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Fig. S1 Electrodeposition on Ti paper substance for preparing Ni-Co precursor 

 

Fig. S2 SEM image of Ti paper (illustrated as a further enlarged image) 
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Fig. S3 SEM image of precursor (illustrated as a further enlarged image) 

 

Fig. S4 SEM pattern of a-b TP-NCO and c-d TP-NCO/MO array 

   

Fig. S5 N2 absorption–desorption isotherm of TP-NCO. (the inset shows the pore-size 

distribution curve) 
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As shown in Fig. S2, the titanium paper consists of crossed titanium fibers of various 

sizes, and further magnification of the illustration reveals that the surface of the titanium 

fibers exhibits a smooth morphology. After the electrodeposition treatment, the cross 

distribution of titanium fibers remains apparent (Fig. S3), however, the enlarged inset 

reveals an interconnected porous network structure formed by the combination of 

vertically aligned nanosheets on titanium fiber surfaces. The three-dimensional mesh 

structure apparently provides a high specific surface area, enlarges the contact area of 

the catalyst with oxygen and electrolyte, accelerates the ORR and OER reactions at the 

three-phase interface, and provides adequate space for storage of discharge products. 

N2 adsorption/desorption analysis confirms this (Fig. S5). The results show that 

NiCo2O4 nanosheets possess an extensive specific surface area as high as 83.3 m2 g-1 

with an average pore dimension of 13.9 nm.  

 

Fig. S6 SEM images of TP-NCO 

 

Fig. S7 EDS mapping pattern of TP-NCO/MO 
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Fig. S8 a TEM pattern of NiCo2O4 array. b HRTEM pattern of NiCo2O4 array (inset 

shows the corresponding FFT pattern) 

As a comparison, the TEM characterization of the TP-NCO catalyst material is shown 

in Fig. S8a-b. According to the HRTEM results, crystal plane spacing of 0.244 nm and 

0.287 nm correlate to the (311) and (220) crystal planes of NiCo2O4, respectively. 

 

Fig. S9 XRD pattern of TP-MnO2 

For comparison, the XRD test was performed on the MnO2 material grown on TP (Fig. 

S9), and the peaks at 18.0°, 28.9°, 36.7° and 60.1° corresponded to (200), (310), (400) 

and (521) crystal planes of MnO2 (JCPDS No. 44-0141), which further validated the 

previous conclusions.  
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Fig. S10 Raman spectrum of TP, TP-NCO and TP-NCO/MO 

Figure S10 displays the Raman spectra of TP-NCO/MO, TP-NCO, and TP materials, 

and the inset is a zoomed-in image. It can be seen that both TP-NCO/MO and TP-NCO 

materials have obvious peaks near 181, 475, 530, and 645 cm-1, aligning with the F2g, 

Eg, F2g and A1g vibration modes of NiCo2O4 (marked in orange) [S1]. Other peaks were 

detected near 500, 560, and 617 cm-1 in the TP-NCO/MO material, which are attributed 

to the symmetric tensile vibrations of the Mn-O bond within the MnO2 lattice (marked 

in blue) [S2]. In addition, some small peaks that appear near 300 cm-1 are derived from 

the vibration of Ti-O bonds [S3, S4], which may be caused by an oxide layer on the TP 

surface after long-term exposure to air, as verified by the simultaneous occurrence of 

peaks in the TP-NCO/MO, TP-NCO and TP materials can verify this viewpoint 

(marked in green). 

 

Fig. S11 a XPS survey spectra. High-resolution XPS spectrum of b Mn 2p, c O 1s and 

d Ti 2p of TP-NCO/MO and TP-NCO 
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Fig. S12 The atomic ratio of Ni、Co、O and Mn 

In the fine spectrum of Mn 2p (Fig. S11b), the characteristic peaks of TP-NCO/MO at 

642.35 eV and 654.09 eV are ascribed to Mn 2p3/2 and Mn 2p1/2, respectively, with a 

peak separation of 11.74 eV. No obvious characteristic peaks were detected in TP-NCO, 

further confirming the existence of MnO2 in TP-NCO/MO. Fig. S11c shows the high-

resolution spectra of O 1s. For TP-NCO, the peaks at 529.72, 531.07, and 532.72 eV 

are related to lattice oxygen produced by metal oxides, surface oxygen vacancies (Ovs) 

and surface adsorbed hydroxides, respectively. However, these corresponding peaks 

appear at 529.75, 531.27, and 532.94 eV in TP-NCO/MO, with a slight positive shift. 

In addition, the proportions of lattice oxygen produced by metal oxides and Ovs in TP-

NCO/MO materials were 66.7% and 25.8%, respectively, while the corresponding 

proportions in TP-NCO materials were 44.0% and 41.0%, which was attributed to the 

increase in the proportion of metal oxides after MnO2 growth on TP-NCO, and part of 

the oxygen vacancies were refilled [S5]. A moderate amount of oxygen vacancies can 

generate defect states in the band gap, allowing for easier electron excitation and 

enhanced charge transfer, resulting in higher OER/ORR activity [S6]. In the fine 

spectrum of Ti 2p (Fig. S11d), the peaks at 458.37 and 464.12 eV correlate to Ti 2p3/2 

and Ti 2p1/2 of Ti4+, which originate from the oxide layer on the TP surface, in 

agreement with the results of Raman analysis. After the growth of MnO2, both peaks 

are shifted forward by about 0.1 eV, possibly due to the formation of Ti-O-Mn bonds 

between the MnO2 and TiO2 interfaces [S5, S7].  
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Fig. S13 Element mapping pattern of NCO/MO 

 

Fig. S14 Mott-Schottky plots of a NiCo2O4/MnO2 b NiCo2O4 and c MnO2 

 

Fig. S15 UV–vis diffuse reflectance spectra of samples 

Mott-Schottky (M-S) analysis was carried out on three materials, NiCo2O4/MnO2, 

NiCo2O4 and MnO2 (Fig. S14a-c), respectively. NiCo2O4 shows a negative slope 

recognized as a p-type semiconductor, while MnO2 shows a positive slope recognized 

as an n-type semiconductor, and an "inverted V" curve is observed in the construction 

of the NiCo2O4/MnO2 heterostructure, which confirms the formation of p-n junctions  
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[S8]. In addition, the M-S results allow the determination of the material flat-band 

potential values, where the valence-band (Ev) potential of p-type semiconductors and 

the conduction-band (Ec) potential of n-type semiconductors are close to the flat-band 

potentials, with a difference of 0.1-0.3 eV. As shown in Fig. S13b-c, the Ev of NiCo2O4 

and the Ec of MnO2 are 1.24 eV (1.44 eV vs. NHE) and -0.85 eV ( -0.65 eV vs. NHE), 

respectively. The forbidden bandwidths of the three materials were calculated through 

UV-vis diffuse reflectance spectroscopy (Fig. S15), and Fig. 2g shows the bandgap 

derived according to the Kubelka-Monk theorem, which shows that the Eg of 

NiCo2O4/MnO2, NiCo2O4, and MnO2 are 1.15, 1.25, and 1.34 eV, respectively. 

According to these values, the Ec of NiCo2O4 and the Ev of MnO2 were determined to 

be -0.01 and 0.49 eV, respectively. 

 

Fig. S16 CV curves of TP-NCO/MO cathodes measured at a sweep rate of 0.1mv s-1 

in Ar atmosphere 

 

Fig. S17 The voltage-capacity curves for the first cycle at fixed capacity of 0.2 mAh 

cm-2 and current density of 0.2 mA cm-2 for a MnO2 and b Super P cathode. The 
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variation of termination voltage as a function of cycle number at the fixed capacity of 

0.2 mAh cm-2 and current density of 0.2 mA cm-2 for c MnO2 and d Super P cathode. 

The voltage-capacity curves of deep discharge at 0.2 mA cm-2 for e MnO2 and f Super 

P cathode 

For comparison, MnO2 and Super P catalyst materials loaded on carbon paper were 

measured under test conditions with a current density of 0.2 mA cm-2 and a cut-off 

capacity of 0.2 mAh cm-2. Figure S17a-d displays that the charging/discharging gaps of 

MnO2 and Super P are as high as 1.59 and 1.78 V d at the first cycle, with a cycle life 

of only 60 and 68 cycles, respectively. Meanwhile, the MnO2 and Super P catalyst 

materials were deeply discharged at 0.2 mA cm-2 (Fig. S17e-f), their discharge 

capacities were only 0.57 mAh cm-2 and 0.85 mAh cm-2, respectively, which were far 

inferior to TP-NCO/MO catalyst. The catalytic performance of the MnO2 was poorer 

than that of the Super P due to the bad conductivity and slow reaction kinetics of the 

individually synthesized MnO2.  

 

Fig. S18 Voltage-capacity curves of deep discharge at a current density of 0.2 mA cm-

2 of TP-NCO/MO and TP-NCO cathodes 

 

Fig. S19 Voltage-capacity curves of deep discharge at a current density of 0.5 mA cm-

2 of TP-NCO/MO and TP-NCO cathodes 
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The unrestricted discharge capacity was also evaluated at 0.5 mA cm-2 (Fig. S19), and 

the results showed that the discharge capacities of TP-NCO/MO and TP-NCO catalyst 

materials were 4.67 and 1.82 mAh cm-2, respectively, which indicated that TP-

NCO/MO catalyst exhibited a higher discharge capacity than TP-NCO at different 

current densities.  

 

Fig. S20 The comparison of cycle performances in LOBs with different catalysts 

Table S1 The comparison of cycle performances in LOBs with different catalysts 

Catalyst 

Current density (mA 

cm−2)/Fixed capacity 

(mAh cm−2) 

Cycle number References 

1D/2D 

CNT/Ni(OH)2 
0.5/0.5 300  [S9] 

Co-

CoSe@NSeC/bioC 
0.05/0.15 78  [S10] 

NiCo2O4@CeO2 0.13/0.13 400  [S11] 

NiCo2S4@NiO 0.13/0.65 300  [S12] 

MnO2–x@CeO2 0.07/0.35 302  [S13] 

NiO-RuO2 0.2/0.5 50  [S14] 

Fe2O3@C@MnO2 0.25/0.5 260  [S15] 

N-doped 

NiCoO2/CoO 
0.05/0.1 500  [S16] 

Ni2P-0001 0.02/0.1 110  [S17] 

N-CoO/CC 0.1/0.25 200  [S18] 

This work 
0.2/0.2 

0.5/0.5 

800 

480 
\ 
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Table S2 The comparison of electrochemical performances with different catalysts 

Catalyst (Battery 

Types) 
Voltage gap (V) Running time (h) 

Discharge specific 

capacity 
References 

Pd/CNT 

(Li-O2/CO2) 

1.68 V (500 mA 

g−1-1000 mAh g−1) 

1430 (500 mA 

g−1-500 mAh 

g−1) 

6628 mAh g-1 (500 

mA g−1) 
 [S19] 

Ir/AP-POP 

(Li-O2) 

0.03 V (0.04 mA 

cm−2 -0.12 mAh 

cm−2) 

700 (0.04 mA 

cm−2 -0.12 mAh 

cm−2) 

12.8 mAh (0.04 

mA cm−2) 
 [S20] 

Mo3N2 

(Li-CO2) 

0.64 V 

(10 μA cm−2- 

100μAh cm−2) 

910 (20μA cm−2-

100 μA h cm−2) 

8.361 mA h cm−2 

(20 μA cm−2) 
 [S21] 

CFB@NCNT-

Mo2N 

(Li-CO2) 

1.08V (10µA cm−1-

50µAh cm−1) 

675 (40μA cm−2-

50μA cm−2) 

5586.0µAh cm−1 

(10 µA cm-1) 

 [S22] 

BTO-CNT 

(Li-O2) 

0.65V (100mA g−1- 

900 mAh g−1) 

2000 (200 

mA g−1-500 

mAh g−1) 

18438 mAh g−1 

(200 mA g−1) 
 [S23] 

NiCoFeO@NF 

(Li-O2) 

0.2V (100mA g−1- 

1000 mAh g−1) 

790 (500 mA g−1-

1000 mAh g−1) 

16727 mAh g−1 

(500 mA g−1) 
 [S24] 

Co/Fe@NC 

(Li-O2) 

1.003V 

(250mA g−1-500 

mAh g−1) 

1000 

(500mA g−1-

1000mAh g−1) 

17326 mAh g−1 

(125 mA g−1) 
 [S25] 

Ni-HTP 

(Li-O2) 

0.88V (500mA g−1-

1000 mAh g−1) 

800 (500mA g−1-

500mAh g−1) 

15080 mAh g−1 

(500 mA g−1) 
 [S26] 

This work 

(Li-O2) 

0.73V (0.5 mA 

cm−2 -0.5 mAh 

cm−2) 

1600 (0.2 mA 

cm−2 -0.2 mAh 

cm−2) 

6.02 mAh cm-2 

(0.2 mA cm-2) 
\ 

 

Fig. S21 EIS curves of TP-NCO/MO and TP-NCO cathodes 
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Table S3 Equivalent circuit parameters of the prepared samples 

Samples 

Resistance (Ω) 

Rs Rct 

TP-NCO/MO 17.34 186 

TP-NCO 11.87 368.3 

The electrochemical impedance spectra (EIS) of TP-NCO/MO and TP-NCO cathode 

materials were tested (Fig. S21), and the inset of Fig. S21 and Table S3 display the 

corresponding equivalent circuit diagrams and fitting results. The results show that the 

TP-NCO/MO cathode has a much lower charge transfer resistance (Rct) value than TP-

NCO, indicating better interfacial contact and faster charge transfer, thus facilitating the 

interfacial three-phase reactions and avoiding to some extent a series of problems due 

to the slow kinetics. The decrease in Rct value proves that the construction of 

NiCo2O4/MnO2 Mott-Schottky heterostructures improves the electrical conductivity 

and charge transfer ability, which is another advantage of this heterostructure. 

 

Fig. S22 Further enlarged SEM images of TP-NCO/MO electrode at 0.2 mA cm-2 a 

after deep discharge and b recharge. SEM images of TP-NCO electrode at 0.2 mA cm-

2 c after deep discharge and d recharge 
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Fig. S23 XRD in the discharge and recharge states of TP-NCO/MO cathode 

In the discharge state, the peaks identified at 32.8° and 58.6° correlate to the (100) and 

(110) crystal plane of Li2O2 (PDF#09-0355), respectively, and the peaks disappear after 

recharge. 

 

 

Fig. S24 The intensity evolution of LiO−, LiO2
−, Li2O2

−, and Li2CO3
−species as a 

function of the sputtering time 
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Table S4 Equivalent circuit parameters of TP-NCO/MO cathode in different states 

Serial Number 
Resistance (Ω) 

R1 R2 R3 

1 9.4 87.2 199.8 

5 11.0 / 246.9 

10 12.2 / 308.9 

15 13.5 / 310.0 

20 15.0 / 313 

21 15.4 / 318 

25 17.8 / 392.6 

30 17.4 / 271.9 

35 18 / 238.1 

40 19.8 / 208.7 

 

 

Fig. S25 Equivalent circuit models of a Serial Number 1 and b Serial Number 5-40 

 

 

Fig. S26 GITT curves of a TP-NCO/MO and b TP-NCO 
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Fig. S27 Lithium diffusion rate of TP-NCO/MO and TP-NCO under different depths 

of discharge 

The discharge settings of GITT were discharged to 2.6, 2.5, 2.4, and 2.3 V at a current 

density of 0.2 mA cm-2 with a relaxation time of 2 h. The lithium-ion diffusion 

coefficient (DLi) was calculated by using the following equation： 

D=4(πτ)-1(nmVM/S) 2(ΔEs/ΔEt)2 

where τ is the relaxation time, nm is the number of moles, VM is the molar volume, S is 

the electrode area, ΔEs is the pulse-induced potential change, and ΔEt is the potential 

change at the depth of discharge. 

The DLi for TP-NCO/MO calculated from Fick's second law equation at 2.6, 2.5, 2.4, 

and 2.3 V discharge depths are 5.46799× 10−12, 2.01399× 10−13, 1.15983× 10−13, and 

8.82813× 10-14  cm2 s−1, respectively. It is faster than 2.91628× 10-12, 5.07459× 10-15, 

4.79301× 10-15, and 1.11555× 10-14 cm2 s−1 of TP-NCO (Figs. S26 and S27). 

Additionally, both TP-NCO/MO and TP-NCO exhibit gradually smaller DLi values with 

the increase of Li2O2 content. 

According to previous experience [S27], the galvanostatic intermittent titration 

technique (GITT) was able to assess the formation rate of Li2O2. The larger Li+ 

diffusion coefficients (DLi) further confirm that the TP-NCO/MO catalyst material 

exhibits faster reaction kinetics and superior catalytic performance (Figs. S26 and S27).  

 

Fig. S28 a Top and b side views of the NiCo2O4/MnO2 heterostructure model for DFT 

calculation 
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