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HIGHLIGHTS

• Construct binder-free Ni@N-doped carbon nanospheres (Ni@N-CNSs) films were prepared and used as sulfur host.

• N-doped carbon and nickel layer work together to suppress shuttle of polysulfides.

• Ni@N-CNSs/S electrode shows enhanced rate performance and good cycling life.

ABSTRACT Rational design of hybrid carbon host with high electri-
cal conductivity and strong adsorption toward soluble lithium poly-
sulfides is the main challenge for achieving high-performance lithium–
sulfur batteries (LSBs). Herein, novel binder-free Ni@N-doped carbon 
nanospheres (N-CNSs) films as sulfur host are firstly synthesized via 
a facile combined hydrothermal-atomic layer deposition method. The 
cross-linked multilayer N-CNSs films can effectively enhance the elec-
trical conductivity of electrode and provide physical blocking “dams” 
toward the soluble long-chain polysulfides. Moreover, the doped N het-
eroatoms and superficial NiO layer on Ni layer can work synergistically 
to suppress the shuttle of lithium polysulfides by effective chemical 
interaction/adsorption. In virtue of the unique composite architecture 
and reinforced dual physical and chemical adsorption to the soluble 
polysulfides, the obtained Ni@N-CNSs/S electrode is demonstrated with enhanced rate performance (816 mAh g−1 at 2 C) and excellent 
long cycling life (87% after 200 cycles at 0.1 C), much better than N-CNSs/S electrode and other carbon/S counterparts. Our proposed 
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design strategy offers a promising prospect for construction of advanced sulfur cathodes for applications in LSBs and other energy stor-
age systems. 

KEYWORDS Atomic layer deposition; Nickel; N-doped carbon nanospheres; Sulfur cathode; Lithium–sulfur batteries

1 Introduction

Over the past decades, great efforts have been made to 
develop advanced sulfur cathodes for lithium–sulfur batter-
ies (LSBs) due to its high specific capacity (1675 mAh g−1), 
large theoretical energy density (2600 Wh kg−1) and low 
cost [1–4]. Despite promising prospect, the practical appli-
cation of sulfur cathodes is still blocked by the following 
problems. (1) High-rate capability of sulfur cathode is not 
satisfactory on account of low electronic conductivity of 
active sulfur and final discharge product  Li2S [5–7]. Their 
slow electron transfer not only decreases the reaction effi-
ciency, but also leads to low utilization of active materi-
als. (2) Cycling performance is poor due to the fact that the 
soluble long-chain lithium polysulfides intermediates show 
strong “shuttle effect” resulting in fast capacity decay [8]. 
(3) A volumetric expansion of ~ 80% happens to the sulfur 
cathode during full lithiation to  Li2S, which is prone to cause 
structural damage and pulverization of active materials lead-
ing to inferior performance [9]. To address these problems, 
two main strategies including physical block and chemical 
bonding confinement are used to achieve high performance. 
One physical strategy is to accommodate sulfur into conduc-
tive matrixes/hosts [10–12], which not only act as physical 
barriers to retard the shuttle of lithium polysulfides, but also 
offer fast transfer paths for electrons. Additionally, another 
physical block way is using modified separators [13] or inter-
layers [14, 15] to suppress the shuttle of polysulfides. The 
latter two ways are usually used as the auxiliary means to 
restrain the loss of lithium polysulfides. Given all that, sulfur 
must be combined with advanced conductive hosts, which 
not only offer large space for accommodation of sulfur, but 
also possess high electrical conductivity, excellent physical 
block or chemical adsorption toward soluble lithium poly-
sulfides. Typically, high-performance carbon host is still the 
first choice for sulfur by virtue of its lightweight, high con-
ductivity, large storage space, cost-effectiveness, and easy 
modification on structure/composition.

Up to now, lots of carbon hosts (such as carbon nanofibers 
[16–19], reduced graphene oxides (rGO) [20, 21], carbon 

nanotubes [18], and carbon nano/micron spheres [22]) have 
been prepared and combined with sulfur to obtain enhanced 
performance. It is verified that the conductive carbon host 
can not only reinforce the electrical conductivity of the 
whole composite electrode, but also exhibit good suppress-
ing effect toward the soluble lithium polysulfides arising 
from the physical block/adsorption via micro-, meso- or 
macropores of carbon [23]. For example, Lu et al. [24] 
reported 3D micron-porous graphene/sulfur composite cath-
ode with enhanced capacity and good cycling life. In spite 
of enhanced performance to some extent, the shuttle effect 
of lithium polysulfides still cannot be completely stopped 
by the single physical block/adsorption of carbon hosts. 
In view of this situation, synergistic chemical adsorption 
strategy needs to be further introduced into carbon/S cath-
odes by adding polar chemical absorbents. There are two 
chemical adsorption ways to stabilize the soluble lithium 
polysulfides. One way is to introduce heteroatoms (e.g., N, P, 
and S) into carbon hosts forming heteroatom-doped carbon 
hosts [10, 25, 26]. The other way is to rationally combine 
polar metal (Ni, Co) [12] or compounds (metal oxides [27, 
28], metal sulfides [29, 30], metal nitrides [20], and metal 
carbides [10], etc.) with carbon hosts forming polar hybrid 
hosts for sulfur. With the help of first-principle calculations, 
it has been demonstrated that the heteroatom-doped carbon 
and polar stoichiometric metal and compounds show higher 
binding energies (1.3–3.5 eV) with lithium polysulfides 
than that of the pure carbon hosts (0.5–1 eV) [27, 31]. It 
is well accepted that appropriate high binding energy can 
effectively suppress the shuttle of lithium polysulfides by 
chemical adsorption, resulting in higher capacity and bet-
ter cycling life. Therefore, smart integration of heteroatom-
doped carbon and polar chemical absorbents into integrated 
hybrid host is of great importance for achieving high-per-
formance sulfur cathode.

Among the explored carbon hosts, carbon nanospheres 
(CNSs) have been widely studied as active hosts for sul-
fur. To date, different carbon nanospheres have been fab-
ricated by different methods including hydrothermal syn-
thesis with sacrificial silica/polystyrene templates, glucose 
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decomposition [32, 33], thermal conversion via ZIF-8 
template [34], and polyaniline-co-polypyrrole [35], com-
bustion method [36], and sodium dodecyl sulfate-assisted 
self-assembly method [37]. However, the obtained carbon 
spheres are powder materials and need combining with 
additives and polymer binders to form working electrode. 
This process will increase inner resistance by introducing 
undesirable interfaces. Therefore, integrated binder-free 
carbon sphere films become attractive hosts due to binder-
free characteristics and multiple blocking “dams” toward 
lithium polysulfides. To the best of our knowledge, there 
is no work on the synthesis of integrated N-doped carbon 
nanosphere (N-CNS) films as host for sulfur. Meanwhile, 
Ni metal is demonstrated having good chemical adsorption 
ability to lithium polysulfides. For example, Zhong et al. 
[12] embedded Ni nanoparticles into puffed rice carbon 
(PRC) forming PRC/Ni composites host for sulfur with 
enhanced rate capability. The implantation of Ni not only 
increases the electrical conductivity, but also synergisti-
cally suppresses the shuttling effect of polysulfides. How-
ever, their Ni nanoparticles prepared by immersion method 
show random sizes and cannot be controlled effectively. 
To overcome this problem, atomic layer deposition (ALD) 
emerges to produce Ni layer with high reproducibility and 
uniformity [38], as well as dead-space free. To date, there 
is no report on the rational combination between N-CNSs 
and ALD-Ni. Thus, it would be very interesting to explore 
the integrated Ni@N-CNSs films and their application as 
host for sulfur cathode.

In this work, we report novel binder-free Ni@N-CNSs 
films as host for sulfur by a powerful combined hydrothermal-
ALD method. The thin ALD-Ni shell of ~ 10 nm is uniformly 
coated on the N-CNSs skeleton forming advanced host, 
which is highly compatible with sulfur forming integrated 
Ni@N-CNSs/S cathode. The Ni@N-CNSs films host not only 
exhibits high electrical conductivity and large storage room 
for sulfur, but also possesses synergistic chemical/physical 
adsorption toward lithium polysulfides. Due to the unique 
composite architecture, the Ni@N-CNSs/S cathode shows 
enhanced electrochemical performance with higher capac-
ity, better cycling stability and excellent high-rate capability 
due to better physisorption and chemisorption abilities and 
higher conductivity. Our work demonstrates the synergistic 
effect between N-CNSs and Ni layer toward soluble lithium 
polysulfides.

2  Experimental

2.1  Preparation of N‑Doped Carbon Nanospheres 
Films

The N-CNSs films were prepared by a modified hydro-
thermal method. The nickel foil coated with ZnO layer 
(~ 10 nm) was used as the substrate. The ZnO layer was 
prepared by atomic layer deposition (ALD, Picosun Oy) 
with Diethyl zinc (DEZ, 99.99%, Sigma-Aldrich) and  H2O 
as the Zn and O precursors, respectively. Then, the above 
substrate was transferred into Teflon-lined autoclave lin-
ers, which contained hydrothermal reaction solution con-
sisting of 0.25 M glucose and 0.1 M aniline in aqueous 
solution. The nickel foil substrate with ZnO layer was fixed 
and the autoclave was kept at 180 °C for 8 h. During the 
hydrothermal process, the sacrificial ZnO layer acted as an 
induced layer to make the glucose/aniline decompose and 
polymerize on the nickel foil to form carbon nanospheres. 
After rinse, the samples were annealed at 800 °C for 3 h 
in argon atmosphere to form N-CNSs films.

2.2  Preparation of Ni@N‑CNSs Composite Films

The Ni@N-CNSs composite films were prepared using a 
SUNALE R-200 ALD reactor (Picosun Oy) with Ni(Cp)2 
and  O3 (Ozone concentration ~ 10%, generated in a 500 
sccm mixture of oxygen (99.99%) and nitrogen (99.998%) 
as sources for Ni and oxygen, respectively. The Ni(Cp)2 
precursor was put in a stainless steel bottle kept at 165 °C, 
and the reaction chamber with N-CNSs films was kept at 
300 °C and 14 kPa during the reaction. After ALD pro-
cess, the samples were annealed at 400 °C for 2 h in mix-
ture atmosphere (90% Ar + 10%  H2) to form Ni@N-CNSs 
composite films.

2.3  Preparation of Ni@N‑CNSs/S Composite Cathode

The Ni@N-CNSs composite hosts and sulfur were put into 
the  CO2 supercritical fluid infiltration reactor according 
to the weight ratio of 1.3:3. The pressure was 8.5 MPa 
and the reactor worked at 250 rpm and kept at 32 °C for 
10 h. After release the bumped  CO2 gas, the sample was 
transferred into Teflon-linked steel autoclave and kept at 
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155 °C for 12 h to obtain the final Ni@N-CNSs/S cath-
ode. For comparison, the N-CNS/S sample was also pre-
pared as the same condition. The load mass of S was about 
2.5 mg cm−2 in the N-CNSs/S sample.

2.4  Materials Characterization

Morphology and phase compositions of all samples were 
characterized by field emission scanning electron micro-
scope (SEM, Hitachi S-4700), transmission electron micro-
scope (TEM, FEI Tecnai G2 F20 at 200 kV), X-ray dif-
fraction (XRD, Rigaku D/max 2550 PC (CuKα)), X-ray 
photoelectron spectroscopy (XPS, ESCALABMKLL spec-
trometer) and Raman spectra (Renishaw Raman microscope 
under 532 nm laser excitation). The content of sulfur was 
detected by thermogravimetric (TG) curves utilizing Netzsch 
STA 449C thermal analyzer.

2.5  Electrochemical Characterization

The binder-free Ni@N-CNSs/S electrode was directly 
used as the cathode. 2025-type coin cells were applied 
to assemble test cells. N-CNSs/S electrode was prepared 
as the same procedure above. The electrolyte was 1 M 
bis(trifluoromethane) sulfonamide lithium salt (LiTFSI) in 
a mixed solvent of 1,3-dioxolane (DOL) and 1,2-dimethox-
yethane (DME) with a volume ratio of 1:1, including 1 wt% 
 LiNO3 as an electrolyte additive. The added electrolyte for 
each electrochemical cell was 20 μL mg−1. Lithium metal 
foil was used as the counter and reference electrode, and a 
polypropylene microporous film (Cellgard 2300) was used 
as the separator. 2025-type coin cells were assembled in a 
glovebox filled with Ar. The discharge/charge performances 
were tested on a Neware battery program-control test system 
in a potential range between 1.7 and 2.8 V at 25 °C. Cyclic 
voltammetry (CV) measurements were performed with a 
Princeton TMC 1000 electrochemical workstation (Prince-
ton Applied Research, Co., LTD) in the potential range of 
1.7–2.8 V (vs. Li/Li+) at a scan rate of 0.1 mV s−1. Electro-
chemical impedance spectroscopy (EIS) measurements were 
conducted in the frequency ranges from 100 kHz to 10 mHz 
by applying an AC signal of 5 mV on the Princeton electro-
chemical workstation. The specific capacity was calculated 
based on the mass of sulfur in the electrode.

2.6  DFT Calculation

First-principle based density functional theory (DFT) was 
performed as implemented in the Vienna ab initio simu-
lation package (VASP). The projector augmented wave 
(PAW) pseudopotentials and exchange correlation energy 
functional in generalized gradient approximation (GGA) 
with the Perdew–Burke–Ernzerhof (PBE) formulation was 
utilized. The kinetic energy cutoff was set as 500 eV. The 
k-point grids for carbon materials and NiO were 5 × 4 × 2. 
In this computation, the NiO (200) surface was modeled 
by a bottom fixed slab in a 2 × 2 supercell. The vacuum 
width was set to 15 Å for avoiding the interaction between 
adjacent slices due to the periodic boundary condition. 
The pure carbon, pyridinic-N were built by a bottom 
fixed slab in 3 × 2 supercell. The convergence tolerance 
for this atomic relaxation was set to 1.0 × 10−4 eV/atom 
for total energy and 0.01 eV Å−1 for force on each atom. 
The adsorption energies of optimized configurations were 
calculated by the equation of E = Esurf-Li2S6 − ELi2S6 − Esurf, 
where ELi2S6 was the energy of the free  Li2S6 molecular, 
Esurf was the energy of the surface configuration of pure 
carbon, pyridinic-N, and NiO. Esurf-Li2S6 was the total 
energy of the configuration with  Li2S6 molecular on the 
corresponding surface.

3  Results and Discussion

Figure 1a illustrates the simplified synthetic process of 
Ni@N-CNSs films. Firstly, the N-CNSs films are fabri-
cated via a modified hydrothermal method. As shown in 
SEM images (Fig. 1b, c), the N-CNSs films are composed 
of numerous cross-linked nitrogen-doped carbon nano-
spheres (N-CNSs) with average diameters of 250 nm. 
And interestingly, the as-synthesized N-CNSs are closely 
adhered to each other forming a continuous conductive 
network, which is favorable to accelerate the electron/ion 
transportation. Adsorption–desorption isothermal analy-
sis shows that the surface area of N-CNSs films is about 
206 m2 g−1 with a high porosity of about 80.5% (Fig. S1). 
ALD-synthesized nickel shell (~ 10 nm) is homogene-
ously deposited on the N-CNSs skeleton forming binder-
free Ni@N-CNSs composite films (Fig. 1d, e). It is seen 
that the appearance of Ni@N-CNSs becomes rougher. The 
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microstructures of samples at different stages are further 
investigated by TEM and HRTEM tests. The morphology 
of N-CNSs nanospheres is confirmed as shown in Fig. 2a. 
Additionally, according to the HRTEM image (Fig. 2b) 
and SAED pattern (inset in Fig. 2b), there is no obvious 
crystalline lattice fringe and diffraction rings detected, 
indicating the amorphous nature of N-CNSs. The doping 
of nitrogen element is evidenced by EDS elemental map-
ping images (Fig. 2c). After a facile ALD process, the 

N-CNSs are homogeneously decorated with Ni layer with 
a thickness of ~ 10 nm (Fig. 2d, e). The measured lattice 
space of Ni is ~ 0.20 nm (inset in Fig. 2e), corresponding 
to the (111) crystal plane of cubic Ni phase (JCPDS No. 
04-0850). The polycrystalline nature of Ni shell is further 
verified by characteristic diffraction rings in SAED (inset 
in Fig. 2d). And the EDS elemental mapping images of 
Ni@N-CNSs films confirm that the Ni shell is uniformly 
covered on the surface of N-CNSs (Fig. 2f).

100 nm 100 nm

2 µm2 µm

500 nm500 nm

(d)(b)

(a)

(e)(c)

ALD

N-CNSs films Ni@N-CNSs films

Fig. 1  a Schematic fabrication process of Ni@N-CNSs films. SEM images of b, c N-CNSs and d, e Ni@N-CNSs films
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Fig. 2  a, b TEM-HRTEM images and c EDS elemental mapping images of N-CNSs films. d, e TEM-HRTEM images and f EDS elemental 
mapping images of Ni@N-CNSs
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Detailed phase evolution and compositions of N-CNSs 
and Ni@N-CNSs are detected by XRD, Raman spectra, 
and XPS spectra (Fig. 3). The XRD pattern of N-CNSs 
(Fig.  3a) shows two broad diffraction peaks located at 
26° and 43°, corresponding to the (002) and (101) crystal 

planes of carbon materials (JCPDS No. 75-1621). Apart 
from these peaks, the Ni@N-CNSs exhibits other three 
strong characteristic peaks, which can be indexed well with 
(111), (200), and (220) planes of cubic Ni phase (JCPDS 
No. 04-0850), confirming the successful deposition of Ni 
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shell by ALD method. The above result is also supported by 
Raman results (Fig. 3b). It is noteworthy that the Ni metal 
does not show obvious Raman peaks. The Ni@N-CNSs 
shows larger IG/ID ratio than pure N-CNSs, indicating its 
higher graphitization after the deposition of Ni shell and 
annealing process. The surface elemental composition and 
functional groups of samples are detected by XPS spectra 
(Fig. 3c–f). Both C 1s spectra (Fig. 3c) contain three char-
acteristic peaks of –O–C=O (288.1 eV), C–OH (285.8 eV), 
and C–C (284.3 eV) bonds. The higher intensity of C–C 
peaks detected in Ni@N-CNSs verifies its higher graphitiza-
tion, consistent with the Raman results above. For the N 1s 
spectra (Fig. 3d), two peaks located at 400.7 and 398.3 eV 
are detected in both samples, corresponding to graphitic N 
and pyridinic-N, respectively, which suggests that the N ele-
ment is well maintained after the introduction of Ni shell. As 
for the Ni 2p spectra (Fig. 3e), it is noteworthy that charac-
teristic peaks of Ni (852.9 eV) and NiO (854.5 eV) appear 
in Ni 2p3/2 spectra, demonstrating the existence of Ni and 
NiO arising from the surface oxidation of Ni by the air. For 
the O 1s spectra (Fig. 3f), two peaks of –C=O (533.0 eV) 
and –C–OH (531.6 eV) are noticed in both N-CNSs and 
Ni@N-CNSs, indicating that the surface of both samples 
contains –OH and –C=O groups. Meanwhile, a typical peak 
(530.1 eV) attributed to Ni–O bonding is detected in the 

Ni@N-CNSs due to the superficial oxidization layer of NiO 
on the Ni shell. All the results above demonstrate the suc-
cessful synthesis of the Ni@N-CNSs array by a combined 
hydrothermal-ALD method.

To further explore the electrochemical application of 
N-CNSs and Ni@N-CNSs hosts for LSBs, sulfur is infil-
trated into both hosts to obtain N-CNSs/S and Ni@N-
CNSs/S via a supercritical fluid infiltration (SFI) method 
(Fig.  4a). Notice that sulfur is homogeneously accom-
modated into the carbon nanospheres and their diameter 
increases up to 280 nm with no aggregated sulfur parti-
cles (Fig. 4b, c). Similar morphology is observed for the 
N-CNSs/S sample (Fig. S2). The existence of sulfur in both 
samples can also be verified by XRD patterns (Fig. 4d). 
Apart from the peaks of Ni foil substrate and N-CNSs/
Ni@N-CNSs hosts, a series of characteristic peaks of S are 
detected in both N-CNSs/S and Ni@N-CNSs/S, supported 
by XPS characteristic peaks [63.6 eV (2p1/2) and 164.8 eV 
(2p2/3)] of sulfur in the S 2p spectra (Fig. 4e). Additionally, 
TEM images of Ni@N-CNSs/S and N-CNSs/S (Figs. 5a, 
b and S3a) also demonstrate the good accommodation of 
sulfur in the Ni@N-CNSs and N-CNSs hosts. For Ni@N-
CNSs/S, the Ni shell are homogeneously covered up due to 
the introduction of sulfur and the surface becomes smoother. 
EDS elemental mapping images of Ni@N-CNSs/S (Fig. 5c) 
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also confirm the successful preparation of Ni@N-CNSs host. 
The element O is due to the presence of –OH and –C=O 
groups at the surface N-CNSs and superficial NiO at the 
surface of Ni layer, which is consistent with the XPS results 
above. From the TGA results (Fig. S3b), we can calculate 
that the contents of sulfur in N-CNSs/S and Ni@N-CNSs/S 
are 66.7 and 68.9 wt%, respectively.

The electrochemical performances of N-CNSs/S and 
Ni@N-CNSs/S electrodes are tested via cyclic voltam-
metry (CV) and galvanostatic charge/discharge measure-
ments in a voltage range of 1.7–2.8 V at 25 °C. The overall 
electrochemical results are shown in Fig. 6. Figure 6a pre-
sents the 2nd CV curves of N-CNSs/S and Ni@N-CNSs/S 

electrodes at a scan rate of 0.1 mV s−1. Both electrodes 
exhibit two pairs of redox reaction peaks, which corre-
spond to the conversion reactions of sulfur/long-chain poly-
sulfides  [S8/Li2Sx (x = 4–8)] and short-chain polysulfides/
Li2S  [Li2Sx (x < 4)/Li2S]. Obviously, the Ni@N-CNSs/S 
electrode exhibits higher peak density and smaller voltage 
separation with narrower polarization, indicating its higher 
reversibility and faster reaction kinetics during the charg-
ing/discharging processes. From EIS analysis (Fig. 6b), the 
charge transfer resistance of Ni@N-CNSs/S electrode is 
approximately 102 Ω, much smaller than that of N-CNSs/S 
electrode (220 Ω), indicating its accelerated electrochemi-
cal reaction kinetics and better rate capability (Fig. 6c–e) 

(a) (b)

500 nm 100 nm

(c)

S C

ONi N

Fig. 5  a, b TEM images and c EDS elemental mapping images of Ni@N-CNSs/S
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due to the cooperative work of the nitrogen active sites and 
conductive Ni network. The rate performance of both elec-
trodes (S mass loading: 2.5 mg cm−2) at different current 
rates from 0.1 to 2 C is illustrated in Fig. 6c. The Ni@N-
CNSs/S electrode delivers higher discharge capacities (1350, 
1133, 1045, 930, and 816 mAh g−1 at 0.1, 0.2, 0.5, 1, and 
2 C) than the N-CNSs/S counterpart (1250, 987, 856, 769, 
and 690 mAh g−1 at 0.1, 0.2, 0.5, 1, and 2 C). Obviously, 
the Ni@N-CNSs/S electrode exhibits obvious high-rate 
improvement, owing to its better conductive network and 
enhanced physisorption and chemisorption ability to the 

soluble polysulfide species. Both discharging curves of 
N-CNSs/S and Ni@N-CNSs/S electrodes (0.1 C) show two 
charge/discharge plateaus (Fig. 6d), which is consistent with 
the CV results above. The Ni@N-CNSs/S electrode shows 
higher discharge plateau voltage and lower charge plateau 
voltage, as compared with N-CNSs/S electrode, implying 
its smaller voltage drop and lower polarization. Moreover, 
the Ni@N-CNSs/S electrode shows superior cycling stabil-
ity with an initial discharging capacity of 1350 mAh g−1 
with a capacity retention of ~ 87% at 0.1 C after 200 cycles 
(Fig. 6e), while the corresponding value of the N-CNSs/S 
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electrode is 1250 mAh g−1 with a capacity retention of 76%. 
The obtained values of Ni@N-CNSs/S electrode are also 
much better than that of other carbon/S powder electrodes 
(e.g., hollow carbon nanospheres/S [37], carbon spheres/S 
[39], S/C nanospheres [36, 40]) (Table S1). As for the Cou-
lombic Efficiency (CE) analysis, after 200 cycles, the CE 
value of Ni@N-CNSs/S electrode maintains 98.5%, higher 
than that of N-CNSs/S (97.8%). After 200 cycles at 0.1 C, 
the whole composite structure is basically well preserved 
(Fig. S4). In addition, after 500 cycles at 1 C, the Ni@N-
CNSs/S electrode shows a capacity of ~ 699 mAh g−1, higher 
than that of the N-CNSs/S counterpart (477 mAh g−1), 
indicating its good high-rate stability (Fig. S5). When the 
loading mass of sulfur is increased up to 4.5 mg cm−2, the 
Ni@N-CNSs/S electrode still exhibits good cycling life 
with a capacity of 839 mAh g−1 at 0.1 C after 500 cycles 
(Fig. S6), better than that of the N-CNSs/S counterpart 
(640 mAh g−1 at 0.1 C after 500 cycles).

The enhanced performance is also verified by morphology 
comparison of lithium metal anode after cycling at 0.1 C 
for 100 cycles. As shown in Fig. S7a, c, the Li anode cycled 
with Ni@N-CNSs/S cathode for 100 cycles shows lower 
roughness than the counterpart coupled with N-CNSs/S 
cathode, verifying the effective suppression of the poly-
sulfides due to the synergistic effect between N-doped CNSs 
architecture and polar superficial NiO layer on Ni. By com-
paring the color of separators after cycles, the cycled separa-
tor with Ni@N-CNSs/S cathode exhibits a color of lighter 
yellow (inset in Fig. S7a, c). Furthermore, according to the 
EDS mapping images of S (Fig. S7b, d), less polysulfides 
have diffused to the Li anode coupled with Ni@N-CNSs/S 
cathode, indicating its better suppressing effect on the solu-
ble polysulfides.

The outstanding electrochemical performance of Ni@N-
CNSs/S electrode is mainly owing to the following posi-
tive factors: (1) Binder-free conductive characteristics. The 
continuous conductive network of Ni@N-CNSs without 
additives and binders can effectively decrease inner charge 
transfer resistance by avoiding undesirable interfaces, and 
thereby enhance the electrical conductivity of the electrode 
and reaction kinetics [41–43]. (2) Physical adsorption and 
block to the soluble lithium polysulfides. Cross-linked mul-
tilayer carbon nanospheres films provide a physical “dam” 
to entrap the soluble polysulfide species and decreases the 
irreversible capacity during the charge/discharge processes. 
(3) Chemical adsorption to the polysulfides. Doped nitrogen 

heteroatoms and polar superficial NiO on Ni cannot only 
enhance the electronic conductivity of the matrix, but also 
synergistically exhibit strong chemical interaction with the 
long-chain polysulfides, resulting in higher utilization of 
active materials and stable cycling life during the redox reac-
tion processes. In our case, the function of Ni shell should be 
highlighted as follows. On one hand, the Ni layer on N-CNSs 
can establish good electron transfer path from the bottom to 
the top forming omnibearing conductive network. Accord-
ing to four-point probe method, the electrical conductivity 
of Ni@N-CNSs is 8.7 × 104 S m−1, much higher than that 
of N-CNSs films (0.9 × 103 S m−1). On the other hand, the 
superficial NiO at the Ni layer has strong adsorption ability 
to the soluble polysulfides to maintain good electrochemical 
performance. Figure 7 shows the adsorption energetics of the 
optimized adsorption configurations with  Li2S6 molecular 
on thin NiO layer (NiO is the oxidized layer on the surface 
of Ni), pure carbon and N-doped carbon. The adsorption 
energy of  Li2S6 on NiO is about − 2.86 eV, higher than the 
values obtained from N-doped carbon (− 0.98 eV) and pure 
carbon (− 0.55 eV) as well as the adsorption energy value 
between 1,2-dimethoxyethane (DME)-Li2S6 (− 0.77 eV) 
[44]. It suggests that the presence of N doping and super-
ficial NiO on the Ni layer coating can greatly enhance the 
chemical affinity to the soluble  Li2S6, leading to boosted rate 
performance and long-term cycles.

High-resolution S 2p spectra of pristine  Li2S6 and Ni@N-
CNSs-Li2S6 are shown in Fig. S8. The pristine  Li2S6 exhibits 

ΔE=−2.86 eV ΔE=−0.55 eV ΔE=−0.98 eV

NiO-Li2S6 Pyridinic N-doped
carbon-Li2S6

Pure
carbon-Li2S6

(a) (b) (c)

ΔE=−2.86 eV

(a)

ΔE=−0.55 eV

b)

ΔE=−0.98 eV

(c)

Fig. 7  DFT calculations on adsorption energies between NiO, pure 
carbon, and pyridinic-N-doped carbon with  Li2S6
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two typical sulfur environments at 161.6 and 163.1 eV owing 
to terminal (ST

−1) and bridging (SB
0) sulfur atoms [45], respec-

tively. In contrast, after coupling with Ni@N-CNSs host, 
the peak of ST

−1 positively shifts to higher binding energy of 
162.9 eV, suggesting a decrease in electron density on ST

−1 in 
Ni@N-CNSs-Li2S6. This result indicates that Ni@N-CNSs 
host has strong chemical adsorption to ST

−1. An additional 
SB

0-C species is detected at 164.4 eV, due to the dispropor-
tionation of  Li2S6 into  S0. Furthermore, the peaks (168.2 eV) 
of polythionate and S-complex species appear in Ni@N-
CNSs-Li2S6 due to intermediate redox reactions [45]. Given 
all that, it is justified that Ni@N-CNSs host can effectively 
entrap polysulfides to maintain good electrochemical perfor-
mance. A simple adsorption test was conducted for Ni@/N-
CNSs and N-CNSs (Fig. S9). After 18 h, the polysulfide 
solution with Ni@N-CNSs becomes transparent, while the 
counterpart still shows light yellow. It is indicated that Ni@/
N-CNSs host exhibits much better adsorption ability to the 
soluble polysulfides.

4  Conclusion

In summary, we have proposed a new hydrothermal-atomic 
layer deposition method to synthesize binder-free Ni@N-
CNSs films as sulfur host for lithium–sulfur batteries. The 
binder-free multilayer N-CNSs films not only perform 
enhanced electronic conductivity, but also provide physical 
block toward the soluble long-chain polysulfides. With the 
deposition of ALD-Ni shell, the synergistic work of nitro-
gen active sites and polar Ni adsorbents further increases 
the intrinsic reactivity kinetics during the redox reactions 
and offers a strong chemical adsorption to the polysulfide 
intermediates. After rational combination with sulfur, the as-
synthesized Ni@N-CNSs/S cathode shows enhanced overall 
electrochemical performance with higher high-rate capacity 
and better cycling life due to the well-designed hybrid host. 
Our rational design of binder-free hybrid sulfur host may 
break the new ground in terms of high-performance cathode 
for lithium–sulfur batteries.
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