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HIGHLIGHTS

• Multiple internal reflection-based absorption-dominant stretchable electromagnetic shielding thin film by incorporating liquid metal 
grid structure is developed.

• The device demonstrates high electromagnetic shielding effectiveness (SE)  (SET of up to 75 dB) with low reflectance  (SER of 1.5 dB 
at the resonant frequency).

• The shielding properties of the device can be tuned by adjusting the liquid metal patterned grid spaces upon strain.

ABSTRACT The demand of high-performance thin-film-shaped deform-
able electromagnetic interference (EMI) shielding devices is increasing for 
the next generation of wearable and miniaturized soft electronics. Although 
highly reflective conductive materials can effectively shield EMI, they pre-
vent deformation of the devices owing to rigidity and generate second-
ary electromagnetic pollution simultaneously. Herein, soft and stretchable 
EMI shielding thin film devices with absorption-dominant EMI shielding 
behavior is presented. The devices consist of liquid metal (LM) layer and 
LM grid-patterned layer separated by a thin elastomeric film, fabricated by 
leveraging superior adhesion of aerosol-deposited LM on elastomer. The 
devices demonstrate high electromagnetic shielding effectiveness (SE)  (SET of up to 75 dB) with low reflectance  (SER of 1.5 dB at the resonant 
frequency) owing to EMI absorption induced by multiple internal reflection generated in the LM grid architectures. Remarkably, the excellent 
stretchability of the LM-based devices facilitates tunable EMI shielding abilities through grid space adjustment upon strain (resonant frequency 
shift from 81.3 to 71.3 GHz @ 33% strain) and is also capable of retaining shielding effectiveness even after multiple strain cycles. This newly 
explored device presents an advanced paradigm for powerful EMI shielding performance for next-generation smart electronics. 
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1 Introduction

Recently, intelligent electronic devices have been growing 
rapidly to meet the demand in various fields ranging from 
communication facilities and wireless networks to portable 
and wearable hardware. However, the adverse effect encoun-
tered as a result of escalated use of these devices is the rise 
in electromagnetic pollution arising from electromagnetic 
interference (EMI), which not only threatens the functional-
ity and durability of electronic devices, but also affects sev-
eral biological processes in living beings [1–3]. As a result, 
development of EMI shielding materials has received a tre-
mendous boost [4–10]. Specially, EMI shields fabricated out 
of thin film materials are the current research hotspots that 
aim to match the trend of uprising conformal and highly inte-
grated compact electronics, ranging from wearable devices 
to high-end military and aerospace applications [11, 12]. At 
the same time, the need for real-time adjustable shielding 
performance to address intelligent application requirements 
like passing serviceable EM waves [13], information leak-
age suppression [14, 15], etc., has led to growing demand 
of engineering of EMI shielding materials with adjustable 
shielding properties. Therefore, development of soft, stretch-
able, and thin film-shaped EMI shielding materials with the 
ability to modulate shielding abilities can cater the demand 
of next-generation electronic systems.

While conventional metals and their alloys can function 
effectively as shielding materials due to their superior elec-
trical conductivity, inadequate resistance to corrosion and 
limited deformability constrain their applicability in EMI 
shielding [16, 17]. Additionally, high reflectivity of metals 
leads to secondary electromagnetic pollution [17]. In lieu of 
the use of metals, polymer-based EMI shielding materials, 
with various conductive fillers such as graphene, carbon fib-
ers, carbon nanotubes, and MXenes arranged into segregated 
structures or preferred orientations within the polymeric 
matrices, are widely used owing to their distinctive attributes 
like exceptional corrosion resistance, adequate deformability 
for application in conformal and wearable electronics, and 
tunable EMI shielding performances such as modulating the 
shielding effectiveness, and resonant frequency. [11, 18–24]. 
Additionally, the filler properties like surface morphology, 
aggregation, alignments, etc., can be specifically tuned to 
target electromagnetic waves in different bands or frequency 
ranges [25–28]. Recently, efforts have been made to develop 

such polymer-particle-based hybrid EMI shielding materials 
with low reflectivity through multiple internal reflections 
[29, 30], but in most cases, low reflectivity is simultaneously 
associated with low absorptivity of the conducting materials 
[31, 32]. While MXenes, a class of two-dimensional conduc-
tive materials, exhibit enhanced absorption efficiency, their 
oxidation-induced degradation under environmental condi-
tions significantly limits their potential for practical applica-
tions [33, 34]. At the same time, incorporating these fillers to 
achieve higher shielding performances either requires higher 
filler to polymer ratio or micro-level engineering for specific 
filler orientations, which often makes fabrication and pro-
cessing steps challenging. Moreover, their repeated defor-
mations may degrade overall electro-mechanical properties 
of the composites due to various factors like misorientation 
of the trapped fillers, debonding at the polymer-filler inter-
faces, micro-crack initiation and propagation, etc., thereby 
threatening their longtime usage [21].

To address the aforementioned issues, it is not only nec-
essary to explore conductive materials that can effectively 
shield under deformation, but also deduce methodologies 
that can utilize these materials to achieve low reflectivity-
based EMI shielding functionality. For the first case, liquid 
metal (LM), a promising candidate due to its commendable 
electrical conductivity and fluidity [35–43], has recently 
emerged as the forefront material for development of soft 
and stretchable EMI shielding materials [44–48]. How-
ever, given its metallic properties, this class of materials 
still exhibit high reflectivity. As a solution to the second 
case, foam structures have been widely used as effective 
absorption-dominant materials, but their high void content 
increases their thickness [49, 50]. A few recent studies sug-
gest an alternative approach of usage of conductive grid pat-
terns to achieve low reflection and high absorption at spe-
cific frequencies where the minimum reflection is achieved 
at the resonant frequency on matching the wavelength of 
the electromagnetic wave (EMW) with the grid period [24, 
29]. This method is quite promising in terms of significantly 
reducing the size of the device, however, certain challenges 
persist, viz., poor choice of materials that can challenge the 
structural stability for prolonged use and time-intensive, 
optimization-critical printing technologies.

This study presents a soft and stretchable thin-film-shaped 
liquid metal grid-patterned device (LMGD) for effec-
tive EMI shielding, featuring low reflectivity and superior 
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absorption-dominant shielding effects. The LMGD, com-
prising a liquid metal layer and grid pattern separated by 
an elastomer layer, achieved high electromagnetic shield-
ing effectiveness (SE) up to 75 dB due to multiple inter-
nal reflection-induced absorption behavior. The LM grid 
structure is obtained via aerosol deposition of LM using an 
airbrush through recyclable OHP line-stencils, offering 
rapid and cost-effective fabrication compared to conven-
tional printing methods. With minimal electromagnetic wave 
reflection  (SER < 1.5 dB at resonant frequency) determined 
by the LM grid geometries, the LMGD’s stretchable and 
highly elastic properties enabled tunable shielding abilities 
by adjusting grid spacing under strain. Notably, at a strain 
value of 10%, the resonant frequency recorded 77 GHz, 
which corresponds to automotive radar band used in self-
driving cars with ADAS (Advanced Driver Assistance Sys-
tem) [51, 52]. Additionally, it exhibits excellent shielding 
retention after multiple strain cycles, attributed to the pre-
served continuity of embedded LM structures. To the best of 
our knowledge, this study reports a significant advancement 
in the field of EMI shielding devices, exhibiting the highest 
performances of SE in terms of low reflection, high absorp-
tion properties, and SE stability and retention maintained 
after repeated external deformations.

2  Experimental Section

2.1  Materials

Eutectic Gallium Indium alloy (EGaIn) was obtained from 
Indium Corporation, USA. DragonSkin 10 medium, an 
ultrastretchable two-component elastomer, was obtained 
from Hyup Shin, Korea. OHP sheets for preparing stencils 
were obtained from Coupang, Korea. All the samples were 
casted in laboratory-scale square-shaped petri dishes.

2.2  Fabrication of LMGD

Uncured silicone elastomer was first prepared by mixing 
components A and B in a 1:1 weight ratio in a paper cup. 
After thorough stirring, the resulting mixture was spin-
coated onto an acrylic plate (10 cm × 10 cm, coated with 
Ease-Release, a general-purpose releasing agent) using a 
spin coater (Dongah Trade Corp ACE-200) at 1000 rpm 

for 90 s. Subsequently, the spin-coated elastomer layer was 
cured in an oven at 100 °C for 5 min to render a thin, semi-
cured silicone layer. The OHP film stencil (designed using 
Silhouette Cameo 4), consisting of parallel negative spaces, 
was positioned precisely on the elastomer film, and EGaIn 
was evenly distributed on the surface using an airbrush 
(Monster Brush 001) by maintaining a distance of 15 cm 
from the substrate. The stencil was then rotated by 90° and 
LM was re-spray-coated to obtain the grid design. Finally, 
uncured silicone was spin-coated after removing the stencil 
and subsequently cured to produce the LM grid elastomer 
film. To obtain the secondary LM layer, another stencil con-
sisting of negative space equivalent to the desired area was 
used to spray coat LM on the first film and then encapsulated 
by elastomer, realizing the final device. The detailed process 
is illustrated in Fig. 1 along with its technical aspects and 
advantages in the introduction section. For EMI SE meas-
urements, square samples having dimensions 10 cm × 10 cm 
were prepared, whereas for mechanical and electrical char-
acterizations, smaller samples of 2.5 cm × 2.5 cm were pre-
pared to fit the grippers of universal testing machine.

2.3  Characterization

The EMI SE measurements were carried out using Keysight 
N5291A vector network analyzer assisted by a free space 
measurement system (EMLabs FS-110). All resistance-
related measurements were carried out using benchtop 
multimeter (Keysight 34461a). The mechanical proper-
ties of the samples were assessed using a universal testing 
machine (Quasar 2.5 single column). Tilting and adhesion 
test images were captured using a Phoenix 300 tilting con-
tact angle measurement system, and all microscopic images 
were captured using an Olympus CX23 instrument.

2.4  Measurement of EMI SE

The network analyser method was used in this study for far-
field EMI SE measurements. The EMI shielding effectiveness 
in the far field can be calculated by measuring the scattering 
parameters  (S11,  S21,  S22,  S12), based on which reflectance ( R ), 
transmittance ( T ), and absorbance ( A ) were calculated accord-
ing to the following equations [53, 54]:
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Total shielding effectiveness  SET, reflective shielding effec-
tiveness  SER, and absorptive shielding effectiveness  SEA can 
be calculated using T, R, and A, respectively, according to the 
following equations:

(1)R = ||S11||
2
= ||S22||

2

(2)T = ||S12||
2
= ||S21||

2

(3)A = 1 − R − T
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)
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= SE
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3  Results and Discussion

3.1  LMGD Designing

Figure 1a illustrates the proposed concept of using an LM 
grid and an LM layer to maximize the absorption of incident 
EM waves through multiple internal reflections within the 
device. As shown in Fig. 1b, the LM grid and the LM layer 
are separated by an elastomeric layer that acts as a physi-
cal separator between the LM grid and the LM layer and 
facilitates space for the multiple internal reflection to occur. 
The grid structure is capable of acting as an inductive filter 
circuit, allowing EM waves of specific wavelengths ideally 
matching with grid period to pass through it [29, 55], while 
encountering reflection in the LM layer behind to enable 
multiple internal reflections or scattering within the device 
between the grid and layer. Figure 1c describes the over-
all fabrication process of LMGD film-type EMI shielding 
device. In order to guarantee both safety and durability of 
the device for prolonged utility and the ability to adapt to 
stretching of various degrees, DragonSkin—an ultrastrech-
able silicone—was chosen as the matrix elastomer due to 
its exceptional stretchability and easy processing. In order 
to embed desired LM designs in the elastomer, there are 

Fig. 1  a Schematic diagram illustrating the concept of maximization of incident EM wave absorption with lower reflected waves through mul-
tiple internal reflections in LMGD. b Schematic diagram showing the different components of the designed LMGD. c Schematic diagram illus-
trating the grid architecture fabrication using two-step spray coating of LM on a stretchable and elastic substrate through recyclable OHP stencil
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number of methods to choose from that have emerged in the 
recent years. Although replica molding followed by plasma 
bonding for fabricating soft microfluidic channels in rigid 
silicones, followed by injection of LM through them is a 
commonly employed technique to obtain stretchable and 
conductive LM patterns, the method encounters several chal-
lenges when applied to materials like soft and stretchable 
silicones (e.g., DragonSkin or Ecoflex) [56]. Silicone oils 
present in such soft silicones can migrate to the surface dur-
ing plasma treatment, causing interference with the plasma 
bonding process [57]. Moreover, injecting LM poses a risk 
of damaging the device due to the injection hole, potentially 
compromising its mechanical properties. At the same time, 
high pressures required to fully inject LM cannot be sus-
tained by the thinness and the intrinsic low elastic modulus 
of the elastomers. Therefore, a modified lithography-free 
method to fabricate liquid metal designs on the silicone elas-
tomer was adopted that followed a two-step spray coating 
of LM through a recyclable OHP stencil using an LM filled 
airbrush (Fig. 1c). This process can not only substantially 
reduce LM design printing time but can also help in recy-
cling of deposited LM on the positive space of stencils [58]. 
As the target LM design is a grid structure, the correspond-
ing ideal stencil would consist of numerous unconnected 
islands to generate the negative space through which the 
LM is supposed to be spray coated (Fig. S1). However, in 
practical case, attaining such stencil designs is impossible, as 
the positive components of such a stencil will have no physi-
cal connections with each other and the stencil frame. In 
order to address this problem, the stencil is designed in the 
form of parallel positive and negative spaces, and by spray 
coating the LM through the stencil by rotating at 90° to the 
initial deposited LM patterned on the substrate, intersecting 
LM grid patterns can be generated. This feat was possible 
due to the superior surface adhesion of LM on elastomer 
surface over the stencil (discussed later in this section). As 
the LM exits the airbrush upon release of compressed air, 
the air flow breaks the LM into small particles that stick on 
the substrate by virtue of the adhesive oxide layers realizing 
an LM film. Once the LM grid patterns were formed by 
removing the stencil, uncured silicone elastomer was spin-
coated to encapsulate the LM grid patterns. The adhesion of 
oxide layer on elastomer prevents the LM design from shift-
ing against the forces during the spin-coating process and 
the arising friction force from the encapsulating elastomer. 
The thicknesses of the encapsulating layers can be precisely 

controlled by manipulating the spin-coating speed, as illus-
trated in Fig. S2. The film thickness (h) can be theoretically 
predicted using the Meyerhofer model, as represented by the 
modified equation [59]:

where the h0 is the initial thickness of the coating material. 
The ultimate thickness of the film is predominantly influ-
enced by the angular velocity and time, with these factors 
exerting a more substantial impact than other variables. 
Given thatW =

�

30
×� , where the �  is the number of revo-

lutions per minute. So, the ultimate thickness of the film can 
be conceptualized as a bivariate function dependent on both 
time (t) and angular velocity ( � ) [59].

As described previously, a two-step spray coating process 
was adopted to form LM grid patterns (Fig. 2a) on vari-
ous substrates. In order to ascertain the superior adhesion 
of LM on elastomer over stencil, a simple place-and-pick 
test was carried where an LM droplet was placed on one’s 
surface and the other’s surface was brought in contact and 
removed. As shown in Fig. 2b, c, the LM exhibited low sur-
face adhesion to the OHP film stencil. On comparing the 
tilting angles initiating slide of LM on the silicone elastomer 
and OHP film, it was observed that the LM droplet remained 
on the silicone surface until the tilting angle reached 90° 
(Fig. 2d). However, the LM droplet began to slide when the 
tilting angle on the OHP film (Fig. 2e) reached 45°, indicat-
ing the inferior adhesion of the LM on the OHP surface. 
This ensured that when the OHP stencil is removed from 
the DragonSkin substrate after spray coating LM, the LM 
adhered exclusively to the substrate’s surface, preserving 
the integrity of LM patterns. Therefore, the OHP stencil that 
was used to pattern the first set of parallel lines could be 
rotated at 90° to spray the second set of parallel lines per-
pendicular to the first set, resulting in LM grid patterns by a 
two-step spray coating on various substrates, including sili-
cones (Ecoflex 00–30, Exsil 100, Sylgard-184), glass, paper, 
low-density polyethylene (LDPE), fabric, nitrile gloves, and 
wood (Fig. 2f). These grid patterns can also be formed using 
different methods, including vacuum-assisted filling [60], 
injection and molding using an elastomeric stamp [61], and 
direct printing [62]. However, the two-step spray coating of 
LMs directly forms multi-junctioned LM patterns on various 
substrates without using any complicated printing or litho-
graphic methods. Spray coating using an airbrush atomizes 

(8)
h =

h0√
1+

4�W2h2
0
t

3�



 Nano-Micro Lett.          (2024) 16:248   248  Page 6 of 13

https://doi.org/10.1007/s40820-024-01457-7© The authors

the LM into small droplets with a thin oxide layer (1–3 nm) 
on the surface, resulting in a higher surface-to-volume 
ratio of the oxide layer, compared with the rheologically 
oxidized LM paste patterned on the surface using a brush 
[63]. This allowed consistent contact of the LM with the 
silicone substrate without displacement or aggregation, even 
after spin coating at a rate of up to 3,000 rpm and repeated 
stretching cycles (Fig. S3). In addition, the thickness of the 
LM layer can be precisely controlled by manipulating the 
airbrush–substrate distance and the spray coating duration 
(Fig. S4). Also, the stencils can be recycled by first removing 
the LM deposited on the stencil by simply swiping with an 
aqueous 0.1 M hydrochloric acid solution saturated cotton 
swab and finally washing the stencil surface with detergent 
(Fig. S5).

3.2  Mechanical Properties of LMGDs

In order to achieve multiple internal reflections of incident 
electromagnetic waves (EMW), a secondary LM layer was 
stencil printed on the described grid structure and encapsu-
lated (discussed in the next section). To demonstrate high 
deformability of the LMGDs, ultrastretchable and soft sili-
cone (DragonSkin) with high elongation at break (1000%) 
and a low modulus (0.5 MPa) was chosen [57]. DragonSkin 
exhibits remarkable flexibility allowing it to seamlessly 
conform to diverse surfaces when utilized as a mountable 
device. Additionally, the incorporation of LM within Drag-
onSkin does not impede the device’s ability to deform, ensur-
ing optimal adaptability during use. Figure 3a–i shows the 
410-µm-thick LMGD stretched uniaxially up to 400% by a 
manual stretcher, where the embedded liquid metal designs 
were observed to stretch accordingly while maintaining 

Fig. 2  a Illustration showing the design parameters of LM grid patterns. The blue and red scales represent grid spacing and grid gap respec-
tively. b, c Adhesive properties of the LM on DragonSkin (silicone elastomer) and OHP film, respectively. d, e Tilting angles of LM to initiate 
sliding on d DragonSkin and e OHP surfaces. f LM grid patterns formed by two-step spray coating on various substrates, including silicones 
elastomers (Ecoflex 00–30, Exsil 100 and Sylgard-184), glass, paper, low-density polyethylene (LDPE), fabric, nitrile glove, and wood. The 
scale bar is 1 cm
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interconnected electrode networks upon strain. Similarly, 
Fig. 3a-ii,iii show the states of the device in rolled and folded 
states respectively. Next, the device was subjected to uni-
axial stretching in order to compare its mechanical properties 
with its unpatterned elastomer counterpart. The presence of 
the LM patterns slightly increased Young’s modulus (from 
188.7 ± 5.9 to 201.4 ± 10 kPa) and decreased the elongation at 
break (from 1255 ± 105% to 1223 ± 104%) (Fig. 3b, c) owing 
to the stiffening effect from increased oxide layer due to spray 
coating [64, 65], and fracturing along the pattern respectively. 
When the strain value of both LMGD and unpatterned film 
approached near 600%–800%, fine sawtooth patterns could 
be observed in the stress–strain curve. This phenomenon is 
presumably due the fact that since the samples have three lay-
ers of elastomers, there are two elastomeric interfaces which 
might have suffered slight microscopic interfacial delamina-
tion at very high strain values.

Next, the LMGD was subjected to a series of cyclic load-
ing and unloading tests in order to ascertain its durability 
and longtime usability. First, as shown in Fig. 3d, the LMGD 
was subjected to progressing cyclic test involving a step-wise 
increment 100% strain till break at about 1200%. A few dis-
tinct sawtooth patterns were observed at higher strain values 
suggesting microscopic interfacial delamination. This was 
followed by 50 cycles of loading–unloading upto 500% and 
subsequent step-wise cyclic tests involving five cycles each 
till 700% of another identical LMGD sample (Fig. 3e, f). As 
seen in the graphs, the LMGD was elastically reversible due to 
minimal changes in the silicone polymeric network and rheo-
logical properties of the LM during strains. After the cycling 
tests, the LMGD exhibited a slight longitudinal deformation 
close to 5% (Fig. S6) occurring during the initial loading of 
the strain on the sample leading to some irreversible plastic 
deformation that can be attributed to the Mullins effect.

Fig. 3  a Photographs showing deformability of the LMGD: (i) stretchability (400%), (ii) rollability, and (iii) foldability. The scale bar is 2 cm. b 
Stress–strain curve of the LMGD and silicone elastomer film without the LM patterns. c Young’s modulus and elongation at break of the LMGD 
and silicone elastomer film without the LM patterns. Stress–strain curves of d LMGD for progressive tensile strains with single cycle from 0 to 
1200% at the intervals of 100%, e LMGD during consecutive 50 cycles of strains at 500%, and f LMGD for repeated progressive tensile strains 
with five cycles for strain values of 100%, 300%, 500%, and 700%
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3.3  EMI Shielding Performance of LMGDs

Considering the fact that due to the extreme deformability of 
both LM and elastomer, LM-patterned devices can exhibit 
good metallic conductivity even under strain [66–68], the 
LMGD was utilized as a soft and stretchable EMI shield-
ing material. As illustrated in Fig. 1b, the device consisted 
of three elastomer layers, out of which the top and bottom 
elastomer layers are meant for device encapsulation while 
the middle elastomer acts as the physical barrier between 
the LM layer and the LM grid pattern. This multilayered 
structure can effectively shield against EMI through mul-
tiple reflections of the EMWs within the device. In order 
to understand the shielding properties of the individual 
LM layers, the (SE) of both layers was tested. The LM thin 
layer exhibited a high EMI  (SET) more than 20 dB (Fig. 4a), 
whereas the LM grid patterns resulted in near-zero  (SER) at 
the resonant frequency (Fig. 4b). The phenomenon is pictori-
ally depicted in Fig. S7. Thus, by combining these layers, the 

EMWs are transmitted through the elastomer between the 
LM grid patterns but are reflected and absorbed by the thin 
LM layer in the polymer matrix by the multiple reflection 
and absorption between the two LM layers. The LMGD with 
a grid spacing of 3 mm showed a high shielding capability 
 (SET of 75 dB) at frequencies ranging from 50 to 110 GHz 
(Fig. 4c), owing to the multiple reflections and absorption of 
the EMWs between the layers. In particular, the minimum 
 SER was only 1.4 dB at a frequency of 81.3 GHz (Fig. 4d), 
which corresponds well with the results of theoretical cal-
culations (Note S1 and Table S1).

In addition, the grid spacings of LMGD can be manipu-
lated upon stretching the device in the direction parallel to 
the electrodes. Using the LMGD with an initial grid spac-
ing of 3 mm, when a strain value of 33% was applied to 
the device, shifting in the resonant frequency occurred from 
81.3 to 71.3 GHz (Fig. 4e). Theoretically, at this strain value, 
the grid spacing should increase to 4 mm; however, under 
practical cases, the width of the lines of LM grid would also 

Fig. 4  a EMI (SE) of LM layer for  EMWs at 50–110  GHz.  b  EMI (SE) of LM grid pattern with a grid spacing of 3 mm for  EMWs at 
50–110 GHz.  c EMI  (SE) and d reflection  (SER) of the 410-µm-thick LMGD with a grid spacing of 3 mm for EMWs at 50–110 GHz.   e  SER of 
the 410-µm-thick LMGD with a grid spacing of 3 mm when subjected to a strain of 33% for EMWs at 50–110 GHz. f  SER of the 410-µm-thick 
LMGD with a grid spacing of 4 mm for EMWs at 50–110 GHz
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stretch by an identical strain value. To verify the consistency 
of the resonant frequency shifting,  SER of another LMGD 
with an initial grid spacing of 4 mm was measured whose 
resonant frequency was found to be 72.5 GHz (Fig. 4f) 
which is only 1.68% higher than the value obtained when 
the LMGD with 3-mm grid spacing was stretched to 33%. 
This ability to tune the resonant frequency upon stretching 
enables the LMGD to be utilized as a stretchable electro-
magnetic shielding material that can effectively function as 
a frequency pass filter for EMWs [55, 69].

To investigate the effects of mechanical stretching of 
the device on EMI shielding effectiveness (SE) and corre-
sponding resonant frequencies, the LMGD was subjected 
to a strain of up to 66%, and the corresponding EMI shield-
ing properties were measured. As illustrated in Fig. 5a, the 
resonant frequency decreased monotonically with increasing 
strain, whereas  SET remained at a high average of 75 dB 
(Fig. 5b) which is well match with the theoretical results 

(Table S1). There was a slight increase in the  SER and a cor-
responding decrease in the  SEA while the strain increased, 
presumably owing to the decreased cross-sectional area of 
the polymer matrix during stretching. Upon strain, the EMW 
reflected from the LM layers directly propagated backward 
to the EMW source, resulting in a lower  SEA and a higher 
 SER for the LMGD (Fig. 5c). Interestingly, at a strain value 
of 10%, the resonant frequency recorded 77 GHz, which 
corresponds to automotive radar band used in self-driving 
cars with ADAS [51, 52]. Thus, it can be inferred that the 
shielding properties of the LMGD can be tuned by mere 
stretching to meet a certain target resonant frequency.

To investigate the durability of the LMGD, changes in 
the SE and effective resistance upon repeated loading and 
unloading tensile strain of 100% over 100 cycles were moni-
tored (Fig. S8). The average  (SET) after 100 cycles of strain 
was approximately 70 dB, which is similar to that of LMGD 
prior to the application of the tensile strain (Fig. S8a, b), 

Fig. 5  a Comparative analysis of resonant frequencies of the LMGD subjected to tensile strain from 0 to 66%. b EMI SE, including  SER and 
 SEA of the LMGD, averaged over frequencies 50–110 GHz at strains of 0–66%. c EMI  SER of the LMGD with a grid spacing of 3 mm under the 
loading tensile strain of up to 66%. d Comparison of  SEA of various EMI shielding materials, including metals (Ni-Co, Ag, and Cu nanowires) 
and others (carbon aerogel,  Fe2H2NiO4, and  Fe2O3), as a function of  SER. e Comparison of the  SEA/SER of various stretchable EMI shieling 
materials as a function of  SET. f Comparison of the  SET of various stretchable EMI shieling materials as a function of strain. The results were 
collected from previous studies, as shown in Tables S2–S4
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owing to preserved geometries of the electrodes even after 
cycles of strain. However, repeated loading and unloading 
strains could cause the oxide layer to break and reform; thus, 
it may accumulate on the LM surface, resulting in a thicker 
oxide layer and increased effective resistance (Fig. S8c, d).

Figure 5d compares the  SEA and  SER values of LMGD 
with previously reported studies. To the best of our knowl-
edge, the LMGD developed in this work exhibits the best 
SE in terms of low reflection and high absorption proper-
ties reported to date. A detailed comparison of the various 
materials used along with thickness of the fabricated devices 
as well as the shielding properties is given in Table S2. 
Although previous studies on EMI shielding have mostly 
focused on improving the  SEA without considering the 
reduction in the  SER, high reflection can act as a source 
of EM pollution that interferes with other components. As 
shown in Fig. 5e, LMGD exhibited the highest  SEAto  SER 
ratio (54.7) and  SET (78 dB) when compared to previous 
studies on stretchable EMI shielding materials. A detailed 
comparison of the shielding properties of these stretchable 
devices with LMGD is provided in Table S3. Additionally, 
Fig. 5f compares the  SET of LMGD with those of previously 
reported stretchable EMI shielding materials when subjected 
to strain. While most materials exhibit a decrease in  SET 
upon straining, LMGDs can maintain high  SET stability even 
under large external deformations. The corresponding table 
of comparison of  SET of these materials along with their 
reported strain values is given in Table S4. As a practical 
demonstration (Fig. S9), the LMGD can also effectively 
shield the EMWs emitted from the Tesla coil, thereby pre-
venting the flow of induced currents and deactivating the 
light. However, the applicability of such grid structures is 
not only limited to EMI shielding but can also be extended 
to other applications, e.g., biomechanical sensing (Fig. S10).

4  Conclusions

In this work, soft and stretchable electromagnetic interfer-
ence shielding thin film device (LMGD) is developed by 
leveraging stretchable and soft behaviors of both liquid 
metal and silicone elastomer. The LMGD could achieve 
high EMI shielding effectiveness  (SET up to 75 dB) with 
high absorption and low reflectance  (SER of 1.5 dB at the 
resonant frequency) owing to multiple internal reflec-
tions in the frequency range of 50–110 GHz by virtue of 

strategically patterned LM grid design. By taking advan-
tage of higher surface adhesion of LM on elastomer, the 
grid design could be obtained by a dual-step aerosol 
deposition process through recyclable stencils, which is 
both rapid and cost-effective compared to prevalent print-
ing techniques. The stretchable and elastic properties of 
the device facilitated strain-induced adjustment of grid 
spacings, resulting in a shift in the resonant frequency, 
thereby making it possible to achieve strain-tunable EMI 
shielding abilities. On stretching the LMGD to 10%, the 
resonant frequency shifted to 77 GHz, which corresponds 
to automotive radar band used in self-driving cars with 
ADAS. The LMGD could also retain its shielding proper-
ties even after multiple strain cycles, proving its durability 
and longtime usability. This thin film-shaped LMGD along 
with its ability to tune EMI shielding properties would be 
utilized as a powerful EMI shielding material for the next-
generation electronic devices.
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