Supporting Information for

Multifunctional Film Assembled from N-Doped Carbon Nanofiber with Co-N4-O Single Atoms for Highly Efficient Electromagnetic Energy Attenuation

Jia Xu^{1,2,#}, Bei Li^{2,#}, Zheng Ma¹, Xiao Zhang², Chunling Zhu^{1,} *, Feng Yan^{2,} *, Piaoping Yang¹ and Yujin Chen^{1, 2, $*$}

¹ College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, P. R. China

² Key Laboratory of In-Fiber Integrated Optics, College of Physics and Optoelectronic Engineering, Harbin Engineering University, Harbin 150001, P. R. China

Jia Xu and Bei Li contributed equally to this work.

***Corresponding authors. E-mail: chenyujin@hrbeu.edu.cn (Yujin Chen); yanfeng@hrbeu.edu.cn (Feng Yan); zhuchunling@hrbeu.edu.cn (Chunling Zhu)

S1 Calculation Formulas of Electromagnetic Properties

S1.1 The conduction loss (ε **^r) and polarization loss (** ε **_p^{***n***}). Based on Debye theory, the** relatively complex permittivity imaginary part (*ε"*) is deduced from:

$$
\varepsilon'' = \varepsilon''_p + \varepsilon''_c = \frac{\varepsilon_s - \varepsilon_\infty}{1 + \omega^2 \tau^2} \omega \tau + \frac{\sigma}{\omega \varepsilon_0}
$$
 (S1)

$$
\varepsilon''_p = \frac{\varepsilon_s - \varepsilon_\infty}{1 + \omega^2 \tau^2} \omega \tau
$$
 (S2)

$$
\varepsilon''_c = \frac{\sigma}{\omega \varepsilon_0}
$$
 (S3)

where,
$$
\varepsilon
$$
'' is the imaginary part of the complex permittivity, ε_{∞} is the optical permittivity, ε_s is the static permittivity, ω is the angular frequency, τ is the relaxation time for polarization, σ is the electrical conductivity, ε_0 is the vacuum permittivity (8.85×10⁻¹² F/m).

(S3)

S1.2 The reflection loss (*RL***).** The *RL* of absorbers can be calculated by utilizing the relative complex permittivity (ε_r) and permeability (μ_r) ,

$$
RL(dB) = 20 \lg \left| \frac{z_{in} - z_0}{z_{in} + z_0} \right|
$$
 (S4)

$$
Z_{in} = Z_0 \sqrt{\frac{\mu_r}{\varepsilon_r}} \tanh \left[\frac{2j\pi f d}{c} \sqrt{\mu_r \varepsilon_r} \right]
$$
 (S5)

where ε_r is the relative complex permittivity, μ_r is the relative complex permeability, Z_0 is the impedance of free space, Z_{in} is the input characteristic impedance, f is the frequency of electromagnetic wave, *d* is the absorber thickness, and *c* is the velocity of light $(3.0 \times 10^8 \text{ m})$ s⁻¹), respectively.

S1.3 The attenuation constant (*a***).** The α can be obtained by:

$$
\alpha = \frac{\omega}{\sqrt{2}c} \sqrt{\varepsilon' \mu' \left[\frac{\varepsilon''}{\varepsilon'} \frac{\mu''}{\mu'} - 1 + \sqrt{\left(1 + \left(\frac{\varepsilon''}{\varepsilon'}\right)^2\right) \left(1 + \left(\frac{\mu''}{\mu'}\right)^2\right)}\right]}
$$
(S6)

S1.4 The impedance matching degree (M_{z}) **can be given as:**

$$
M_z = \frac{2M'_{in}}{|Z_{in}|^2 + 1} \qquad (S7)
$$

where Z_{in}' refers to the real part of Z_{in} . The optimal impedance matching of an absorber is achieved at $M_Z \rightarrow 1$.

S2 Supplementary Figures and Tables

Fig. S1 SEM image of NCF

Fig. S2 SEM image of Co–NPs/NCF

Fig. S3 The distribution diagram of Co NPs diameter of Co–NPs/NCF

Fig. S4 HAADF–STEM image of Co–NPs/NCF and corresponding elemental maps

Fig. S5 XPS survey spectra of NCF, Co–NPs/NCF, Co–N4–O/NCF and Co–N4/NCF

Fig. S6 The high–resolution Co 2*p* XPS spectra of Co–NPs/NCF, Co–N4–O/NCF and Co– N4/NCF

Fig. S7 The high–resolution C 1*s* XPS spectra of (**a**) NCF, (**b**) Co–NPs/NCF, (**c**) Co–N4– O/NCF and (**d**) Co–N4/NCF

Fig. S8 The high–resolution N 1*s* XPS spectra of (**a**) NCF, (**b**) Co–NPs/NCF, (**c**) Co–N4– O/NCF and (**d**) Co–N4/NCF

Fig. S9 Co-Nx contents of Co–NPs/NCF, Co–N4–O/NCF and Co–N4/NCF

Fig. S10 The high–resolution O 1*s* XPS spectra of (**a**) NCF, (**b**) Co–NPs/NCF, (**c**) Co–N4– O/NCF and (**d**) Co–N4/NCF

Fig. S11 Raman spectra of NCF, Co–NPs/NCF, Co–N4–O/NCF and Co–N4/NCF

Fig. S12 The EXAFS fitting curves of Co–N4–O/NCF at *r* space

Sample	Path	C.N.	R(A)	$\sigma^2 \times 10^3$ (Å ²)	ΔE (eV)	R factor
Co foil	$Co-Co$	12	2.49 ± 0.01	6.2 ± 0.1	7.6 ± 0.2	0.001
Co ₃ O ₄	$Co-O$	4.2 ± 0.4	1.92 ± 0.01	1.9 ± 0.8	2.3 ± 1.3	0.006
	$Co-C0$	4.4 ± 1.8	2.88 ± 0.02	4.1 ± 2.6	2.5 ± 3.2	
	$Co-O$	5.0 ± 2.6	3.34 ± 0.02	3.2 ± 3.0	-2.8 ± 3.4	
CoPe	$Co-N$	4.1 ± 0.6	1.91 ± 0.01	2.5 ± 0.8	-5.2 ± 3.1	0.017
	$Co-C$	$6.9{\pm}2.1$	3.00 ± 0.02	2.6 ± 1.7	6.9 ± 3.3	
$Co-N4-O/NCF$	$Co-N$	4.0 ± 0.2	1.96 ± 0.03	2.2 ± 2.2	-4.1 ± 2.6	0.017
	$Co-O$	1.0 ± 0.1	1.71 ± 0.05			
$Co-N_4/NCF$	$Co-N$	3.9 ± 0.2	1.92 ± 0.02	19.0 ± 4.2	-8.8 ± 3.0	0.009

Table S1 EXAFS fitting parameters of sample and at the Co K-edge $(S_0^2=0.77)$

C.N.: coordination numbers; *R*: bond distance; σ^2 : Debye-Waller factors; ΔE : the inner potential correction.

R factor: goodness of fit.

* fitting with fixed parameter.

 So^2 was set to 0.77 according to the experimental EXAFS fit.

Fig. S13 HRTEM image of Co–N4/NCF

[Nano-Micro Letters](https://springer.com/journal/40820)

Fig. S14 EXAFS fitting curves of Co–N4/NCF at *r* space

Fig. S15 *μ'*–*f* and *μ″*–*f* curves of NCF, Co–NPs/NCF, Co–N4–O/NCF and Co–N4/NCF

Fig. S16 Cole–Cole plots of NCF, Co–NPs/NCF, Co–N4–O/NCF and Co–N4/NCF

Fig. S17 *σ* of NCF, Co–NPs/NCF, Co–N4–O/NCF and Co–N4/NCF

Fig. S18 Top and side views of (**a**) C–N, (**b**) Co–N4 and (**c**) Co–N4–O configurations

Fig. S19 (**a**) Mulliken population distributions and the charge density difference of C-N configurations. (**b**) Dipole moment values of C–N configurations. (**c**) The calculated projected density of states (DOSs) of C–N configurations

Configuration	Elements	Mulliken charge (e)
$Co-N4$	Co	$+1.13$
	N1, N2, N3, N4	$-0.45, -0.45, -0.45, -0.45$
$Co-N4-O$	Co	$+1.49$
	N1, N2, N3, N4, O	$-0.43, -0.44, -0.46, -0.44, -0.55$
$C-N$	N1, N2, N3, N4	-0.34

Table S2 Mulliken charges of Co, O, and N atoms in the C-N, Co–N4 and Co–N4–O configurations

Table S3 Dipole moment values of C-N, Co–N4 and Co–N4–O configurations

Configuration	$Co-N4$	$Co-N4-O$	$C-N$
X-axial	0.17569	0.21091	0.17345
Y -axial	0.30327	0.33904	0.30306
Z-axial	0.07833	0.37087	0.07833

Fig. S20 The attenuation constants of NCF, Co–NPs/NCF, Co–N4–O/NCF and Co–N4/NCF

Fig. S21 The impedance matching characteristics of (**a**) NCF, (**b**) Co–NPs/NCF and (**c**) Co– N4/NCF

S3 Electromagnetic Simulation

The power loss density simulation in the range of 2-18 GHz was implemented by Computer Simulation Technology (CST) Microwave Studio. The boundary conditions were applied with the electric field along the *y* direction and the magnetic field along the *z* direction. Open (add space) boundary conditions were used in all directions. The model's width was 200×200 mm², the absorber's thickness was 1.5 mm, and the PEC's thickness was 1.0 mm.

Fig. S22 The model of CST simulation

Fig. S23 The power loss densities of NCF

Fig. S24 (**a**) The complex permittivity, (**b**) the attenuation constants and (**c**) the impedance matching characteristics of Co–N4–O/NCF film

Fig. S25 (**a**) The polar coordinate diagram and (**b**) RCS reduction of Co-N4-O/NCF film