of high-density acidic functional groups 
(–COOH and –HSO3) induced by post-oxidation and post-
sulfonation processes on poly(dimethylsiloxane) (PDMS)-
coated hyper-crosslinked POPs. Furthermore, sequential 
post-sulfonation and post-alkylation reactions were devel-
oped to modify POPs for  NH3 capture. A record-high  NH3 
capacity (4.03 mmol  g−1) at 500 ppm was achieved, and 
it adsorbed 0.48 mmol  g−1 even at a concentration of 800 
ppb. Simultaneously, the hydrophobic nature of alkyl chains 
offers rapid desorption kinetics and exceptional recyclability 
under dry and humid conditions at room temperature [103].

In addition to their ability to interact with acidic groups, 
the hydrogen bond-forming properties of  NH3 molecules 
are highly attractive for POPs. Lima et al. [104] demon-
strated that hydrogen bonds play an important role in the 
 NH3 uptake by poly(amic acid) (PAA) by combining TGA 
with neutron spectroscopy, supported by DFT calculations. 
Besides, the hydrogen bond sites with –COOH groups effi-
ciently improved  NH3 adsorption performance of PAA, but 

strong interaction also made complete regeneration difficult 
[105].

The incorporation of open metal sites and ionic units to 
prepare porous ionic polymers as  NH3 adsorbents is also 
promising. As shown in Fig. 9, Luo et al. [106] reported 
porous cobaltous thiocyanate (Co(II)(SCN)4

2−, TA)-
functionalized polyILs with an  NH3 uptake capacity of 
12.2–20.1 mmol  g−1 owing to cooperative interactions con-
taining  NH3 coordinating with Co(II) instead of  SCN− and 
hydrogen bonding of H at the C2 atom in the imidazolium 
ring (C2H···NH3). At the same time, the competitive inter-
action between  NH3 and free  SCN− promoted  NH3 release, 
contributing to the good recyclability of the adsorbents. 
Moreover, the coordinative numbers of metal centers in 
polyILs with  NH3 molecules have a significant effect on the 
 NH3 capacity. For instance, high  NH3 adsorption capacity 
was achieved when the coordination number increased from 
n = 4 (M = Cu/Zn) to n = 6 (M = Co). Increasing the mod-
erate size of the cross-linking agent R enhances the  NH3 
capacity of PILs; however, oversizing R also reduces the 
porosity of polyILs [107]. Similarly, PIPs have also been 
explored, and multiple active sites containing charged skel-
etons, Lewis acid defects, and metal ions in Cu@PIP jointly 
promoted improved  NH3 adsorption performance and out-
standing recyclability without structural collapse [93].

4.3  Crystalline Porous Materials

MOFs, which are typical CPMs, are one of the most prom-
ising candidates for  NH3 adsorption because their sorption 
selectivity is directly tunable as a function of the topol-
ogy and chemical composition of the pores [19, 108–112]. 
Takahashi et al. [113] firstly demonstrated the possibil-
ity of historical pigment of Prussian blue and its analogs 
(CoHCC and CuHCF) for  NH3 capture. The  NH3 uptake 
capacity of Prussian blue is up to 12.5 mmol  g−1 at 0.1 MPa 
owing to the  NH3 transformation into  NH4

+ with  H2O in 
air, which is much higher than that of standard  NH3 adsor-
bents (5.08–11.3 mmol  g−1). Subsequently, various MOFs 
for efficient  NH3 adsorption have been developed, in which 
the incorporation of open metal sites, functional sites on the 
ligand, and defect sites are effective measures to improve 
 NH3 adsorption performance. The  NH3 adsorption perfor-
mance and regeneration properties of representative MOFs 
are listed in Table 4.
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The incorporation of open metal sites in MOFs provides 
high  NH3 affinity, which is expected to remarkably improve 
 NH3 adsorption performance. For example, Dinca’s group 
developed a series of triazole MOFs with open metal sites 
(Co, Ni, and Cu), in which  Co2Cl2BBTA (BBTA = 1H,5H-
benzo(1,2d), (4,5-d′)bistriazole) with smaller-pores exhib-
ited greater capacities than their larger-pores BTDD-based 
counterparts (BTDD = bis(1H-1,2,3triazolo[4,5-b],[4′,5′-i])
dibenzo[1,4]dioxin) benefiting from the higher density of 

open metal sites. The static uptake is up to 19.79 mmol 
 NH3  g−1 at 1 bar and 298 K, which is more than twice the 
capacity of commercial activated carbon [114]. In contrast 
to the above-mentioned formation of  NH3-binding sites trig-
gered by high-quality clusters, Carne-Sanchez et al. [115] 
reported metal–organic polyhedrals (MOPs) with Rh(II) as 
open metal sites for  NH3 capture. The low nuclear Rh(II) 
paddlewheel clusters in the synthesized MOFs firstly coor-
dinated with  NH3 molecules, which further induced the 

Table 3  NH3 adsorption capacity and regeneration properties of representative POPs

a NA is the abbreviation of not available

Porous organic polymers Functional groups NH3 adsorption capacity Regeneration conditions Adsorption loss References

BPP-5 –COOH 17.7 mmol  g−1 at 1 bar NAa [94]
BPP-7 3.15 mmol  g−1 at 480 ppm
PDVB-2.0AA –COOH 3.53 mmol  g−1 at 25 °C and 

0.05 bar
80 °C, vacuum 11.2% (10 cycles) [95]

PIM-1-COOH –COOH 12.2 mmol  g−1 at 1bar and 
25 °C

RT and vacuum  ~ 11.5% (3 cycles) [96]

P2-CO2H –COOH 16.1 mmol  g−1 at 1bar and 
25 °C

NAa [98]

3.15 mmol  g−1 at 0.5mbar and 
25 °C

1-H2SO4-EGDMA –COOH 5.06 mmol  g−1 at 556 ppm 
and 20 °C

H2SO4 washing, vacuum 
80 °C

No loss (4 cycles) [99]
–SO3H
–OH

MPOP-1.0-SO3H –SO3H 10.96 mmol  g−1 at 1bar and 
25 °C

Ar flow, 160 °C No loss (4 cycles) [100]

SOMPs –HSO3 15.09 mmol  g−1 at 25 °C and 
1 bar

0.001 bar, 150 °C 1.6% loss (30 
cycles)

[101]

6.16 mmol  g−1 at 25 °C and 
0.05 bar

1TCS –COOH 2.94 mmol  g−1 under humid 
conditions

NAa No loss (10 cycles) [102]

1TCS@PDMSX –HSO3 2.1 mmol  g−1 under humid 
conditions

No loss (4 cycles)

1S –HSO3 4.03 mmol  g−1 at 500 ppm NAa [103]
1ESC9 –OH 0.74 mmol  g−1 at 80% RH He sweep No loss (5 cycles)
PAA –COOH 10.7 mmol  g−1 at 25 °C and 

1 bar
80 °C, 4 h 35% loss (1 cycle) [105]

–NH– 1.6 mmol  g−1 at 25 °C and 
1mbar

Ph2Im-TBB-TA Co(SCN)4
2− 20.1 mmol  g−1 at 25 °C and 

1 bar
80 °C, vacuum No loss (5 cycles) [106]

C2H in im ring 5.2 mmol  g−1 at 25 °C and 
0.02 bar

PVIm-R8-Co Co2+ 20.1 mmol  g−1 at 25 °C and 
1 bar

80 °C, vacuum No loss (6 cycles) [107]

Cu@PIP-X Cu2+ 10.2 mmol  g−1 at 25 °C and 
1 bar

100 °C, vacuum No loss (5 cycles) [93]

B−
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adsorption of additional  NH3 molecules through H-bond 
interaction. This unique mechanism endows the prepared 
Rh-MOPs with a high  NH3 adsorption capacity exceeding 
10 mmol  g−1, which can be easily regenerated via immer-
sion in an acidic solution. The effect of open metal sites 
on  NH3 adsorption behavior was also investigated systemi-
cally. For example, CuBTC exhibited a higher ammonia 
uptake of 23.88 mmol  g−1 compared with others (ZnBTC, 
11.33 mmol   g−1; FeBTC, 9.5 mmol   g−1) [116], and Al-
PMOF showed greater  NH3 adsorption reversibility com-
pared to those of isoreticular Ga-PMOF and In-PMOF [117]. 
Likewise,  Zr6-NU-907 exhibited the highest  NH3 adsorp-
tion capacity at low pressure among the NU-907 family of 
MOFs, owing to the higher electronegativity of metal Zr 
ions. The in situ IR results further demonstrated that  NH4

+ 

and Lewis-bound  NH3 species were formed during  NH3 
adsorption [118]. The  Mg2(dodpdc) exhibited record-high 
 NH3 capacity of 23.90 mmol  g−1 at 1 bar and 8.25 mmol  g−1 
at a low pressure of 0.57 mbar in a series of  M2(dodpdc) 
MOFs that were constructed from various divalent metal 
cations (M =  Mg2+,  Mn2+,  Co2+,  Ni2+, and  Zn2+) and a tet-
radentate ligand  dobpdc4− (Fig. 10a). At the same time, it 
was confirmed that  Mg2(dodpdc) shows excellent structural 
stability even for wet  NH3 owing to the higher affinity of 
 Mg2+ for oxygen atoms than for nitrogen atoms, showing 
great potential for practical applications [119].

Functionalization of the ligand is another effective 
strategy for improving the  NH3 adsorption performance 
of MOFs. Nguyen et  al. [120] functionalized ligands 
by incorporating electrophilic boron (B) centers, which 

Fig. 8  NH3 adsorption mechanism of SOMPs.  Reproduced with permission from Ref. [101]. Copyright 2022, Elsevier

Fig. 9  Proposed mechanism of  NH3 adsorption with PIL-Tas.  Reproduced with permission from Ref. [106]. Copyright 2021, Elsevier
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electrophilized the pores and promoted the capture of elec-
trostatic  NH3 molecules. Moreover, the bulky duryl groups 
precluded strong acid–base B-N interactions to ensure the 

robustness of MOFs in the presence of  NH3. Therefore, the 
prepared SION105-Eu MOF via this strategy is easily regen-
erated after  NH3 adsorption by simple heating at 75 °C. In 

Table 4  NH3 adsorption capacity and regeneration properties of representative CPMs

a BC is the abbreviation of breakthrough capacity
b RT is the abbreviation of room temperature

crystalline porous materials T (°C) P (bar) NH3 adsorption 
capacity (mmol  g−1)

Regeneration conditions Adsorption loss References

CoHCC 25 1 21.9 Vacuum,150 °C No loss (4 cycle) [113]
Co2Cl2(BBTA) 25 1 17.95 Vacuum, 200 °C  ~ 4% (3 cycle) [114]
Rh-MOPs 25 1 12.9 Vacuum, 130 °C 52% (1 cycle) [115]
CuBTC 25 1 23.88 Structural collapse [116]

25 BCa 8.8 [126]
Zr6-NU-907 25 1 12.1 31.4% (3 successive cycles) [118]
Al-PMOF 25 1 7.67 No loss (2 successive cycles) [117]
Mg2(dobpdc) 25 1 23.9 No loss (5 consecutive cycles) [119]

25 BCa 8.37
SION105-Eu 30 1 5.7 70 °C for 30 min No loss (5 cycles) [120]
MFM-303(Al) 25 BCa 2.9 Vacuum, 80 °C 17% loss (29 cycles) [121]
UiO-66-CuII 0 1 16.9 Vacuum No loss (15 cycles) [125]

25 BCa 4.15
MFM-300(Al) 25 1 13.9 Dynamic vacuum < 1 h No loss (50 cycles) [129]
CAU-10-OH 25 BCa 3.5 Vacuum, 80 °C for 6 h No loss (6 cycles) [131]
Zn(NA)2 25 1 10.2 Vacuum, 150 °C for 70 min No loss (3 cycles) [134]
KUF-1a 25 1 6.67 Vacuum,  RTb No loss (5 cycles) [135]
[SrOOC]17-COF 10 1 19.8 44.8% loss (3 con-

secutive cycles)
[140]

Fig. 10  a Atomic structure of  M2(dobpdc)  (M2+ =  Mg2+,  Mn2+,  Co2+,  Ni2+,and  Zn2+) and  NH3 adsorption isotherms at 298 K.  Reproduced 
with permission from Ref. [119]. Copyright 2020, John Wiley and Sons. b Structure of MFM-303(Al). Reproduced with permission from Ref. 
[121]. Copyright 2021, American Chemical Society. c Structure of UiO-66 material with defect site and Cu(II) Reproduced with permission 
from Ref. [125]. Copyright 2022, American Chemical Society
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addition, a robust Al-based MOF, MFM-303(Al), function-
alized with free carboxylic acid and hydroxyl groups, was 
developed for  NH3 capture, as shown in Fig. 10b [121]. Two 
carboxylate groups from each tetracarboxylic ligand mole-
cule were bound to the Al(III) centers, whereas the other two 
remained uncoordinated and formed intramolecular hydro-
gen bonds with neighboring ligands. These acidic sites in the 
pores not only make MFM-303(Al) show excellent adsorp-
tion performance for low concentrations of  NH3 under both 
dry and wet conditions but also offer an exceptional packing 
density of  NH3 at 293 K (0.801 g  cm−3), comparable to that 
of solid  NH3 at 193 K (0.817 g  cm−3), which means that 
MFM-303(Al) could be used for  NH3 storage in practical 
applications.

Defective MOF construction by missing ligands or metal 
nodes can tune the nanostructure and pore size [122–124], 
thereby affecting the  NH3 adsorption performance. Ma et al. 
[125] simultaneously introduced defect sites and open Cu(I) 
and Cu(II) sites on a robust UiO-66 material, as shown in 
Fig. 10c, which exhibited high and reversible  NH3 adsorp-
tion capacity, avoiding the issues that MOFs with multi-
ple coordination Cu(II) sites suffer from irreversible  NH3 
sorption and structural degradation during adsorption. The 
excellent  NH3 adsorption–desorption reversibility of these 
MOFs predominantly resulted from the reversible change in 
the near-linear coordination geometry of the Cu(II) sites as 
a function of  NH3 binding.

Although MOFs possess high adsorption capacity and 
selectivity, most of them still face the challenge of struc-
tural degradation when in contact with  NH3 [126, 127]. 
Thus, enhancing the strength of the coordination bonds 
and tuning the moderate interaction between metal cent-
ers and  NH3 when designing MOFs should be emphatically 
considered. Yang et al. [128] designed a kind of ultra-sta-
ble MFM-300(Al), in which  AlO4(OH)2 was bridged by 
3,3′,5,5′-bipphenyl-tetracarboxylic acid to form a “wine-
rack” framework, which could store ammonia for at least 
183 weeks without decreasing in the apparent domain size 
of changes in the unit cell volumes. The  NH3 adsorption 
capacity reached 15.7 mmol  g−1 at 273 K and 1.0 bar, and 
there was no loss of  NH3 adsorption capacity over 50 cycles 
owing to the reversible H/D site exchange between the MOF 
and  NH3 molecules revealed by in situ neutron powder dif-
fraction and synchrotron FTIR micro-spectroscopy [129]. O 
Other isostructural analogs of MFM-300(M) (M = Fe, Cr, 
V) have also been reported, among which MFM-300(M) 

(M = Cr,  VIII) showed higher stability against humid  NH3 
than MFM-300(M) (M = Fe,  VIV) [130]. Wang et al. [131] 
further synthesized super-stable CAU-10-based MOFs 
by choosing relatively inert  Al3+ as metal nodes. Besides 
excellent long-term stability (more than 2 years), hydroxyl-
functionalized CAU-10-O showed ultrahigh  NH3 adsorption 
capacity (3.5 mmol  g−1 at 25.0 °C) for low-concentration 
 NH3 (5000 ppm), high selectivity of  NH3 to  N2 (up to 4850), 
and mild regeneration conditions (80 °C under vacuum for 
6 h). Such great separation performance of CAU-10-OH 
was attributed to the multiple hydrogen bonding interac-
tions (μ-OH···NH3 and –OH···NH3) between  NH3 and 
CAU-10-OH.

Flexible MOFs with reversible structural transforma-
tions (topology, pore size or shape) usually exhibit a steep 
S-shaped adsorption curve, which can realize a high  NH3 
working capacity and facile regeneration [132, 133]. For 
example, Chen et al. [134] found that the dehydration of 
M(NA)2(H2O)4, (M = Zn, Co, Cu, Cd, NA = nicotinate) 
induces a structural transformation from zero-dimensional 
(0D) to two/three-dimensional (2D/3D), which is reversible 
after water adsorption. The layered 2D Zn(NA)2 exhibited 
a gate-opening effect at a pressure of 0.22 bar, leading to a 
two-step  NH3 uptake with a capacity of 10.2 mmol  g−1 at 
1 bar, while 2D Co(NA)2 showed a continually increasing 
 NH3 trend with an increase in pressure and an  NH3 adsorp-
tion capacity up to 17.5 mmol  g−1. For the transformed 3D 
Cu(NA)2 and Cd(NA)2, higher  NH3 adsorption rates and 
shorter adsorption equilibrium times were achieved after 
three cycles. Meanwhile, both MOFs showed great recy-
clability and could be regenerated under vacuum and heat-
ing conditions of 150 °C for 70 min. Similarly, Kang et al. 
[135] developed a novel sorbent called flexible HOFs KUF-1 
for  NH3 adsorption, which showed unprecedented type IV 
adsorption behavior in the  NH3 isotherm at 298 K, with a 
capacity of 6.67 mmol  g−1 at 1 bar (Fig. 11). This mate-
rial can be completely regenerated at room temperature 
under vacuum. In addition, FDU-HOF-3 with self-healing 
properties and excellent capture performance at low  NH3 
(8.13 mmol  g−1 at 25 mbar) has also been developed [136]. 
Encouraged by reversible hydrogen network, Li et al. [137] 
further developed ionic frameworks  [Ph3ImH][NTf2]2 con-
structed from protic imidazolium ILs units through ionic and 
hydrogen bonding interactions for  NH3 capture, which pre-
sented selective  NH3 capture of 15.65 mmol  g−1 (25 °C and 
1 bar) and mild regeneration conditions (80 °C and 1 mbar).
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Another emerging CPM, covalent organic frameworks 
(COFs), have also been explored for  NH3 adsorption. In con-
trast to MOFs, COFs are formed by connecting light atoms 
(hydrogen, boron, carbon, nitrogen, etc.) via strong covalent 
bonds. Thus, COFs usually exhibit higher  NH3 stability than 
MOFs based on the difference in bond strength. In addition, 
they have ordered pore structures that can effectively adsorb 
 NH3 molecules and be regulated according to the specific 
separation conditions [138, 139]. Inspired by the functional 
design of MOFs, decorating the pore walls of COFs with 
various open metal sites has also been proposed to improve 
 NH3 adsorption performance. For example, Yang et al. [140] 
adopted a surface pore engineering strategy to design mul-
tivariate COFs by decorating the pore walls with various 
functional units for  NH3 adsorption (Fig. 12). Owing to the 
high  NH3 affinity of synergistic multivariate and open metal 
sites, the COFs exhibited high  NH3 adsorption capacities 
(14.3 and 19.8 mmol  g−1 at 298 and 283 K, respectively). 
Zhao et al. [141] investigated the  NH3 adsorption properties 
of COF-10 and its Li-doped derivatives using simulations. 
The  NH3 adsorption capacity could be improved by intro-
ducing more charged lithium atoms; however, this was not 
proportional to the number of lithium atoms. In addition, the 
charge distribution also affected the  NH3 adsorption behav-
ior. In particular, a positive potential shield on the surface of 

COF-10-6Li protected  NH3 from negative charge repulsion 
on the inner skeleton; thus, a remarkable enhancement in 
the  NH3 adsorption capacity was observed when six lithium 
atoms were introduced.

The actual performances of various materials under working 
conditions (containing  H2O and impurity molecules in han-
dling gases) are important for practical applications. Although 
several MOFs have been explored, the number of MOFs 
reported for  NH3 capture from complex environments remains 
limited. Liu et al. [142] conducted a high-throughput computa-
tional screening (HTCS) of 2932 CoRe MOFs based on grand 
canonical Monte Carlo (GCMC) simulations to screen for the 
optimal MOF for  NH3 capture from humid gas. They found 
that the key to a high  NH3 capture performance was affinity or 
Henry’s constant of MOFs toward  NH3 and water molecules. 
Previous research has indicated that  NH3 uptake by MOFs 
mostly exhibits a solubilization-like mechanism in the pres-
ence of  H2O molecules [143]. Hydrophobic MOFs possessed 
higher  NH3 selectivity, while hydrophilic MOFs exhibited 
higher  NH3 uptake despite strong adsorption competition from 
 H2O molecules. In addition, the presence of  H2O molecules 
could promote the enhancement of  NH3 uptake in the MOFs 
with a coefficient (describing the effect of  H2O adsorption on 
 NH3 uptake) of  ICH2O_NH3 < 0, but their ammonia uptake was 
still lower than that with  ICH2O_NH3 > 0, which is important for 

Fig. 11  Type IV  NH3 adsorption isotherm by HOF KUF-1a  (Reproduced with permission from Ref. [135]. Copyright 2020, John Wiley and 
Sons
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the structural design of MOFs. In fact, in  NH3-contaning gas 
from different  NH3 emission sources, not only are  H2O mol-
ecules present, but there are also other impurities such as  SO2, 
which also greatly affect the  NH3 adsorption behaviors. Chen 
et al. [144] combined adsorption isotherms with DFT calcu-
lations to investigate this effect at low pressure. It was found 
that  NH3 is the most affinitive molecule to HKUST-1 among 
three molecules, while  SO2 was the most affinitive molecule to 
UIO-66; therefore,  NH3 is likely to displace pre-adsorbed  SO2 
or  H2O on HKUST-1. Also, there is chemical adsorption on 
HKUST-1 and MIL-100(Fe) toward  NH3, while  NH3 adsorp-
tion to UIO-66 likely involves physisorption.

4.4  Composite Adsorbents

Composite adsorbents combine the advantages of differ-
ent materials in terms of  NH3 adsorption, such as metal 

chloride/carbon cubes, metal chloride/COFs, and IL-based 
composites, showing good development prospects for  NH3 
capture [145–148]. As a representative composite mate-
rial, supported IL-phase (SILP) materials (Fig. 13a) have 
received more attention due to the cooperative effect of the 
porous support and functional ILs [48, 149, 150], which also 
solve the problems associated with the application of highly 
viscous or solid ILs for  NH3 separation. Functional ILs in 
SILP materials mainly provide high  NH3 affinity via interac-
tion sites (see Sect. 3.1). Porous supports not only provide 
 NH3 transport pathways but also effectively disperse ILs to 
expose more accessible sites of ILs to further improve the 
 NH3 adsorption capacity.

Pioneering work on SILP for  NH3 adsorption was reported 
in 2014, where an AC support material was coated with 
 [C2C1Im]Cl/CuCl2. The superior  NH3 adsorption capacity 
was predominantly attributed to strong interactions between 

Fig. 12  a Scheme for surface pore engineering of COFs with various groups. b Possible pore structure of COFs with various groups (gray, C; 
blue, N; red, O; yellow, metal)  (Reproduced with permission from Ref. [140]. Copyright 2018, American Chemical Society
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 Cu2+ and  NH3 molecules [48]. However, regeneration was 
difficult under mild conditions. Therefore, subsequent stud-
ies have focused on the design of SILP materials for revers-
ible  NH3 adsorption, in which the appropriate selection and 
matching of supports and ILs are of great importance. Yu 
et al. [151] selected protic ILs with reversible  NH3 absorp-
tion to be supported on AC with low cost and large surface 
area for  NH3 adsorption. The results showed that 20 wt% 
[2-Mim][NTf2]@AC-980 exhibited a higher  NH3 adsorption 
capacity of 68.61 mg  g−1  NH3 at 303.15 K and 0.10 MPa 
(30% higher than that of pure AC) and excellent recyclabil-
ity, benefiting from the synergistic interaction of hydrogen 
bonding between the ILs and  NH3 and hierarchical pores. To 
further improve the  NH3 adsorption performance, various 
task-specific ILs with multiple hydrogen-bond interaction 
sites/complexation sites and porous supports with different 
pore sizes were utilized to develop a variety of SILP mate-
rials, such as multiphoton ILs@HZSM-5 [152], hydroxyl 
ammonium protic ILs@MCM-41 [153], Zn-based ILs@
FDU-12 [154], and MILs  [Bmim]2[Co(NCS)4]@silica 
composites [155]. Enhanced  NH3 adsorption capacity and 
excellent adsorption–desorption performance were achieved 
in these materials, presenting great potential for application.

Encouraged by their tunable pore structure and chemi-
cal composition, MOFs have also been exploited as porous 
supports for constructing versatile SILPs. Han et al. [156] 
fabricated a highly stable IL@MOF composite material for 
 NH3 capture for the first time.  [BOHmim][Zn2Cl5]@MIL-
101(Cr) exhibited superior  NH3 uptake of 24.12 mmol  g−1 

at 298 K and 1 bar, and such high  NH3 adsorption capac-
ity could be maintained under humid  NH3 conditions. This 
excellent performance was related to the synergistic effect of 
multiple adsorption sites and the large free transport space 
provided by alkyl chains. Moreover, a small amount of 
adsorbed water provided additional  NH3 uptake, as shown in 
Fig. 11b. Subsequently, a [CAM][Cl]@MIL-101(Cr) com-
posite was developed, and high-purity  NH3 was obtained in 
one step, as proven by a breakthrough experiment of an  NH3/
CO2 mixture showing superhigh  NH3/CO2 separation factor 
of up to 1518 [157]. Shi et al. [158] anchored 43.4 wt% LiCl 
into the nanopores of MIL-53-(OH)2 by charge transfer and 
hydrogen bonding for  NH3 capture. A record  NH3 adsorption 
capacity (33.9 mmol  g−1 at 1.0 bar and 25 °C) and superior 
selectivity of  NH3/N2 (3571 at 25 °C),  NH3/CO2 (30.3 at 
80 °C) and  NH3/H2O (15.6 at 50 °C) were achieved owing 
to synergistic action of  NH3 coordination with the highly 
dispersed  Li+ in the MOF nanopores and hydrogen bonding 
of  NH3 with  Cl−.

SILPs simultaneously improved the  NH3 adsorption 
capacity and promoted  NH3 transport, but the loading of ILs 
was always lower; therefore, the merits of liquid ILs were not 
fully displayed for the separation process [159–161]. A novel 
encapsulated ionic liquid (ENIL) was developed to achieve 
high IL loading and fully utilize the characteristics of ILs 
in confined spaces. Simultaneously, this material achieved 
the discretization of ILs from continuous to small drops, 
thereby increasing the surface contact area and improving 
the mass transfer rate. Palomar et al. [162, 163] prepared 

Fig. 13  a Schematic diagram of supported ILs phase materials. b Schematic diagram of mechanism of  [BOHmim][Zn2Cl5]@MIL-101(Cr).  
Reproduced with permission from Ref. [156]. Copyright 2020, Elsevier
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an ENIL by confining  [EtOHmim][BF4] into hollow car-
bon submicron capsules. The unique core–shell structure as 
shown in Fig. 14 not only preserves the high  NH3 affinity 
and fluidity properties of ILs but also accelerates the absorp-
tion–desorption process compared with the continuous ILs 
phase. High IL content (> 85 wt%), nearly identical sorption 
capacity to pure ILs, and excellent regeneration properties 
were achieved in ENILs, providing a pioneering strategy for 
designing novel IL composites with ultrahigh IL loading for 
efficient  NH3 separation.

5  Porous Liquids for  NH3 Ab‑Adsorption

Porous liquids (PLs) are attractive materials that combine 
the permanent porosity of porous solids with liquid fluid-
ity so that they can be easily coupled with existing process 
equipment, such as pumps and pipelines. Different from tra-
ditional liquids consisting of only random, transient cavi-
ties between the liquid molecules (here called “extrinsic” 
porosity), PLs are made of porous hosts possessing persis-
tent empty cavities (called “intrinsic” porosity), which are 
able to work as a gas transport pathway to provide rapid 
adsorption and high capacity. The concept of PLs was first 
proposed by James and coworkers [164] and can be divided 
into three types according to the existing way of the porous 
hosts as shown in Fig. 15 [165–167]. Type I is a neat liq-
uid composed of fluid hosts with empty cavities, whereas 
Type II and Type III are essentially dissolved empty hosts or 
homogeneously dispersed framework materials in sterically 
hindered solvents, respectively. To date, the application of 
PLs has focused on gas capture and storage [167–170], while 
the synthesis of stable PLs remains a significant challenge 

owing to intermolecular self-filling, collapse, or decom-
position of the organic hosts and serious settling of solid 
particles.

The synthesis of fluid hosts with empty cavities is the key 
to obtaining Type I PLs. Giri et al. [171] grafted medium-
length alkyl tails onto the surfaces of rigid organic imino-
spherand cages to synthesize PLs. Alkylation obviously 
reduced the melting point of the cage from > 300 °C to as 
low as 50 °C, making it possible to obtain fluid cages with 
empty cavities at relatively low temperatures. The liquida-
tion of reported porous materials is also an effective method 
for preparing PLs (PLs prepared by this method are also 
called Type IV PLs, in which porosity is offered by non-
discrete molecular species [172]). For example, Gaillac 
et al. [173] studied the melting process and liquid nature 
of porous ZIF-4 using in situ variable temperature XRD, 
ex situ neutron pair distribution function (PDF), and first-
principles molecular dynamics (FPMD). They verified that 
the porosity of ZIF-4 was retained after melting process. 
In addition, hollow carbon or silica spheres grafted with 
ILs is another facile strategy for preparing a new PL phase. 
Zhang et al. [167] grafted positively charged organsilane 
onto the surface of hollow silica spheres, followed by an 
anion exchange reaction to prepare HS-liquid at room tem-
perature, as shown in Fig. 16. TEM images,  N2-sorption 
isotherms, and small-angle X-ray scattering (SAXS) data 
revealed that well-defined hollow spheres were obtained. 
More importantly, the empty cavities significantly promoted 
 CO2/N2 separation, showing attractive properties for target-
specific applications, such as  NH3 separation.

In addition, the various MOFs and functional solvents 
used for  NH3 capture, as reported above, offer more 

Fig. 14  a SEM image, b TEM images of hollow carbonaceous submicrocapsules. c TEM image of ENIL prepared with  [EtOHmim][BF4].  
Reproduced with permission from Ref. [163], Copyright 2016, Royal Society of Chemistry
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opportunities for preparing Type-III PLs. The combination 
of MOFs with specific sterically hindered solvents, such as 
ILs, is expected to form new PLs with high gas uptake and 
separation performance. For example, Type-III PLs, includ-
ing ZIF-8-[Bpy][NTf2] [174] and ZIF-8-[DBU-PEG][NTf2]2 
[168], were obtained by dispersing MOFs in ILs. Recently, 
Gomes et al. [27] also selected ZIF-8 and Mg-MOF-74 as 
porous hosts and dispersed them in  [P66614][NTf2], as shown 
in Fig. 17. The results showed that PLs were obtained by 
ZIF-8 but not by Mg-OF-74 because of its small pore aper-
tures (3.4 Å) preventing the penetration of large long-chain 

cations. As a result, remarkable gas uptake performance (up 
to 150% more nitrogen and 100% more methane than pure 
IL) was realized at 303 K and 5 bar.

Overall, although examples of PLs for  NH3 ab-adsorption 
have not been reported, the development of PLs for  NH3 cap-
ture is attractive and promising from the perspective of fun-
damental research and practical applications. Importantly, 
the exciting results of  CO2 capture realized by PLs reveal 
their promising application in efficient  NH3 capture. At the 
same time, the aforementioned advanced ILs and various 
CPMs provide rich experience for designing novel PLs for 
 NH3 capture.

6  Emerging Membranes for  NH3 Separation

Membrane separation is another potential option for  NH3 
capture because of its easy operation, low device occupancy, 
and energy saving [175–177]. Membrane separation can 
directly yield gaseous ammonia components without regen-
eration and has become increasingly attractive. However, 
unlike the extensive research on membranes for classical 
gases such as  CO2, studies on  NH3 capture using membranes 
are limited. Current research has primarily focused on the 
design of membrane materials to improve  NH3 permeability 
and selectivity. One effective measure is to introduce inter-
action sites to enhance  NH3 adsorption on the surfaces of 
membranes. Accelerating the  NH3 diffusivity in the mem-
brane by constructing transport pathways is another effective 
strategy. Table 5 displays the  NH3 separation performances 
of representative membrane materials.

Polymeric membranes are the most typically reported 
 NH3 separation membranes because of their high 

Fig. 15  Schematic diagram of traditional liquids and three different types of PLs.  Adapted from Ref. [164]

Fig. 16  Two-step synthetic strategy for porous liquid fabrication. HS, 
hollow silica, OS, organosilane.  Reproduced with permission from 
Ref. [167]. Copyright 2014, John Wiley and Sons
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Fig. 17  a Preparation of the porous liquids. b Molecular simulation of the porous liquids show empty pores in ZIF-8. c Dissolution of  N2 in the 
PLs.  Reproduced with permission from Ref. [27]. Copyright 2018, John Wiley and Sons

Table 5  NH3 separation performance of membrane materials

a Testig condition includes testing temperature and transmembrane pressure. bRT represents the room temperature. cThe thickness of separation 
layer is ~ 15 μm. dThe thickness of separation layer is 15–50 nm

Membrane Material PNH3(Barrer) αNH3/N2 αNH3/H2 Conditiona References

PDMS 6551.9 27.5 21 °C [179]
TPX 188.4 25.5
LDPE 15 25
ETFE 17.3 34.6
PTFE 0.5 1.3
FEP 2.5 2.5
Hyflon AD40 17.2 3.0
Hyflon AD60 41 3.0
Teflon AF1600 228.8 2.9
Teflon AF2400 1635.4 3.0
SBI-26 (CH-cast) 473 591 20 °C,100 kPa [182]
SBI-26 (THF-cast) 277 146
POCE-PSS 612 50.6 50.1 25 °C,100 kPa [181]
Pebax 1657 595.8 406.7 70.1 RTb,100 kPa [184]
Nexar 496 566 88.6 RTb,100 kPa [186, 187]
POI-GI-POSS-0 489 157.7 104 25 °C, 110 kPa [189]
POI-GI-POSS-0.1wt% 716 477.3 88.4
POI-GI-POSS-0.5wt% 841 467.2 25.8
POI-GI-POSS-1.0wt% 1032 543.2 21.3
POI-GI-POSS-2.0wt% 434 4.6 10.3
POI-GI-POSS-5.0wt% 528 5.2 9.9
POI-GI-POSS-8.0wt% 210 1.7 1.8
ZIF-21c 25,910 35 12 RTb, ~ 141 kPa [195]
MXene 18.4 24.6 14.53 100 kPa [193]
PB/Au/AAOd 5.48 > 100 40 100 kPa [194]
CA/PEG/MWCNTs-0 204 5 RTb,300 kPa [201]
CA/PEG/MWCNTs-5wt% 2127 70.9
CA/PEG/MWCNTs-10wt% 2390 95.6
CA/PEG/MWCNTs-15wt% 17,957 4.3
CA/PEG/MWCNTs-20wt% 21,017 2.2
CA/PEG/MWCNTs-30wt% 24,612 1.1
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processability, in which gas permeation basically obeys the 
solution-diffusion mechanism. The  NH3 transport prop-
erties of commercial cellulose acetate (CA) membranes 
were reported in 2006, and the results showed that the 
sorption process, dominated by hydrogen bond interac-
tions between the  NH3 molecules and membranes, played 
an important role in  NH3 permeation [178]. Afterward, 
various polymers were exploited as membranes for  NH3 
separation, such as fluorinated polymers [179, 180]. How-
ever, these polymeric membranes showed great permeabil-
ity but little selectivity and still suffered a trade-off effect 
between permeability and selectivity (called the Robeson 
upper bound).

To overcome the above challenges, researchers have 
proposed the design of polymeric membranes with 
 NH3-interacted sites, such as sulfonated copolymers, to 
enhance the selective adsorption and solubility coefficients 
of ammonia. Phillip et al. [181] regulated the domain size of 
sulfonated block copolymers and the degree of crosslinking 
to affect  NH3 separation performance. The results confirmed 
that the membrane designed using this strategy could retain 
high selectivity (mixed  NH3/N2 selectivity > 90) compared 
to a Nafion membrane. Ansaloni et al. [182] further adjusted 
the membrane morphology of midblock-sulfonated penta-
block ionomers (SBI-26 and SBI-52) by changing the type of 
casting solvent used to construct micro-domains conducive 
to  NH3 separation. Recently, fluorinated sulfonic acid poly-
mer/ceramic composite membranes with high thermal stabil-
ity were developed, in which the acidic sulfonic groups on 
the polymer chains acted as  NH3 sites, exhibiting  NH3 sep-
aration performance with  NH3 permeance of > 2.31 ×  10−6 

mol  m−2  s−1  Pa−1,  NH3/H2 separation factor of 90, and  NH3/
N2 of 800 at 50 °C in a mixed system [183].

In addition, incorporating  NH3-interacted small mol-
ecules, such as ILs, into the polymer matrix is expected to 
improve the  NH3 permeability and selectivity. As expected, 
the  NH3 permeability was remarkably enhanced with 
increasing IL content, benefiting from the enhanced  NH3 
solubility [184, 185]. It is worth mentioning that the mod-
erating interaction between membranes and  NH3 plays an 
important role in increasing  NH3 solubility, while exces-
sively strong interactions also restrict  NH3 diffusivity. 
Therefore, the selection of appropriate ILs, such as hydroxyl 
task-specific ILs, is crucial for preparing membranes with 
high permeances. The optimum  NH3 permeability reached 
3729.3 barrer with an  NH3/N2 ideal selectivity of 1110.8, 
which are increases of 265.3% and 163.7%, respectively, 
compared to neat Pebax membrane. In addition, ILs enrich 
the ionic domains of block polymers to construct effective 
gas transport channels. The self-assembled  NH3 transport 
channels induced by ILs and high  NH3 affinity (Fig. 18) 
cooperatively promoted an increase in the  NH3 diffusion and 
solubility coefficients, resulting in superior  NH3 separation 
performance with an  NH3 permeability of 3565 barrer and 
 NH3/N2 and  NH3/H2 selectivity as high as 1865 and 364, 
respectively [186, 187].

Effective strategies include constructing a transport chan-
nel and increasing the free volume of the membrane to pro-
mote gas transport/diffusivity and enhance ammonia separa-
tion. Wang et al. [188] first adopted a simulation method to 
verify the  NH3 separation possibility of 2D-polyphthalocya-
nine (PPc) membranes with intrinsic pores. A high  (H2/N2)/

Fig. 18  Schematic diagram of IL/Nexar hybrid membranes for  NH3 separation  (Reproduced with permission from Ref. [186]. Copyright 2021, 
Elsevier
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NH3 selectivity of  107 was obtained at room temperature. 
Inspired by the above idea, Zaripov et al. [189] further pre-
pared bulky agent octaglycidyl polyhedral oligomeric silses-
quioxane (Gl-POSS) branched membranes, in which the dis-
ordered nanopores formed by the polymer segments greatly 
promoted  NH3 transport. High ideal selectivity was achieved 
at Gl-POSS contents of 0.5–1 wt%. Subsequently, various 
membrane materials such as porous silica [190], ceramics 
[191], and zeolites [192], and other inorganic membranes, 
have been developed to achieve selective separation with the 
help of different pore sizes. However, unsatisfactory sepa-
ration performance has encouraged researchers to further 
develop novel membranes to meet application requirements. 
Strategies combining porous properties and preferential 
adsorption have been proposed. For example, Petukhov et al. 
[193] prepared a 2D MXene membrane for  NH3 separation 
in which acidic termination groups of interlayer galleries 
greatly promoted basic  NH3 adsorption, and the increase 
of interlayer distance caused by vapor adsorption within 
MXene’s stacked structure also contributed to enhanced  NH3 
diffusivity. Similarly, ultra-thin Prussian blue (PB) analog 
membranes with high  NH3 sorption capacity, pore channels 
(size of cavities < 0.3 nm), and high transformation ability 
of ammonia into  NH4

+ were prepared, achieving high  NH3 
permeance exceeding 0.3  m3 (STP)  m−2  bar−1  h−1 and ulti-
mate ideal  NH3/H2 selectivity of 40 and  NH3/N2 selectivity 
over 100 [194]. Furthermore, Wei et al. [195] coupled pref-
erential adsorption and the seizing effect to prepare a ZIF-
21 membrane with ~ 2.8 Å polar channel. Polar pores with 
limited apertures could efficiently seize  NH3 molecules from 
gas mixtures. These two factors jointly promoted the ZIF-21 
membrane to exhibit a high  NH3 permeance of 1727 GPU 
with  NH3/N2 and  NH3/H2 ideal selectivities of 35 and 12, 
respectively. Considering the similarity between  NH3 and 
 H2O in terms of polarity and molecular size, Yu et al. [196, 
197] developed an  Na+-gated nanochannel membrane via a 
secondary growth method, which allowed small and polar 
 NH3 molecules to permeate while blocking other non-polar 
and/or larger molecules, exhibiting remarkable selectivity 
 (NH3/H2 > 4280 and  NH3/N2 > 10,000 at 250 °C and 35 bar), 
excellent chemical stability, and long-term running stability.

Mixed matrix membranes (MMMs) have attracted 
increasing attention for  NH3 separation in recent years 
because of the synergistic effect of both polymer and porous 
components [198–200]. Raza et al. [201] introduced car-
boxylic group-functionalized multiwall carbon nanotubes 

(COOH-MWCNTs) into a CA/PEG polymer matrix, which 
notably increased the permeability of  NH3 and  N2 owing to 
the enhanced voids and free volume. In addition, HKUST-1/
PVDF MMMs were exploited by Cohen et al. [202] because 
HKUST-1 can bind with ammonia via Lewis acid–base 
interactions. Moreover, the HKUST-1 MMMs exhibited 
outstanding structural stability and maintained their ammo-
nia capacity better than unstable powder under humid 
conditions. Our group [203] further combined HKUST-1 
and protic IL  [Bim][NTf2] to improve  NH3 separation per-
formance by employing hydrogen bond interactions. The 
optimal ternary MMM exhibited ideal  NH3/N2 and  NH3/
H2 selectivities of 530.1 and 94.2, respectively. The opti-
mal  NH3 permeability reached up to 3680.0 barrer, which 
is 260% and 129% higher than those of the pristine Pebax 
membrane and Pebax/HKUST-1 MMM, respectively.

7  Conclusions and Prospects

To effectively capture such hydrogen-rich, carbon-free, but 
highly corrosive molecules with triple the properties of 
energy, environment, and resources, great strides have been 
made in the development of advanced materials in the last 
decade. In this review, recent advances in  NH3 capture mate-
rials, particularly those over the past 5 years, were briefly 
summarized. Major obstacles for specific applications, such 
as absorbents (functional solvents), adsorbents (porous sol-
ids), and membranes, were identified based on extensive 
studies. The interaction sites and transport pathways play 
a crucial role in improving  NH3 capture performance. The 
potential application of the emerging hybrid technology, ab-
adsorbents, using porous liquids as key capture materials, 
was also discussed. This review answers the question of how 
to connect advanced materials and  NH3 capture technology 
via modulation of interaction sites and transport pathways.

However, for these  NH3 capture technologies to be 
accepted as green strategies, the structure–property rela-
tionships between the materials and special parameters need 
to be further clarified, for which many challenges must be 
faced. In other words, there are worthwhile directions for 
researchers to further develop single/hybrid material designs 
and applications from either experimental or theoretical per-
spectives. The following aspects could be considered:

1. Intelligent design & rational prediction Designing novel 
materials and predicting their  NH3 capture performance 
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via a combination of theoretical calculations and experi-
ments is highly desired. Various materials offer many 
possibilities for  NH3 capture; however, relying solely 
on experimental methods normally requires a long time. 
An effective strategy for obtaining an optimal solution 
is to utilize computational artificial intelligence (AI)-
assisted molecular design and high-throughput screen-
ing technologies. Specifically, the properties of exist-
ing ammonia capture materials can be analyzed and 
important structures for efficient  NH3 capture can be 
extracted to build data- and mechanism-driven modes 
to further guide the development of high-performance 
materials. Furthermore, exploiting hybrid materials with 
complementary components, such as PLs, MOF@COF, 
and COF@MOFs, based on such recognition to further 
widen the variety of materials and obtain unforeseen 
structures has the potential to improve  NH3 capture per-
formance. Interfacial properties, such as compatibility, 
interaction synergy, and growth mechanism, of hybrid 
materials are also worth exploring for further develop-
ment of novel materials. In addition, the determination 
of the synthesis conditions and process parameters with 
the assistance of mobile robotic chemists is the most 
promising method for shortening the research and devel-
opment process.

2. Excellent performance & high stability The develop-
ment of  NH3 capture materials with high capacity, fast 
transport, and good stability remains challenging. Vari-
ous functional materials have been developed based on 
the unique Lewis/Brønsted base and hydrogen bond 
formation properties of  NH3 molecules, while most of 
them still suffer from low capacity, slow kinetics, and 
structural collapse. In addition, although many  NH3 
capture materials have been reported, breathing mate-
rials with a flexible nature (energy-saving synergistic 
adsorption–desorption) and dynamic properties (kinetic-
induced non-equilibrium separation) are relatively lim-
ited. Therefore, the design of a robust system with both 
a high  NH3 capacity and soft porosity is a worthwhile 
direction to explore for practical applications.

3. Scale-up The large-scale preparation of materials should 
be considered to meet the requirements of industrial 
applications. Although significant progress has been 
achieved, especially in advanced materials for  NH3 
capture, most current research is still limited to labora-
tories, and the yields of some materials are very small. 
Effective measures to boost scaled-up production and 
industrial applications need to be taken, such as screen-
ing inexpensive raw materials, simplifying synthesis 
steps, and using environmentally friendly synthetic 
methods. Specifically, expensive raw materials can 

be replaced with low-cost ones to synthesize various 
materials for  NH3 capture using a one-step rather than 
multi-step method to synthesize materials to omit com-
plex purification process, using green solvents, such as 
water, as much as possible such as water to avoid volatile 
organic solvents. In addition, optimizing flow diagrams 
for chemical processes, heat exchange networks, and 
performing energetic–environmental–economic assess-
ments using process simulation software are expected 
to improve energy efficiency and reduce operating costs 
to accelerate the process of industrialization. In future, 
AI-assisted reaction simulations will be a powerful 
platform for exploring effective solutions to overcome 
the drawbacks of stepwise amplification and accelerate 
industrialization.

4. Practical evaluation The practical utilization conditions 
of various materials should be considered. Most cur-
rent studies have investigated capture performance under 
ambient pressure in pure gas. However, the composition, 
pressure, and  NH3 concentration of handling gases in 
real life are different, such as in the  NH3 synthesis pro-
cess  (NH3/H2/N2, > 10 MPa, 10%–20%  NH3), personal 
protective equipment  (NH3/air,  NH3 < 5000 ppm), and 
 NH3 decomposition process  (NH3/H2,  NH3 < 0.1ppm). 
Therefore, the data obtained in existing studies are far 
from reflecting realistic conditions. Based on the above 
analysis, it is necessary to upgrade existing equipment 
and perform operando characterizations to further evalu-
ate the actual performance and reveal mechanisms in 
the future. Specifically, existing equipment must be 
improved to match the handling conditions (pressure 
and composition) of product gases to obtain a more 
realistic evaluation. The design of the internals should 
be optimized to meet fluid mechanics requirements, 
thereby achieving excellent mass and heat transfer in 
the equipment. Operando characterizations should be 
performed under practical working conditions to track 
the ab/adsorption and desorption of  NH3 molecules 
from various materials and to study possible structural 
changes under actual conditions to further reveal separa-
tion mechanisms [110, 204, 205].

5. Integration process Absorption–adsorption–mem-
brane separation to develop an integrated technology to 
achieve self-adapting  NH3 capture is a promising direc-
tion for future research. Because massive amounts of 
 NH3-containing gases from various sources face differ-
ent separation requirements, multi-process integration is 
more efficient and applicable than a single technology. 
A rational process design for integrated technology is 
expected to achieve material cost and energy consump-
tion savings.
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Overall, functional solvents, porous solids, porous liquids, 
and membranes are potential alternatives for  NH3 capture. 
Although the road ahead is unknown, we firmly believe that 
various materials will become more competitive in the future 
through long-term and constant efforts.
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