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HIGHLIGHTS

• The types, working principles, advantages and limitations of pattern recognition methods based on chemiresistive gas sensor array 
are reviewed and discussed comprehensively.

• Outstanding and novel advancements in the application of machine learning methods for gas recognition in different important areas 
are compared, summarized and evaluated.

• The current challenges and future prospects of machine learning methods in artificial olfactory systems are discussed and justified.

ABSTRACT As information acquisition terminals for artificial olfaction, chemire-
sistive gas sensors are often troubled by their cross-sensitivity, and reducing their 
cross-response to ambient gases has always been a difficult and important point in 
the gas sensing area. Pattern recognition based on sensor array is the most conspicu-
ous way to overcome the cross-sensitivity of gas sensors. It is crucial to choose an 
appropriate pattern recognition method for enhancing data analysis, reducing errors 
and improving system reliability, obtaining better classification or gas concentra-
tion prediction results. In this review, we analyze the sensing mechanism of cross-
sensitivity for chemiresistive gas sensors. We further examine the types, working 
principles, characteristics, and applicable gas detection range of pattern recognition 
algorithms utilized in gas-sensing arrays. Additionally, we report, summarize, and 
evaluate the outstanding and novel advancements in pattern recognition methods for 
gas identification. At the same time, this work showcases the recent advancements 
in utilizing these methods for gas identification, particularly within three crucial 
domains: ensuring food safety, monitoring the environment, and aiding in medical diagnosis. In conclusion, this study anticipates future 
research prospects by considering the existing landscape and challenges. It is hoped that this work will make a positive contribution towards 
mitigating cross-sensitivity in gas-sensitive devices and offer valuable insights for algorithm selection in gas recognition applications.
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1 Introduction

Our olfactory sense plays a crucial role in perceiving and 
understanding the world around us [1]. Our sense of smell 
in daily life can assist us in detecting and distinguishing 
odors in abnormal ranges, tracking odor trajectories, and 
it can also function as a warning mechanism in dangerous 
situations [2]. However, the hazardous, caustic, volatile, and 
combustible gas environment endangers human health, and 
cannot be effectively detected and analyzed solely by the 
human sense of smell.

Dedicated researchers are actively working towards resolv-
ing these challenges, leading to the development of commer-
cial gas sensors. The first gas sensor was invented in 1968 
by Figaro Corporation, named Taguchi Gas Sensor [3]. It is 
widely used for the detection of hazardous gas leaks in domes-
tic gas and industrial safety. Subsequently, a variety of new 
sensors have emerged, including electrochemical, catalytic 
combustion, thermally conductive, infrared absorption gas 
sensors, and more. Chemiresistive gas sensors have undoubt-
edly become the most widely used gas sensors due to their 
high sensitivity, wide range of material sources, simple manu-
facturing, and cost-effectiveness [4]. Meanwhile, chemiresis-
tive materials with different components [5, 6], morphologies 
[7] and structures [8] have been continuously developed to 
improve the performance of gas sensors [9, 10]. They have 
been widely studied and applied in food quality [11, 12], envi-
ronmental protection [13, 14] and medical diagnosis [15–17].

In practice, gas sensors typically operate in complex 
atmospheric environments that contain a large number of 
interfering gas molecules. Due to the inherent characteristics 
of the sensitive material, the gas sensor responds not only to 
the target gas but also to other gases. This manifests as the 
sensor’s cross-sensitivity to the ambient gas. It can make 
the detection result inaccurate, and lead to false or missed 
alarms in practical applications, which greatly limits the 
practical application of the chemiresistive gas sensor [18]. 
For example, alcohol is an important interfering gas for vari-
ous semiconductor gas alarms, and various misjudgments 
often occur. Methods to improve the selection of sensor 
specificity to target gases and to reduce the cross response 
of interfering gases have been the difficulty and focus in the 
gas sensing area.

An artificial olfactory system based on multi-sensor 
fusion technology which mimics the human olfactory system 
can overcome this problem. Figure 1a illustrates the intricate 
mechanism of the human olfactory system. A multitude of 
olfactory neurons within this system are specifically drawn 
to odor molecules, initiating the process of olfaction. When 
activated in combination with odors, complex odor finger-
prints form and are sent to the cerebral nervous center for 
analysis. Figure 1b shows the schematic diagram of the arti-
ficial olfactory mechanism, which mainly consists of sensor 
array, data processing, and pattern recognition. Compared 
to the structure of the human olfactory system, a sensor 
array consisting of different gas sensors with cross-sensitive 

Fig. 1  Process diagram of olfactory recognition. a Human olfactory mechanism. Reproduced with the permission from Ref. [260], Copyright 
Wiley 2019. b Artificial olfactory mechanism
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properties acts like olfactory neurons, which are sensitive 
to multiple odor molecules. Both of them convert chemical 
information about odors into electrical signals. The process-
ing of response data bears a functional resemblance to the 
integration and amplification of electrical signals within the 
olfactory bulb. Meanwhile, the training and verification pro-
cess of pattern recognition methods simulates the process-
ing, learning, memory, and recognition of odor information 
in the human cerebral nerve center.

The multi-sensor array combined with pattern recogni-
tion methods has the potential to solve the problem of 
cross-sensitivity in gas sensors, realize the intelligent anal-
ysis of target gas, and further develop into a portable and 
real-time analysis system. An electronic nose (E-nose) is 
an intelligent device to realize gas recognition in artificial 
olfaction. Gas identification covers the detection, iden-
tification, and quantitative analysis of gas components 
through various sensors or instruments, and the use of pat-
tern recognition algorithms for data analysis. The chemical 
memristor-based gas sensor designed by Chun et al. [19] 
realizes fast response, short recovery time and lagging 
gas response at room temperature without any additional 
equipment and circuits, which promotes the bionic tech-
nology of creating artificial intelligence systems. Cho et al. 
[20] designed a gas sensor based on a single micro-LED 
embedded light-activated, which uses time-varying light-
ing to achieve quantitative and qualitative analysis of com-
plex gases. This method can effectively reduce the cost, 
space and power consumption of manufacturing electronic 
noses. Wang et al. [21] made a greater contribution, they 

integrated gas sensors on nanotubes, each chip can address 
10,000 sensors separately, and can effectively distinguish 
24 kinds of mixed gases at the same time, which greatly 
promoted the development of bionic olfactory technology.

In order to better understand the current research con-
tent and research status of gas identification, surveys 
were conducted. As depicted in Fig. 2a, the number of 
research articles on gas identification has been increasing 
annually over the past 10 years. A thorough search was 
conducted in Web of Science database, focusing on gas 
identification research using various pattern recognition 
methods between 2018 and 2023. The top 1000 research 
papers were selected based on their correlation. Among 
them, gas recognition research based on artificial neural 
networks (ANN) accounted for the highest proportion at 
20.3%, followed by support vector machine (SVM) and 
principal component analysis (PCA) algorithms at 19.2% 
and 16.8%, respectively. In addition, other common meth-
ods are also included, such as linear discriminant analysis 
(LDA), convolutional neural network (CNN), deep learn-
ing, genetic algorithm (GA), and ensemble learning that 
integrates the results of multiple learners and some other 
analysis methods. The distribution of specific pattern 
recognition algorithms is depicted in Fig. 2b. Therefore, 
exploring more accurate and efficient pattern recognition 
methods is the principal research direction for solving gas 
cross-sensitivity.

It is important to note that different pattern recognition 
algorithms have different applicability. Pattern recogni-
tion algorithms applied in gas recognition are typically 

Fig. 2  Research investigation based on gas pattern recognition. a The number of research papers on gas identification over the last decade. 
b The usage frequency of diverse pattern recognition methods (Topic = (electronic nose) and Publication Years = (2018‒2023) and Document 
Types = (Article) and Languages = (English). The initial 1000 papers are generated based on correlation, with titles and abstracts extracted using 
pattern recognition methods that filter out keywords with less than 15 occurrences)
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categorized into supervised and unsupervised learning. The 
supervised learning involves constructing a model based on 
known sample features or attributes to classify or predict 
unknown samples, including LDA, partial least squares 
regression (PLSR), SVM, random forest (RF), and K-nearest 
neighbor method (K-NN), while unsupervised learning can 
be further divided into three categories: PCA, cluster analy-
sis, and neural network-based algorithms.

In specific studies, an appropriate pattern recognition 
algorithm selection is crucial to improve the gas recogni-
tion performance of the sensor array, as it can lead to bet-
ter results and simplify the analysis process. For instance, 
PCA is a commonly used data dimension reduction method, 
which enables faster processing of unknown data in classifi-
cation and regression tasks, thereby reducing the detection 
time. Saidi et al. [22] employed PCA to classify the out-
put signal of the gas sensor into four health states: chronic 
kidney disease, diabetes mellitus, healthy subjects with 
high creatinine, and healthy subjects with low creatinine. 
Tohidi et al. [23] conducted a study comparing the recogni-
tion accuracy of milk samples using LDA and PCA load 
analysis. They found that PCA load analysis had higher 
accuracy in detecting three types of adulterations (formalin, 
hydrogen peroxide, and sodium hypochlorite) in milk, even 
at concentrations as low as 0.01%. However, it should be 
noted that when analyzing a large number of volatile organic 
compounds (VOCs), feature interpolation may occur in the 
PCA results, potentially affecting sensor performance. In 
such cases, nonlinear techniques like ANN algorithms are 
more suitable. Zarezadeh et al. [24] employed 7 pattern rec-
ognition algorithms to detect adulteration in olive oil sam-
ples, and the accuracy of ANN was the highest, reaching 
95.51%. It is worth mentioning that the selection of model 
parameters based on the neural network also plays a crucial 
role in sensor performance, making it a challenging task to 
construct an appropriate neural network model. Of course, in 
addition to the classical neural network algorithm, many new 
methods have been proposed in recent years, and their fields 
of concern are more extensive. Sung et al. [25] proposed a 
data-centric method based on feature maps to implement 
a standardized artificial olfactory system. Experiments on 
complex mixed gases and automobile exhaust show that the 
method is effective and applicable for gas classification in 
various deep learning architectures.

Current reviews in the field of gas sensing primarily 
focus on sensor hardware design (e.g., reviews [26–28]), 

applications of gas sensing (e.g., review [29]), or provide 
introductory overviews of machine learning algorithms 
without detailed theoretical explanations (e.g., review [30]). 
However, there is a lack of systematic summarization regard-
ing the challenges faced in gas sensing pattern recognition 
revealed through specific applications, and the principles, 
difficulties, and future directions of machine learning meth-
ods in addressing sensor cross-sensitivity. This review pro-
vides a comprehensive introduction to the pattern recogni-
tion algorithms based on chemiresistive gas sensor arrays, 
including the classification of algorithms, the working prin-
ciple, characteristics, and the applicable gas detection range 
of different algorithms. The review also highlights the latest 
advances in the application of these algorithms in gas detec-
tion and demonstrates their application scenarios in three 
important domains including food safety, environmental 
protection, and medical diagnostics. Finally, the challenges 
and prospects of pattern recognition methods are discussed.

2  Origins of Cross‑Sensitivity

The performance of chemiresistive sensors is determined by 
their sensing mechanism, which is also responsible for their 
cross-sensitivity. For resistive-type metal oxide semicon-
ductor (MOS) based sensors, one of the widely recognized 
sensing mechanisms is the oxygen adsorption model, which 
has been extensively studied. According to this model, when 
the MOS gas sensor is exposed to air, oxygen is adsorbed 
onto the metal oxide surface as stable free adsorbed oxygen 
ions  (O2

−,  O−,  O2−) [31] due to the high electron affinity of 
oxygen. The process of oxygen adsorption in oxide semi-
conductors leads to the formation of different electronic 
core–shell structures in n-type and p-type materials [32]. In 
n-type semiconductors, an electron depletion layer (EDL) is 
formed, while in p-type oxide semiconductors, a hole accu-
mulation layer (HAL) is formed (Fig. 3a). When the target 
gas reacts with the adsorbed oxygen on the surface of sensi-
tive materials, a redox reaction occurs, causing a change in 
the thickness of the depletion or accumulation layer. This 
change is reflected in the sensor resistance at a macroscopic 
level. However, any active gas can undergo an oxidation or 
reduction reaction with the sensor-sensitive layer, leading 
to a change in the resistance or conductivity of the gas-sen-
sitive layer [33]. This phenomenon is the main reason for 
the cross-sensitivity of most MOS sensors to various gases 
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and VOCs, which significantly limits their applications as 
gas-sensing materials.

However, for other materials, such as carbon-based 
materials, MXenes, and other typical one-dimensional 
or two-dimensional materials, the oxygen adsorption 
model is not applicable. Their sensitive properties pri-
marily depend on the charge transfer mechanism, that is, 
the physical adsorption of gas molecules by the material 
through the Van-der-walls or the donor–acceptor inter-
action. Having more adsorption sites on the material or 
higher binding energy between the sensing material and 
the target gas is conducive to the detection of gas mol-
ecules. When gas molecules are exposed to the surface 
of nanomaterials, oxidizing gas molecules (e.g.,  NO2) 
tend to extract electrons from the nanomaterials. While 
reducing gas molecules (e.g.,  NH3) provide electrons to 

the nanomaterials. As shown in Fig. 3b, surface charge 
transfer can generally occur at the surface through direct 
carrier exchange between the adsorbed gas and the nano-
material. For n-type nanomaterials, a decrease in con-
ductivity is typically observed when the sensing layer 
is exposed to oxidizing gas molecules. Unlike oxidizing 
gases, reducing gases increase the conductivity of the 
n-type sensing layer. For p-type nanomaterials, opposite 
conductivity changes occur for oxidizing and reducing 
gases. In fact, most of the research is done on very com-
plex materials. For these composites, different hetero-
junctions are formed between different materials (p–n, 
n–n, or p–p junctions). For p–n heterojunctions, depletion 
regions will occur at the interface due to the transfer of 
electrons from a high-energy conduction band state (for 
n-type semiconductors) to a low-energy valence band 

Fig. 3  Schematic illustration of gas sensing mechanisms of different materials. a MOSs material. Reproduced with the permission from Ref. 
[261], Copyright Wiley, 2020. b 2D layered nanomaterials. Reproduced with the permission from Ref. [262], Copyright Springer, 2018
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state (for p-type semiconductors). For n–n or p–p hetero-
junctions, carriers will flow from the high Fermi level 
material to the low Fermi level material until the Fermi 
level reaches equilibrium. This will lead to the formation 
of depletion and accumulation layers on the surface of 
the high energy state and low energy state, respectively, 
which has a great influence on the gas-sensitive perfor-
mance. The construction of the heterojunction can signifi-
cantly affect the base resistance of the sensor. The forma-
tion of EDL significantly increases the base resistance, 
while HAL leads to a decrease in the base resistance. 
In the reactive gases environment, when gas molecules 
interact with sensitive material, capturing electrons from 
gas molecules or supplying electrons to gas molecules 
results in a change in the EDL or HAL width. The transfer 
of a small number of electrons in the heterojunction leads 
to a dramatic change in the conductivity of the material 
compared to a single material. This change is macroscopi-
cally reflected in the enhanced response of the sensor 
to the gas molecules. In addition, heterojunctions have 
stronger dangling bond oxygen vacancies, more active 
sites, and stronger catalytic activity. Multi-nanocrystal-
line junctions have more conducting electron transfer 
channels compared to single nano-junctions. Therefore, 
fast electron transfer in multi-nano-junctions leads to fast 
detection times. Whether based on charge transfer mecha-
nism or electron movement in heterojunctions, sensitive 
materials can trap ambient gas molecules, resulting in 
cross-sensitivity.

Extensive research has been conducted to improve the 
selectivity of gas sensors [34–36]. The response of the 
sensor to certain gases can be enhanced through modifica-
tions such as stoichiometric ratio regulation, metal cation 
doping, and noble metal doping. However, it remains a 
challenge to meet the requirements for gas composition 
sensing in complex environments [37]. The combination 
of sensor array pattern recognition methods and artificial 
intelligence technology has gained significant attention in 
gas sensing analysis.

3  Pattern Recognition Methods

The artificial olfactory system comprises a gas sensor 
array and artificial intelligence to achieve qualitative and 
quantitative analysis of gases. Pattern recognition, as a 

crucial component of artificial intelligence, analyzes and 
processes the signal data output by multiple sensors to 
recognize and classify different gases, thereby enhancing 
the accuracy of gas recognition. Various pattern recogni-
tion methods have been integrated into engineering olfac-
tory sensor technology to mimic natural olfactory detec-
tion [29, 38, 39]. In recent years, deep learning methods 
based on neural networks have emerged, offering more 
possibilities for model construction and optimization. For 
example, Lee et al. [40] developed a principal odor map 
(POM) using graphical neural networks. This POM can 
link physical characteristics with perceptual characteris-
tics. The POM successfully encodes a generalized map 
of the relationship between structure and odor on several 
odor prediction tasks. The emergence of this method pro-
vides a meaningful idea for odor digitization. This part 
primarily focuses on introducing classical algorithms and 
neural network algorithms to gain a better identification 
of chemiresistive sensor responses.

3.1  Classical Algorithm

Many classical algorithms have been applied in chemire-
sistive sensor arrays to process gas response signals, 
including LDA, PLSR, SVM, PCA, K-NN, RF, hierarchi-
cal cluster analysis (HCA), and so on. Here, the mecha-
nisms and properties of these algorithms are discussed. 
Table 1 lists the advantages and disadvantages of classical 
pattern recognition algorithms and their applicable scope.

3.1.1  Principal Component Analysis

For dimensionality reduction in complex models with mul-
tiple variables [41, 42], the mainstream method used is 
PCA, which is an unsupervised method for feature extrac-
tion. The PCA creates a new dimension set by associat-
ing the initial dimension and the compressed variance 
(Fig. 4a–c). It projects the two-dimensional data set into 
one dimension based on the features of a covariance matrix 
[43]. The new data set after PCA dimensionality reduction 
retains 60%–99% of the initial data, making it suitable for 
sensor signal extraction and gas monitoring applications 
[44]. However, the limitation of the PCA algorithm is that 
it may not effectively separate subsets if the input data set 
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is small. The selection of feature vectors, which are used 
to generate new feature spaces, is the key step in PCA. 
These feature vectors correspond to the array’s response to 
a given analyte, allowing the user to determine the array’s 
sensitivity to specific gases in its external environment.

Furthermore, PCA is commonly used for data classifica-
tion. For example, Tang et al. [45] applied PCA to extract 
principal components from an odor fingerprint information 
database of pesticide residues in apples, detected by MOS 
sensors, resulting in the successful detection of all apple 
samples. Shauloff et al. [46] developed a new artificial nose 
based on electrode-deposited carbon dots combined with 
machine learning methods to predict individual and mixed 
gases. Figure 4d shows the classification of bacterial species 

based on the first two principal components, we can observe 
that there is no overlap between different species.

In gas recognition, PCA has advanced through integrating 
multimodal feature extraction and sensor data fusion. Recent 
research has enhanced gas recognition systems with refined 
PCA variants and synergistic approaches involving deep learn-
ing and reinforcement learning [47, 48]. As sensor technology 
evolves, PCA is poised to impact large-scale data processing 
for applications like real-time monitoring and intelligent con-
trol systems. However, it faces challenges such as noise, sensor 
drift, nonlinear relationships, heterogeneous data integration, 
high-dimensional data with limited samples, interpretability, 
and non-steady-state conditions.

Table 1  Comparison of classical pattern recognition algorithms

Algorithm Description Advantages Disadvantages References

LDA Reduce the data dimension while 
maximizing the separability between 
different categories

Simple and fast
Both classification technology and 

dimensionality reduction technology

Sensitive to outliers
Not suitable for non-Gaussian distri-

bution samples
A linear relationship is needed

[263]

PLSR Relationships between input variables 
and responses by extracting latent 
variables that have the best predic-
tive power

Suitable for multivariate multiple 
linear regression analysis

Useful in the case of large differences 
in data

Feature selection and classification 
can be combined simultaneously

Limited to linear regression analysis
The local structure of the data is not 

retained

[186]

SVM Maximizes the margin between differ-
ent classes of data points

High stability for high-dimensional 
space

No need for a large number of samples
No use of covariance information

Sensitive to outliers [55]

PCA Capture the main variation informa-
tion in the data

Effective dimension reduction
Remove redundant information
Convenient visualization

Limited to a linear relationship
Sensitive to data distribution

[264]

K-NN Classifies new cases based on a major-
ity vote of its K nearest neighbors in 
the feature space

Easy to implement
Strong adaptability
Fewer hyperparameters
Does not occupy the training period

Require for large data size
Perform poorly in high-dimensional 

data
Easy to appear over-fitting
Sensitive to outliers

[265]

RF Construct multiple decision trees and 
synthesize their prediction results

Effectively deal with outliers
Not easy to over-fitting
Strong anti-noise ability
Wide range of data types
Few hyperparameters

Speed is affected by the decision tree
High computational cost

[266]

DT The data is segmented by recursively 
selecting the optimal feature

Nonparametric method
Processing a wide range of data types
Not require feature scaling
Easy visualization for tree diagrams

Replication problem
Shortsightedness instability
Fragment problem
Dimension limitation
Not suitable for large data sets

[69]

HCA The data set is divided into a hierar-
chical structure gradually aggregated 
by similarity

No need to pre-customize the number 
of clusters

Fewer restrictions
Hierarchical relationship of classes

Great demand for time and space
Vulnerable to the impact of merging 

or splitting points

[267]
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3.1.2  Linear Discriminant Analysis

LDA is a supervised feature extraction method that has 
been extensively studied in the fields of statistics and 
pattern recognition. It aims to find the optimal transfor-
mation of features by training samples and their corre-
sponding class labels. This allows for the extraction of 
discriminant features that can represent multiple types 
of objects [49]. The main idea of LDA is to maximize 

the distance between data belonging to different classes 
and minimize the distance within groups after projec-
tion. LDA is closely related to regression analysis, such 
as linear regression [50] and logistic regression, making 
it suitable for solving regression and classification prob-
lems. For gas response signals from multi-sensor arrays, 
LDA can be used not only for data preprocessing but also 
for the classification of different gases.

Fig. 4  a Two-dimensional linear manifold representation of high-dimensional space. b Features of a covariance matrix of the data, the blue line 
represents a clear gap and the orange curve represents the common case. c Two-dimensional representation after PCA dimensionality reduction. 
Reproduced with the permission from Ref. [43], Copyright American Chemical Society 2021. d PCA results to distinguish different species 
of bacteria. Reproduced with the permission from Ref. [46], Copyright Springer 2020. e Steady-state gravity in the training data is used as the 
discrimination model of the target gas in the direction of the LD fraction of the reference point to the test data. f LD fraction that first leaves the 
steady-state region is used as the discrimination model of the target gas in the LD fraction direction from the reference point to the test data. 
Reproduced with the permission from Ref. [53], Copyright Elsevier 2023. g SVM of the kernel function is used to find the largest hyperplane 
between different classes. Reproduced with the permission from Ref. [55], Copyright Springer 2019. h Three methods were used to classify the 
average performance parameters of essential oils under 8 drying methods. Reproduced with the permission from Ref. [58], Copyright Elsevier 
2023
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Yin et al. [51] found that after applying LDA to the 
preprocessing of a high-dimensional (greater than 70) gas 
feature dataset, only five-dimensional features are needed 
for gas mixture classification. This reduction in the com-
plexity of the model not only shortens the calculation time 
but also maintains classification accuracy. This indicates 
that LDA has achieved remarkable success in explaining 
data variance and sample classification. Aghdamifar et al. 
[52] used a variety of methods to classify coffee beans. 
The  R2 of the LDA model was as high as 0.9714. Itoh 
et al. [53] improved the LDA method to analyze multiple 
semiconductor sensors to distinguish target gases in com-
plex environments. Figure 4e, f show the improved LDA 
algorithm. Method 1 is based on the steady-state gravity 
of the training data set as the direction division. Method 
2 is based on the linear discriminant score of the data set 
that leaves the steady-state region first.

LDA creates a classifier by training samples, but its 
main disadvantage is that it requires a large sample size. 
This becomes problematic for high-dimensional sensors, 
where the number of collected samples is lower than the 
sensor dimension, resulting in an unstable prediction 
matrix. To address this issue, a method called “merging 
covariance” has been proposed to calculate the prediction 
matrix. However, this method can still cause sharp fluctua-
tions in the LDA results, especially when the sample group 
is small, which is known as overfitting.

In gas recognition, LDA is used for dimensionality 
reduction and classification, excelling in extracting key 
features from sensor response data and distinguishing 
between different gas types. Nonetheless, LDA faces chal-
lenges such as handling class imbalance, managing within-
class variance, the limitations of the linear separability 
assumption, and the issue of high-dimensional data with 
limited samples.

3.1.3  Support Vector Machine

SVM is a linear classifier designed to find a separating 
hyperplane in feature space, optimizing through iterations 
to maximize classification performance. It aims to partition 
the training data set while maximizing the geometric margin. 
It uses a suitable kernel function to effectively handle the 
inner product operations in high-dimensional space. This 
approach enables the handling of nonlinear classification 

problems [54]. Figure 4g shows the geometric view of the 
kernel. In this space, SVM applies the kernel function to 
find the hyperplane that supports the largest gap between 
nonlinear separable data [55]. The choice of the kernel func-
tion is crucial in constructing a high-performing SVM. This 
involves selecting the kernel function type and determining 
the relevant parameters. Commonly used kernel functions 
include linear, polynomial, Gaussian, and Sigmoid. Nonlin-
ear SVM is based on the use of linear SVM in various appli-
cations. For instance, it can be applied to classify cerebral 
imaging based on morphological features or identify pos-
sible fractures in bones using anatomical structure images 
(such as X-rays) [56]. SVM is considered a promising clas-
sical learning method for solving both classification and 
regression problems [57].

For the output signal of the sensor array, SVM is often 
used as an optimizer because it can classify different catego-
ries through multiple iterations. Compared with PCA and 
LDA, SVM has the advantage of not requiring large data 
sets and covariance information. Its predictive ability can 
be improved through multiple iterations. SVM was used to 
train the radial kernel C-classification SVM and success-
fully classify all 8 aromas by inputting 14 data sets. This 
demonstrates that SVM can effectively solve the problem 
of cross-interference and improve the resolution of E-nose. 
Rasekh et al. [58] used LDA, SVM and ANN algorithms 
to classify the essential oil of spearmint under eight drying 
methods. As shown in Fig. 4h, the accuracy and specificity 
of all models were greater than 0.99, while the classifica-
tion performance of the Nu-SVM method using the Sigmoid 
kernel function was the best.

Researchers have significantly enhanced the performance 
of SVM in gas recognition by optimizing kernel selection, 
parameter tuning, and feature engineering methods, effec-
tively addressing complex gas data patterns and classifica-
tion tasks [59]. Furthermore, the integration of SVM with 
deep learning techniques such as CNN has emerged as a 
critical strategy for improving classification accuracy and 
robustness. Looking forward, SVM is poised to continue 
playing a pivotal role in gas recognition, particularly in tack-
ling challenges posed by nonlinear and high-dimensional 
data, as datasets grow larger and algorithmic optimizations 
deepen. In gas recognition, SVM exhibits versatility and effi-
ciency in data separation, yet its computational complexity 
may pose challenges when dealing with large-scale datasets.
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3.1.4  K‑Means and Hierarchical Cluster Analysis

Clustering analysis is a prevalent data analysis technique 
employed to group samples based on the inherent relation-
ships within the data [60]. It can be considered as a form of 
dimensionality reduction. k-means clustering [61] and HCA 
are common algorithms for clustering.

K-means clustering is a commonly used method in clus-
tering analysis. The main objective of this algorithm is to 
minimize the loss function by iteratively finding a partition 
scheme of k clusters [62]. Unlike hierarchical clustering, 
the k-means algorithm requires the prior determination of 
the number of clusters [63], as depicted in Fig. 5a, b. The 
k-means algorithm separates a two-dimensional dataset into 
three clusters. Initially, three data points are randomly cho-
sen as the initial centroids in three adjacent regions. The 
algorithm then calculates the distance between each data 
point and the centroid, assigning each point to the near-
est centroid. Next, the centroids are recalculated within 
each group, and the process is repeated until the centroids 
and clusters remain unchanged. Figure 5b illustrates the 

histogram of the total distance in the cluster after 10,000 
experiments. The k-means clustering method has been 
extensively studied in partitioning techniques and applied 
in various areas [64–66]. Licen et al. [67] utilized a multi-
sensor array combined with the k-means clustering algo-
rithm to generate different datasets for monitoring ambient 
air in an industrial area in southern Italy.

HCA is an unsupervised algorithm used for clustering 
analysis as well as data classification. In the process of 
implementing the algorithm, each datum plane is identi-
fied as a separate cluster, and then the Euclidean Distance 
from each cluster to the datum plane is calculated, then the 
most similar clusters are combined in order. This process is 
repeated until the best cluster is formed.

Hidayat et al. [68] combined HCA with the permutation 
feature importance method to identify highly correlated fea-
tures. This approach improved the analysis of multi-sensor 
array data for coronavirus disease 2019 (COVID-19) detec-
tion, while also reducing the number of sensors required.

HCA and K-means are widely used in gas recognition for 
their simplicity and effectiveness in clustering similar sensor 

Fig. 5  a k-means clustering experiment, k = 3, the number of data points are 20,10, and 5, respectively, and d is the radius of the circle. b Repre-
sents the intra-cluster distance histogram of 1000 experiments. Reproduced with the permission from Ref. [63], Copyright Nature 2017. c Using 
HCA to distinguish three asthma VOCs. Reproduced with the permission from Ref. [74], Copyright Elsevier 2020. d K-NN model diagram. 
Reproduced with the permission from Ref. [77], Copyright Elsevier 2023
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response patterns. However, HCA’s sensitivity to noise and 
inability to dynamically adjust its hierarchical structure limit 
its practicality for modern gas recognition systems requiring 
continuous adaptation to new data. In contrast, advanced 
machine learning algorithms like SVM, RF, and CNN offer 
superior performance and flexibility in handling complex 
gas data, gradually replacing traditional clustering methods 
in this domain. However, they face unique challenges spe-
cific to gas data analysis. K-means is sensitive to initial clus-
ter centroids and requires a predefined number of clusters, 
which can be difficult to determine accurately in complex 
gas datasets with varying response patterns. On the other 
hand, HCA’s performance can be impacted by the choice of 
linkage criteria and the challenge of interpreting dendrogram 
structures in the context of gas sensor data.

3.1.5  Decision Tree and Random Forest

Decision Tree (DT) is a tree-based method commonly used 
for classification and regression tasks. It divides the train-
ing set into subsets based on hierarchical decisions about 
features. DT consists of nodes and leaves, where nodes are 
used to split the data into smaller partitions until no further 
partition is needed, and leaves represent the final partition 
[69]. DT offers several advantages, such as being a non-par-
ametric method capable of processing various types of input 
data and achieving high prediction performance even with 
original errors or missing values. However, one disadvantage 
is that DT is oversensitive to training sets, irrelevant attrib-
utes, and noise [70], which can result in overfitting when 
the tree is deep.

Herrmann et  al. [71] utilized a decision tree classi-
fier to evaluate a sensor database, successfully observing 
dynamic changes in plant respiration patterns. They accu-
rately identified water deficiency in soybean plants with 
a precision rate of 94.4%. Future investigations should 
be conducted under controlled conditions to enable early 
detection and monitoring of stress levels.

DT excels in handling large-scale data due to their effi-
cient tree structure, which ensures fast data processing 
and low memory consumption, making them highly suit-
able for high-dimensional and big data analysis tasks in 
gas recognition. Furthermore, when combined with other 
ensemble learning algorithms such as RF and Gradient 
Boosting Trees, DT can effectively reduce overfitting and 

significantly enhance classification accuracy and stability. 
In the future, as Internet of Things (IoT) devices continue 
to collect vast amounts of environmental data, the rapid 
classification capabilities of DT will make them an ideal 
choice in this context.

RF is a nonlinear statistical ensemble method that utilizes 
multiple decision trees to solve the problem [72]. It acts as 
a supervised learning classifier, aggregating the results of 
these decision trees to produce a single result. This approach 
helps prevent overfitting and reduces errors. Randomness 
plays a significant role in RF. Firstly, each decision tree 
randomly selects and retrieves N training samples from the 
training set as its training set. Secondly, at each node, a ran-
dom subset of feature dimensions (m < M) is chosen from 
the total number of features (M) in each sample, and the best 
split is determined from these variables [73]. As shown in 
Fig. 5c, the random forest model constructed by Kim et al. 
[74] to effectively capture the response pattern of the sensor 
array is used to classify the test samples.

The classification capabilities of RF rely on two sources 
of randomness, which help prevent overfitting and enhance 
noise resistance. RF offers several advantages over other 
machine learning methods, including low complexity, fast 
computation, and a low overfitting rate. In various applica-
tions, such as food quality control and disease diagnosis, 
RF has proven to be effective. Du et al. [75] successfully 
predicted the overall maturity, soluble solids content, and 
firmness of kiwifruit using MOS E-nose combined with RF.

DT is favored for its simplicity and interpretability, 
capable of handling nonlinear relationships in gas sensor 
response patterns. On the other hand, RF excels in manag-
ing high-dimensional data and noise, leveraging ensemble 
learning for improved accuracy. However, RF may encounter 
challenges when dealing with imbalanced datasets, requiring 
careful handling of class distributions to maintain robust 
performance in gas recognition applications.

3.1.6  K‑Nearest Neighbor

K-NN is a supervised learning method commonly used 
in classification and regression. The working principle is 
to divide the feature vector space using the training data 
and use the division results as the final algorithm model 
[76]. Figure 5d shows that K-NN uses different distances to 
retrieve valid data sets to achieve classification [77]. This 
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allows data to be classified based on labels. If the input data 
is unlabeled, each feature of the unlabeled data is compared 
to the corresponding feature of the data in the sample set. 
The classification label of the most similar data (nearest 
neighbor) in the sample is then extracted.

The K-NN classification prediction process involves find-
ing a set of k vectors closest to the input vector x in the train-
ing data set. The category of x is then predicted based on the 
category with the highest frequency among the k samples 
[78]. The value of k in the K-NN algorithm determines the 
number of nearest neighbors to consider. Various distance 
metrics, such as Minkowski Distance, Euclidean Distance 
[79], Manhattan Distance, Chebyshev Distance, and Cosine 
Distance, are commonly used to calculate the distance 
between predicted targets. In the study by Sironi et al. [80], 
two E-noses monitored the ambient air near a factory for 
four consecutive days. K-NN algorithm was employed to 
classify the odors and the test results were compared with 
the residents’ perceptions. It was found that with appropriate 
training, the E-nose achieved 78% accuracy in both qualita-
tive and quantitative recognition of odors.

Although the K-NN classifier is simple and practical, 
finding the best K value is challenging. To address this 
issue, several scholars have proposed alternative methods 
for dynamically selecting the optimal k value. Manocha 
and Girolami [81] propose a probabilistic nearest-neighbor 
method to infer the optimal k value by determining the num-
ber of neighbors.

The future development trends of K-NN in gas recogni-
tion will be centered around integrating ensemble learning 
methods, incorporating deep learning, optimizing computa-
tional efficiency, and implementing dynamic adaptation and 
adaptive learning strategies. K-NN is also widely employed 
in gas recognition tasks, valued for its simplicity and adapt-
ability to diverse data distributions. Nevertheless, K-NN can 
be computationally intensive, especially with large datasets, 
and is sensitive to noise and irrelevant features present in 
gas sensor data.

3.1.7  Partial Least Squares Regression

PLSR is a multivariate linear regression method that com-
bines PCA, canonical correlation, and multivariate linear 
regression [82]. In regression analysis, the presence of 
multicollinearity in the data can pose problems. Ordinary 

multiple linear regression is not effective in solving these 
problems, but PLSR can address them well. The working 
principle of PLSR can be understood as follows: First, 
the principal components U and V corresponding to mul-
tiple X and multiple Y are extracted using PCA. Then, 
the relationship between X and U along with the rela-
tionship between Y and V are analyzed using canonical 
correlation. Finally, by combining the principle of mul-
tiple linear regression, the relationship between X and 
V is obtained, subsequently, the relationship between X 
and Y is obtained. Overall, PLSR reduces the number of 
observable variables and extracts principal components for 
analysis to maximize the correlation between the observed 
and predicted variables. Therefore, the PLSR method is 
suitable for solving target prediction problems based on 
sensor array data.

Dong et al. [83] combined E-nose and electronic tongue 
(E-tongue) sensors with chemometric multivariate analy-
sis to characterize and classify coffee varieties, in which, 
the PLSR model with a fusion data set was considered 
the best model for determining quality parameters. Khor-
ramifar et al. [12] utilized PLSR to accurately simulate the 
relationship between odors of different types of potatoes, 
sugars, and carbohydrates.

PLSR is frequently employed in gas recognition for its 
ability to handle multicollinearity and extract relevant 
information from high-dimensional sensor data. However, 
it may suffer from overfitting when the number of predic-
tors is larger than the number of samples.

3.2  Neural Network Algorithm

Previously, classical algorithms such as SVM and LDA 
for gas pattern recognition were discussed. However, these 
analysis methods have limitations as they only consider the 
linear relationship of the sensor data in certain cases. For 
instance, PCA and LDA rely on linear correlation between 
dimensions, while LDA and SVM depend on linear sepa-
rability [84]. Therefore, a neural network algorithm that 
mimics the processing mechanism of complex information 
in the human brain’s nervous system is considered a pow-
erful analytical tool for handling nonlinear data.

Neural networks, a branch of machine learning, combine 
multiple linear regression models with input and activation 
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functions to create a pattern recognizer. Hence, neural net-
work-based algorithms are also seen as the most promising 
tools for addressing the issue of cross-sensitivity in sensor 
arrays [85, 86]. Furthermore, new neural network models 
have been proposed for processing sensor array response gas 
data. This section focuses on several neural network mod-
els, including parallel neural networks (PNN), feedforward 
neural networks (FNN), backpropagation neural networks 
(BPNN), extreme learning machines (ELM), and CNN etc. 
Table 2 lists the advantages and disadvantages of the neural 
network algorithm and the scope of its application.

3.2.1  Parallel Neural Networks

PNN is essentially a parallel algorithm that combines prob-
ability density and Bayesian minimum risk criteria. Under 
certain conditions, the decision surface generated by PNN 
closely approximates Bayesian optimal estimation. Structur-
ally, PNN consists of four layers of neural networks: input 
layer, hidden layer, summation layer, and output layer. It can 
map any input pattern to any number of classifications. The 
application of the PNN analysis method to the study of gas 
response data based on sensor arrays has proved to be effec-
tive. Kalinichenko et al. [87] utilized PNN to classify the 
odor of sensor data and successfully achieved rapid analy-
sis of sausage identification and adulteration. Researchers 

utilized PNN to analyze the air quality in different indoor 
and outdoor environments using four types of sensors: 
kitchen, living room, bar, and terrace [88]. They achieved 
classification accuracies of 98.22% and 99.47% when using 
two sensors and four sensors combined with PNN, respec-
tively. This study provides valuable insights for the future 
development of low-cost devices to monitor air quality under 
various indoor and outdoor conditions, aiding in the early 
establishment of safety measures to prevent diseases.

PNN features a straightforward model structure that 
is easy to comprehend and implement. They handle data 
using a probabilistic framework, exhibiting robustness to 
noise and minor missing data. However, PNN may strug-
gle with the curse of dimensionality when confronted with 
high-dimensional or feature-rich datasets, leading to signifi-
cant computational overhead. Like many machine learning 
models, PNN typically requires substantial labeled data for 
training to ensure robust generalization and accuracy. Future 
advancements in PNN will focus on optimizing algorithms 
and structures, exploring synergies with other advanced 
technologies, crucial for enhancing performance in gas rec-
ognition and beyond. PNN is utilized in gas recognition for 
its capability to model complex nonlinear relationships and 
handle uncertainties in sensor data. Nevertheless, it may 
require substantial computational resources for training and 
inference.

Table 2  Comparison of different algorithms based on neural network

Algorithm Description Advantages Disadvantages References

PNN Predict data based on Bayesian statis-
tical approaches

Approach the Bayes optimal decision 
surface provided that the class prob-
ability density functions are smooth 
and continuous

Fast training

Requires a good amount of data for 
training and test

[268]

FNN The simplest type of ANN wherein 
connections between the units do not 
form a cycle

Easy to understand
Easy to implement

 Gradient disappearance or gradient 
explosion

[269]

ELM Single-layer FNN using randomly 
assigned hidden nodes

 Fast convergence speed
 Small training error
 Good generalization ability

 Hidden layer node redundancy in 
model construction

[270]

CNN Implement convolutional layers that 
automatically learn spatial hierar-
chies of features

Shared convolution layer high-dimen-
sional data processing

 Need to manually select features
 Need a large number of training 

samples

[98]

RNN Connections between nodes form a 
directed graph along a temporal 
sequence

 Processing sequence data
 Weight sharing
 Capture long-term dependence

 High computational complexity
 Gradient disappearance or gradient 

explosion
Hyperparameter sensitivity

[271]
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3.2.2  Feedforward Neural Networks 
and Backpropagation Neural Networks

FNN is a commonly used algorithm in ANN. It consists of 
three layers: the input layer, the hidden layer, and the output 
layer. FNN is a one-way network where input information is 
transmitted from the input layer to the next layer of neurons 
until it reaches the output layer. The output results of each 
node in the hidden layer are determined using an activation 
function, such as the commonly used Sigmoid, hyperbolic 
tangent, or ReLU activation functions. Figure 6a illustrates a 
simple FNN. Depending on the number of hidden layers, the 

FNN can be classified as a single-layer network or a multi-
layer network. The FNN is known for its simple structure, 
wide applicability, and strong nonlinear processing capabil-
ity, making it suitable for solving classification and regres-
sion tasks.

BPNN is a multi-layer FNN that utilizes the back propaga-
tion learning algorithm [89]. The implementation process of 
BPNN involves activating the product of the data in the input 
layer and the initial weight using the activation function and 
then passing it to the hidden layer until the output layer is 
obtained. The activation function applied is Sigmoid, which 
enables the network to achieve any nonlinear mapping from 

Fig. 6  a Simple FNN. Reproduced with the permission from [84], Copyright Nature 2020. b The error between the validated concentration 
and the predicted concentration of the BP-based and ELM-based regressors. c Verified and predicted concentrations of the ELM-based model. 
Reproduced with the permission from Ref. [96], Copyright Royal Society of Chemistry 2021. d‒f Corresponds to the normalized confusion 
matrix, correlation performance, and predicted concentration box diagram of BPNN detection of CO and  NO2. g‒i Corresponds to the normal-
ized confusion matrix of GA plus BPNN for detecting CO and  NO2, the correlation performance, and the predicted concentration box diagram. 
Reproduced with the permission from Ref. [107], Copyright Elsevier 2021
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input to output. The error between the output value and the 
expected value is then calculated using the loss function. 
The weights of each neuron in each layer are updated by a 
chain rule to minimize errors [30]. In back propagation, the 
vector error signal is transmitted backward along the original 
influence path of the neuron. However, in the brain, vec-
tor feedback can be transmitted in various ways, and vector 
transmission can be achieved through a separate network. 
As one of the most successful gradient descent methods for 
training neural networks [84], back propagation has found 
numerous applications in processing sensor signals. For 
instance, Jiang et al. [90] constructed a BPNN model to 
classify Jinhua dry-cured hams with an accuracy of 100%.

FNN and BPNN each have inherent strengths and weak-
nesses in the field of gas recognition. FNN processes data 
by sequentially passing signals through layers, offering a 
simple structure that is easy to implement and understand, 
but it may struggle with complex patterns and nonlinear rela-
tionships. BPNN, an extension of FNN, optimizes weights 
and biases using backpropagation, enabling it to handle 
complex nonlinear problems with strong learning capabil-
ity and adaptability. However, BPNN training can encounter 
challenges such as gradient vanishing or exploding during 
training.

Looking ahead, the future development of these algo-
rithms in gas recognition will focus on optimizing neural 
network architectures and algorithms to enhance their ability 
to recognize complex gas patterns. With advancements in 
deep learning technologies, FNN and BPNN will increas-
ingly integrate with advanced models like CNN, aiming to 
improve the performance and robustness of gas recognition 
systems for real-time monitoring in diverse environmental 
conditions. FNN and BPNN both exhibit powerful pattern 
recognition capabilities in gas recognition, capable of han-
dling complex nonlinear relationships. However, the training 
process may be slow and susceptible to local minima, neces-
sitating careful parameter tuning for optimal performance.

3.2.3  Extreme Learning Machine

ELM is an algorithm used to solve single hidden layer neural 
networks. ELM is known for its high learning efficiency and 
accuracy [91]. During the ELM modeling process, the hid-
den layer randomly generates connection weight parameters 

and neuron thresholds using an infinitely differentiable func-
tion [92, 93]. ELM effectively solves the regularized least 
squares problem by combining the training error term, the 
regularization term of the output layer weight norm, and the 
Moore–Penrose generalized inverse matrix analysis method 
to determine the output weight between the hidden layer and 
the output layer. Overall, ELM offers advantages such as 
fewer training parameters, fast learning speed, and strong 
generalization ability [94]. In recent years, there have been 
advancements in the theory, application, and practical use of 
ELM. Zhu et al. [95] proposed an evolutionary ELM with a 
more compact network and faster training response speed. 
In an experiment by Wang et al. [96], backpropagation (BP) 
and ELM were used to establish prediction models for etha-
nol, respectively. As shown in Fig. 6b, the error oscillation 
amplitude based on the BP model and ELM model is in turn 
above and below. It can be seen that ELM has a more stable 
performance. Figure 6c is the comparison between the pre-
dicted concentration and the actual concentration of ethanol 
based on the ELM model, and there is no obvious deviation 
in different concentrations. ELM are characterized by their 
fast learning speed and ability to handle large-scale datasets 
efficiently. They operate by randomly initializing the input 
weights and biases in hidden layers, and directly computing 
the output weights through a single learning process, which 
accelerates training significantly compared to traditional 
neural networks.

ELM excels in tasks where computational efficiency and 
scalability are paramount, making it particularly suitable for 
applications in gas recognition and other domains requiring 
rapid processing of high-dimensional data. However, ELM’s 
lack of interpretability compared to conventional machine 
learning models remains a challenge. Future advancements 
in ELM are expected to focus on enhancing its interpretabil-
ity, optimizing parameter selection, and addressing issues 
related to handling imbalanced datasets, further solidifying 
its role in practical applications requiring efficient and effec-
tive learning algorithms.

ELM is widely used in gas recognition for its fast learning 
speed and ability to handle large datasets. However, it lacks 
interpretability compared to traditional models, making it 
difficult to understand feature learning and predictions. It 
also faces challenges in parameter selection, which can affect 
performance and lead to overfitting, especially with imbal-
anced data.
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3.2.4  Convolutional Neural Network

As a supervised deep learning method [97], CNN has shown 
considerable development prospects in the field of artificial 
intelligence. CNN is an improvement of the traditional neu-
ral network, with changes in the function and architecture of 
the layers. In general, CNN consists of five main layers [98]: 
the data input layer, convolution calculation layer, ReLU 
excitation layer, pooling layer, and fully connected layer. The 
convolutional layer utilizes multiple convolution kernels for 
feature processing, the pooling layer combines semantically 
similar features and prevents overfitting, and the final fully 
connected layer generates global semantic information for 
each neuron. Therefore, compared to other traditional neural 
network algorithms, CNN requires fewer parameters, reduc-
ing memory usage and improving efficiency. CNN’s ability 
to learn features and classification boundaries directly from 
the original input data makes it a suitable method for feature 
extraction in gas datasets. By using a self-designed ultra-
low-power electronic nose system combined with CNN, 
Lee et al. [40] achieved a classification accuracy of 99.32% 
for five different gases. The electronic nose system can be 
driven by a battery and is expected to be used in environ-
mental IoT applications.

Although several CNN models have been proposed for 
visual data processing, such as AlexNet [99], ResNet [100], 
and the inception series, these models are not directly appli-
cable to gas classification. As a result, researchers have made 
efforts to modify CNN architectures for gas identification. 
Wei et al. [101] designed a network with two convolutional 
layers and two pooling layers to enhance the depth of learn-
ing. Experimental results demonstrated that the improved 
CNN model successfully identified  CH4, CO, and their mix-
tures with an accuracy rate of 99.67%, surpassing SVM, 
MLP, and PNN. These studies collectively highlight the 
promising application prospects of deep learning methods 
in the field of gas identification.

CNN is widely used in gas recognition for its unique 
architecture, including convolutional, pooling, and fully 
connected layers. Convolutional layers extract local fea-
tures from sensor data, pooling layers reduce dimensional-
ity while preserving key information, and fully connected 
layers use these features for classification or regression. 
However, CNN faces challenges: it requires large labeled 
datasets for effective training and generalization, demands 

significant computational resources for handling high-
dimensional data, and may need adjustments to adapt to 
dynamic gas environments.

3.2.5  Recurrent Neural Network

Recurrent neural network (RNN) is a type of FNN that dif-
fers in its connections between nodes, forming a directed 
graph along the time series. This unique structure allows 
RNN to effectively process input sequences of varying 
lengths, making it suitable for solving sequence-related 
problems like handwritten digit recognition. The hidden 
unit of RNN contains a state vector that retains histori-
cal information about past elements in the sequence [97]. 
This storage capability is facilitated by the weight between 
the hidden layers, which acts as the memory controller 
of the network, responsible for managing memory [102]. 
When RNN is time-expanded, it can be seen as a multi-
layer FNN. However, it has been observed that learning 
long-term dependencies through gradient descent can be 
challenging. To address this problem, researchers have 
proposed using display memory to enhance the RNN, 
leading to the development of long-term and short-term 
memory networks [103]. RNN is particularly well-suited 
for processing time series data, and when combined with 
the characteristics of gas concentration time series, it can 
serve as a gas concentration prediction model. Song et al. 
[104] proposed a gas concentration prediction model based 
on RNN, which leveraged the characteristics of gas con-
centration time series to improve applicability and robust-
ness. This model offered valuable insights and recommen-
dations for coal mine safety management.

In gas recognition, RNN is frequently employed due 
to its capacity to model temporal dependencies in sensor 
data. Unlike feedforward neural networks, RNN possesses 
feedback connections that allow it to retain information 
about past inputs, making it suitable for sequential data 
processing tasks. RNN can effectively capture the dynamic 
nature of sensor responses over time in gas recognition, 
enabling accurate modeling and prediction of gas concen-
trations or types. However, RNN also faces challenges 
such as handling long-term dependencies, training stabil-
ity issues, and computational complexity, particularly with 
large datasets.
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3.3  Ensemble Learning Method

Ensemble learning is a model optimization method that 
combines different algorithms [105] to improve the accuracy 
of the model [68]. It involves associating different models in 
parallel or series and integrating their results through averag-
ing or voting. Therefore, the ensemble learning model is a 
common solution to the bottleneck of gas identification in 
deep learning applications. It overcomes the limitations of 
using a single model [106] and has the potential to enhance 
gas sensing performance. The classical BPNN is known to 
be slow in the training process and prone to falling into local 
minima. It effectively overcomes the drawbacks of BPNN. 
Moreover, the GA can enhance the prediction accuracy of 
the BPNN by optimizing the initial weight and threshold 
[93, 102]. Chu et al. [107] utilized the neural network algo-
rithm to detect four different  NO2 and CO mixtures and 
found that the GA-optimized BPNN algorithm exhibited 
superior performance in gas quantitative identification. 
Figure 6d–i illustrate the performance of BPNN and GA-
BPNN in the quantitative detection of various CO and  NO2 
mixtures, respectively. Figure 6d–f describe the normalized 
confusion matrix of BPNN, the performance of quantitative 
detection of various mixtures of CO and NO, and the error 
between the predicted concentration and the actual con-
centration. Figure 6g–i describes the normalized confusion 
matrix of GA plus BPNN, the performance of quantitative 
detection of various mixtures of CO and NO, and the error 
between the predicted concentration and the actual concen-
tration. These results indicate that GA effectively optimizes 
the parameters of BPNN. Therefore, combining the GA 
with other algorithms holds great potential in addressing 
the cross-sensitivity problem of multi-sensor arrays [108]. 
Furthermore, the generalization of ELM can mitigate the 
over-fitting phenomenon caused by a large number of hid-
den layers in BPNN [109]. For example, Wang et al. [110] 
proposed an E-nose system architecture based on edge com-
puting, ensemble learning, and sensing clusters. Different 
ANN models were applied to each sensor unit to improve 
the system’s fault tolerance to sensor faults, and edge com-
puting was used for data processing and analysis of E-nose. 
Based on this method, the fault-tolerant ability of the E-nose 
system for gas classification and concentration prediction is 
10 and 18 times that of the traditional array sensors, respec-
tively, which provides a new way for the development of 
highly fault-tolerant E-nose systems.

Ensemble learning methods can improve the classifica-
tion performance, enhance the robustness and generalization 
ability of the system, deal with unbalanced data, and provide 
more interpretable model output in E-nose data processing, 
which is of great significance for improving the accuracy 
and reliability of odor recognition. For example, Xiong 
et al. [111] combined the gramian angular field (GAF) and 
CNN to preprocess the E-nose response data to classify the 
odor intensity levels of five gases. The core of the algorithm 
is to use GAF to convert one-dimensional time data into 
two-dimensional color images, and then design a classifica-
tion model based on a multi-scale feature fusion network 
(MFFNet) for classification. Finally, MFFNet achieved the 
highest accuracy and macro average F1 score on the test set, 
which were 93.75% and 93.34%, respectively. This method 
extracts a unique fingerprint for each gas sensor signal, 
avoids complex feature engineering, and extends the tradi-
tional E-nose data processing ideas. Shi et al. [112] proposed 
a calculation method of gas feature attention mechanism 
(GFAM-Net) based on gas feature attention mechanism and 
lightweight CNN, aiming to effectively extract the key fea-
tures of deep gas information and improve the detection per-
formance of E-nose. At the same time, the effectiveness of 
the method is verified on different data sets based on E-nose. 
The experimental results show that GFAM-Net not only has 
fewer parameters and calculations but also has better perfor-
mance in multi-learning models.

Sun et al. [113] proposed an adaptive convolution ker-
nel channel attention (AKCA) module for gas feature 
extraction to identify the quality of soybeans from dif-
ferent producing areas. In comparison experiments with 
other attention mechanisms, AKCA-Net showed excel-
lent performance, with an accuracy rate of 98.21%, an 
accuracy rate of 98.57%, and a recall rate of 98.60%. Wu 
et al. [114] observed that the transformer encoder (TE) 
and temporal convolute onal network (TCN) both showed 
excellent performance in processing sequence data, so 
they were combined to process E-nose data. Then the 
Bayesian parameter optimization algorithm is used to per-
form TE weighting on the data, and then important fea-
tures are extracted. The classification accuracy is 99.8%. 
Zhang et al. [115] used six ZnO-based Micro-Electro-
Mechanical Systems (MEMS) sensors to reduce the power 
consumption of the system to 36 mW. A particle swarm 
optimization algorithm is used for feature selection so 
that the feature is reduced from 72 to 5. Finally, these 
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five features are input into the model combined with SVM 
and ANN to identify and quantify VOCs such as HCHO, 
 C2H5OH,  C7H8, and  C8H10. The recognition accuracy and 
 R2 reached 97.9% and 0.975%, respectively. Zhang et al. 
[116] proposed a fully connected temporal multi-layer 
graph convolutional network to predict gas concentration 
in gas sensor networks with spatio-temporal characteris-
tics. The algorithm uses multiple graph convolution lay-
ers to capture the spatial features in the data, and then 
combines the gated recursive unit (GRU) to obtain the 
dynamic changes of the sensor network data and the time 
characteristics of the data. Finally, the fully connected 
layer is used to enhance the performance of the model.

Future research should prioritize the development of 
machine learning algorithms that can effectively adapt to 
and compensate for sensor drift over time, ensuring con-
sistent performance of E-nose without frequent recalibra-
tion. Pan et al. [117] proposed a concentration prediction 
method for mixed gas recognition based on an attention-
based hybrid domain adversarial learning transformer 
network (HATN-DA). Based on the label-free domain 
adaptation of Wasserstein distance, the label-free drift 
compensation and transfer calibration effects are realized: 
for public data sets, the drift compensation experimental 
accuracy of HATN-DA reaches 97.50%–100%; for the 
mixed gas dataset, the accuracy of HATN-DA reaches 
98.79% in the batch transmission task, which is signifi-
cantly improved compared with 90.16% (before transmis-
sion). Se et al. [118] used an online drift compensation 
framework based on active learning to achieve multi-task 
processing such as sensor drift, gas classification, con-
centration prediction, and labeling cost. Two strategies, 
including gas classification query strategy and concen-
tration prediction query strategy, are used to capture 
drift information. At the same time, the self-renewal of 
online domain adaptive extreme learning machine is used 
to adapt to the changing sensor drift. This method can 
achieve the best generalization ability with the minimum 
labeling cost.

The ensemble learning method is widely utilized in gas 
recognition for its fast learning speed and capability to 
handle large-scale datasets. It employs a single hidden 
layer of randomly generated neurons, followed by a linear 
output layer, making it computationally efficient. However, 
the ensemble learning method may lack interpretability 
compared to traditional machine learning methods.

4  Applications and Challenges

4.1  Food Quality and Safety

With the increasing complexity of the food supply chain, 
ensuring food safety and quality has become increasingly 
important throughout the entire process from farm to fork. 
Traditionally, there have been several conventional methods 
used to assess food quality, such as polymerase chain reac-
tion (PCR), enzyme-linked immunosorbent assay, back-flow 
immune bands, gas chromatography, high-performance liq-
uid chromatography, and mass spectroscopy [119]. While 
these methods offer reliable technology, they are often time-
consuming and require significant labor.

In contrast, pattern recognition methods based on multi-
sensor arrays not only allow for rapid non-destructive testing 
but also enable the tracing of product origins, identification 
of authenticity, and early detection of pests and diseases 
[120], which is expected to become a non-destructive qual-
ity assessment tool that can replace traditional methods. This 
section focuses on the application and challenges of pat-
tern recognition methods in assessing the quality of fruits, 
vegetables, fish, and beverages. Table 3 provides a compre-
hensive overview of how pattern recognition algorithms 
are applied to address cross-sensitivity challenges in the 
domain of food quality and safety. It details the algorithms 
employed, the specific gases they relate to, and the count of 
gas sensor arrays involved.

4.1.1  Fruits and Vegetables

It has been proved that gas sensors can be used for disease 
prediction and safety assessment of fruits and vegetables. 
The detection of aroma and VOCs is an important method 
to evaluate plant infection. Taking effective measures to 
prevent crop infection can improve the quality and yield of 
fruit and vegetable crops. In addition, during the processing, 
transportation, and storage of fruits and vegetables, some 
VOCs are released from these perishable foods due to the 
breakdown of nutrients, which can be used as the evaluation 
criteria for their freshness.

The effectiveness and classification accuracy of gas 
sensors in food freshness monitoring can be significantly 
improved through pattern recognition methods. For instance, 
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Chen et al. [121] conducted a study using a MOS-based 
sensor array to evaluate the freshness of broccoli samples 
during storage. They employed a PCA model to differentiate 
between fresh, medium fresh, and spoiled broccoli samples, 
achieving a classification rate of 95.37%. The canonical dis-
criminant analysis (CDA) model successfully distinguished 
broccoli samples based on their freshness with 100% accu-
racy. Similarly, Ren et al. [122] proposed an E-nose system 
based on CNN that effectively classifies the freshness of 
various types of food. Through the analysis performed by 
CNN, the system achieved a final freshness classification 
accuracy of 97.3% for 20 different types of foods.

In order to detect agricultural product corruption at an 
early stage, multi-sensor arrays combined with pattern rec-
ognition methods, are designed to predict product corruption 
quickly and reduce the deterioration rate. To improve the 
reliability of the results, researchers have considered using 
data fusion methods to detect samples. Rutolo [123] devel-
oped a low-cost gas sensor array that monitors soft rot in 
potatoes by analyzing the odor released by infected samples. 
The PCA model achieved 100% accuracy in distinguishing 
healthy and infected potato samples. This method provides 
a simpler and more reliable approach for sensor monitoring 
systems that traditionally rely on human skills. Wen et al. 
[124] independently developed a sweeping E-nose system 
to detect the presence of early infestation by Bactrocera 
dorsalis in citrus fruits. The results showed that LDA could 
successfully distinguish different types of treatments with a 
success rate of 98.21%. This system holds promise for on-
site detection of postharvest pests of citrus fruits under mar-
ket conditions. Makarichian et al. [125] concerned that there 
was little literature on the pattern of volatiles in infected gar-
lic bulbs, so they used 9 MOS sensors (in Fig. 7a–c, s1–s9, 
respectively, represent MQ-2, MQ-3, MQ-4, MQ-5, MQ-6, 
MQ-7, MQ-8, MQ-9, and MQ-135) for experiments. Since 
each sensor has a different detection range, it is impossible 
to distinguish whether garlic is infected based on the output 
of the sensor array alone. After normalizing the sensor data, 
Fig. 7a–c are PCA double graphs, which show the discrimi-
nation of garlic samples after different infection treatments 
on the 0th day, the 4th day and the 8th day. Although it 
could not be distinguished on day 0, the inoculated samples 
were distinguished from the CO samples on day 4, indicat-
ing that the garlic infection could be identified according to 
the aroma characteristics in the early stage. Zhao et al. [126] 
used eight different algorithms, including KNN, RF, SVM, Ta
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CNN, BPNN, particle swarm optimization-back-propagation 
neural network (PSO-BPNN), gray wolf optimization-back-
propagation neural network (GWO-BPNN), and a sparrow 
search algorithm-backward propagation neural network 
(SSA-BPNN) models, to analyze the odor information of 
apples collected by an E-nose and distinguish between 
infected and non-infected apples. GWO-BPNN combines 
the grey wolf optimization (GWO) algorithm with BPNN. 
The GWO algorithm simulates the social behavior of a grey 
wolf pack, optimizing the performance of the neural network 

by adjusting its weights and biases. SSA-BPNN integrates 
the sine cosine algorithm (SSA) with BPNN. The SSA algo-
rithm mimics the variation process of the sine cosine func-
tion, enhancing the convergence speed and generalization 
ability of the neural network.

However, it has been pointed out that the use of E-nose 
for detecting apple quality can be easily interfered with by 
external factors. Du et al. [127] combined E-nose and CNN 
technology to achieve rapid detection of the quality changes 
of sauerkraut. The model they trained only after 50 cycles, 

Fig. 7  Pattern recognition for fruits and vegetables. a PCA double images of garlic treated with different infections on day 0. b PCA double 
images of garlic treated with different infections on day 4. c PCA double images of garlic treated with different infections on day 8. Reproduced 
with the permission from Ref. [125], Copyright Elsevier 2022. d VOCs of four fruits were collected at different time periods. e The neural net-
work model was used to quantify the storage time of four fruits. Reproduced with the permission from Ref. [128], Copyright American Chemi-
cal Society 2023. f PCA results corresponding to three sensor data. Reproduced with the permission from Ref. [129], Copyright Wiley 2021. g 
Classification accuracy of each green tea using QNNs with different numbers of quantum intervals and BPNN. (XH represents Xihu Longjing, 
HS represents Huangshan Maofeng, MB represents Mabian Lucha, ES represents Enshi Yulu, and XY represents Xinyang Maojian). h Average 
classification accuracy obtained by corresponding BPNN and QNN under different quantum intervals. Reproduced with the permission from 
Ref. [131], Copyright Elsevier 2023
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the accuracy of the sample test set reached 93%, indicating 
that CNN has a high performance in predicting the quality 
of sauerkraut. Mahata et al. [128] developed a solid-state 
chemical resistance-based sensing system that can moni-
tor fruit freshness in real-time. Apples, guava, oranges, and 
grapes were selected as monitoring objects, respectively. 
The specific sensing process is shown in Fig. 7d. The neural 
network was used to analyze the VOCs collected in differ-
ent periods. Figure 7e shows the quantitative results of the 
model for different fruits, and each quadrant represents a 
fruit. The average errors of the model for the four fruits 
were 7.32%, 5.25%, 8.94%, and 9.71%, respectively. It is 
obvious that the freshness of fruit samples can be predicted 
by monitoring the storage time of fruits.

In addition, the appropriate pattern recognition method 
can also be used to determine the source of fruits and veg-
etables and achieve quick anti-counterfeiting traceability 
of products. Mao et al. [129] based on the two eigenvalues 
obtained after filtering, combined with 22 model analysis 
methods to trace the source of 6 kinds of Chinese red pepper. 
Firstly, principal component analysis—discriminant index 
is used to obtain the optimized eigenvalues corresponding 
to the three sensors, and then PCA analysis is performed on 
the eigenvalues of this group, as shown in Fig. 7f. It can be 
seen that there are 5 kinds of red pepper cross phenomenon, 
so the authors used 10 times cross varicose veins and mini-
mum classification error to extract the filter characteristic 
value. Finally, based on these two eigenvalues, the ensemble 
learning algorithm shows more than 90% resolution. Con-
sidering the sensor’s cross-sensitivity, Lin et al. [130] pro-
posed a long-range convolutional neural network (LRCNN) 
algorithm to achieve soybean quality traceability, which 
effectively reduces the number of parameters and prevents 
the degradation of deep CNN. The classification accuracy 
of the algorithm reaches 98.37%. Similarly, the E-nose 
combined with the pattern recognition method is used to 
achieve the purpose of soybean traceability. Fu et al. [131] 
used the method of E-nose combined with a quantum neural 
network to identify five different geographical locations of 
green tea. Their method is similar to the traditional BPNN, 
but its transfer function is formed by the superposition of 
quantum intervals formed by multiple sigmoids and can be 
adjusted during training. In the experiment, they trained 
each quantum neural network (QNN) and BP neural net-
work with different initial quantum intervals. It can be seen 
from Fig. 7g that the performance of all QNNs is better 

than that of BPNN for the classification accuracy of each 
green tea, and the classification accuracy increases with the 
increase of the number of quantum intervals (Fig. 7h). In 
order to understand the recognition results in more detail, 
the researchers also provided the confusion matrix of BPNN 
and QNN under two quantum intervals. The results showed 
that the accuracy of BPNN and QNN with 2 quantum inter-
vals (QNN (2)) in identifying Xinyang Maojian reached 
100%. However, compared with BPNN, QNN (2) has fewer 
false predictions, especially in identifying green tea in other 
regions, especially for Huangshan Maofeng and Mabian 
Lucha. This shows that QNN (2) has better performance in 
the identification of green tea producing areas. The AKCA-
Net proposed by Sun et al. [113] also shows excellent per-
formance, achieving an accuracy of 98.21%, precision of 
98.57%, and recall of 98.60%. AKCA-Net utilizes the adap-
tive k-clone algorithm (AKCA) to optimize the structure 
and parameters of the neural network. The AKCA combines 
the features of clone selection and adaptive K-value. This 
combination enables adaptive selection and adjustment of 
the neural network’s topology and parameters. As a result, 
the AKCA enhances the network’s performance and gener-
alization ability in tasks such as gas recognition. Exploring 
techniques for efficient data dimensionality reduction and 
sensor data fusion can enhance the performance of E-nose.

Maturity plays a crucial role in assessing the quality of 
fruits and vegetables as it impacts their taste and storage 
characteristics. To determine the maturity stages of these 
products, an E-nose can be employed to analyze the VOCs 
released by them. For instance, Aghilinategh et al. [132] 
utilized an E-nose to detect the five ripeness grades of ber-
ries, namely whiteberry and blackberry. The researchers 
employed three different algorithms for pattern recogni-
tion, LDA can distinguish blackberry well and the accuracy 
rate is 96.67%. ANN achieved 100% accuracy in the black-
berry classification and 88.3% accuracy in the blackberry 
classification.

4.1.2  Fish and Meat

In addition to fruit and vegetable products, fish and meat 
products are important sources of protein for nutritional 
intake. It is crucial to detect the freshness, shelf life, and 
early deterioration of these foods during transportation and 
storage to ensure their safety and freshness. One typical sign 
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of fish or meat spoilage is the emission of VOCs, such as 
ammonia [133]. Ma et al. [134] observed that the gas sen-
sor response to beef, pork, fish, and chicken stored at 30 °C 
for 20 h varied, indicating different levels of deterioration. 
Therefore, monitoring the fish quality has also become an 
important application area for multi-sensor array gas detec-
tion [135]. This includes detecting the freshness of different 
types of meat under various storage time, identifying meat 
adulteration [136], determining meat species identification 
[137], and assessing the authenticity of meat products [138, 
139].

The nutritional value and delicious taste of fish meat make 
it highly popular among people. The economic value of fish 
meat is greatly influenced by its freshness. Therefore, there 
is a need to develop a fast, sensitive, and cost-effective tool 
for reliable freshness detection and shelf life prediction. In 
a similar experiment, Karunathilaka et al. [140] employed 
MOS sensors combined with SVM modeling to classify 
mahi-mahi, croaker, red snapper, and weakfish. The correct 
classification rates were 100%, 100%, 97%, and 97% respec-
tively. Andre et al. [141] prepared  SiO2:In2O3,  SiO2:ZnO 
nanofibers by electrospinning and used them as a sensing 
platform (Fig. 8a). The discriminant analysis method was 
used to identify volatile amines emitted during meat spoil-
age to detect the degree of spoilage of fish. Li et al. [142] 
conducted an experiment using an E-nose, E-tongue, and 
colorimeter in combination with four different machine 
learning algorithms to quantitatively evaluate and predict 
the freshness of horse mackerel (Trachurus japonicus), as 
depicted in Fig. 8b. In the experiment, ANN, extreme gra-
dient boosting (XGBoost), random forest regression (RFR), 
and support vector regression were employed to establish a 
freshness prediction model for fish meat. The results indi-
cated that the ANN, XGBoost, and RFR models achieved 
the best outcomes for protein oxidation degree, lipid oxida-
tion degree, and protein denaturation degree, respectively. 
Hence, these three indicators demonstrate that the utilization 
of gas sensors combined with machine learning algorithms 
can effectively evaluate and predict the freshness of frozen 
fish. Grassi et al. [143] designed a convenient and cheap 
E-nose system consisting of four MOS sensors to achieve the 
freshness of different seafood species only through a single 
classification model. Figure 8c is a PCA double image of the 
electronic nose data of the three fish species. The color dif-
ference represents the different freshness levels determined 
by the K-means. It can be seen that the classification of 

samples along PC1 is only related to the number of storage 
days. This result is consistent with the PCA double graph 
results of a single sample, which lays a foundation for the 
design of a single classification model.

Meat is a perishable product. During storage, changes in 
chemical composition result in the emission of many volatile 
compounds [144]. In the case of meat adulteration, Tian et al. 
[145] employed an E-nose system with 10 selective MOS gas 
sensors to detect adulteration in minced mutton mixed with 
pork. Various pattern recognition methods, including norma-
tive discriminant analysis, PCA, stepwise LDA, multiple lin-
ear regression (MLR), partial least squares (PLS), and BPNN, 
were used for analysis. Among these, canonical discriminant 
analysis achieved excellent clustering of pure and adulterated 
samples, with an accuracy rate of 93.10%, effectively distin-
guishing mutton and pork adulteration. Similarly, Wang et al. 
[136] successfully identified adulteration in mutton and duck 
meat using an E-nose system and employed solid-phase micro-
extraction for volatile compound extraction. The sensor data 
was analyzed using linear regression, fisher LDA (FLDA), 
and multilayer perceptron neural networks analysis, with an 
accuracy exceeding 95%. Wakhid et al. [105] studied the effect 
of input gas concentration on meat adulteration classification 
using E-nose. In the experiment, seven kinds of mixed beef 
and pork were selected as samples, and different concentra-
tions of gas were obtained using 50, 150, and 250 mL gas 
chambers, respectively. Finally, the different combinations of 
statistical methods and four classification methods are com-
pared to find the best method. Figure 8d is a comparison of the 
classification accuracy of different classifiers under three gas 
chambers. It can be seen that no matter which classification 
method, the greater the gas concentration, the better the classi-
fication effect. Similarly, ensuring the quality of meat products 
is crucial for food safety supervision. In a study by Putri et al. 
[146], an E-nose based on supervised machine learning (LDA, 
quadratic discriminant analysis (QDA), K-NN, and RF) was 
used to classify meat floss derived from beef, chicken, and 
pork. The LDA model with five windows achieved an accuracy 
of over 99% in distinguishing the three types of meat floss, and 
the analysis results of the E-nose were validated by spectral 
data. These experiments highlight the effectiveness of pattern 
recognition methods as a powerful analytical tool for identify-
ing meat adulteration and evaluating freshness using pattern 
recognition method.

Qian et al. [147] proposed a hybrid feature optimization 
method, which uses the mutual information hybrid evaluation 
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method to filter out irrelevant features, and then uses the 
packaging method based on support vector machine back-
ward feature elimination cross-validation (SVM-BFECV) to 
remove multi-collinear features. The E-nose system combined 
with this method has achieved good results in the classifica-
tion of three grades of ham. As shown in Fig. 8e–g, the pre-
diction accuracy of this method is compared with the other 
three models (mutual information mixed evaluation (MIME), 
SVM-BFECV, and PROPOSED, which represents MIME-
(SVM-RFECV)) in three grades of ham. Obviously, the 

MIME-(SVM-BFECV) method performs best. Choosing a 
good feature optimization method is also the key to the gener-
alization of E-nose applications in the future.

4.1.3  Beverage

The early use of pattern recognition methods in analyz-
ing gas sensor responses has been successfully applied to 
various aspects of beverage analysis. For example, it has 
been used for detecting beverage adulteration [148], quality 

Fig. 8  Pattern recognition methods in fish quality detection. a An E-nose system for monitoring fish spoilage. Reproduced with the permission 
from Ref. [141], Copyright Elsevier 2022. b E-nose, E-tongue, and colorimeter. Reproduced with the permission from Ref. [142], Copyright 
Elsevier 2023. c PCA double graph of the electronic nose data of the three fish species, the color difference represents the different freshness lev-
els determined according to the K-means. (PID stands for photoionization detector, and ECCs stands for electrochemical cells). Reproduced with 
the permission from Ref. [143], Copyright Elsevier 2022. d Comparison of classification accuracy obtained by different classification methods 
under three gas chambers. (LR stands for logistic regression, and DTC stands for decision tree classifier). Reproduced with the permission from 
Ref. [105], Copyright Elsevier 2022. e‒g Comparison of classification accuracy for three grades of ham using four different prediction models: 
MIME (Mutual Information Mixed Evaluation), SVM-BFECV (Support Vector Machine-Backward Feature Elimination with Cross-Validation), 
MIME-SVM-RFECV, and original features. Reproduced with the permission from Ref. [147], Copyright Elsevier 2021
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assessment [149], and variety classification [150]. This sec-
tion mainly introduces the application of pattern recognition 
methods in the detection of juice, wine, and milk quality by 
gas sensor array.

Quality inspection of fruit juice is of multiple importance, 
including food safety assurance and product quality control. 
Through quality testing to ensure the safety of fruit juice, 
including the detection of harmful microorganisms, heavy 
metals, pesticide residues, and other substances harmful to 
human health, to ensure the health and safety of consumers. 
In addition, quality inspection helps to control the quality 
of fruit juice, including taste, color, smell, nutrients, etc., to 
ensure the consistency and stability of the product, improv-
ing consumer satisfaction and trust.

Qiu et al. [82] employed an E-nose to detect two food 
additives, namely benzoic acid and chitosan. To mitigate 
the risk of multicollinearity, SVM, RF, ELM, and PLSR 
were employed to establish regression models for the E-nose 
signal and food additive content in juice. The regression 
accuracy of different models was compared, revealing that 
the monitoring model based on ELM and RF yielded the 
best results. Furthermore, LDA was employed for qualita-
tive analysis, demonstrating that the signal provided by the 
E-nose effectively characterized the sample. Yang et al. [151] 
used the ANN model to evaluate the relationship between 
market purchases of juice and homemade juice and human 
sensory pleasure. By fitting the sensory attributes of human 
beings, it provides scientific support for the evaluation of 
juice based on multi-sensory technology, which is helpful 
for the improvement and optimization of fruit products. Ren 
et al. [152] predicted the formula and process of vegetable 
and fruit beverages by combining electronic sensing technol-
ogy with machine learning. Data interpolation technology is 
used to process the data. Figure 9a shows the performance 
of each model before data interpolation, and Fig. 9b shows 
the performance of each model after data interpolation. The 
results show that after data interpolation, root mean square 
error and mean absolute error decrease, and  R2 increases 
significantly, which indicates that the change of process con-
ditions will affect the prediction performance of the model.

For alcoholic drinks, due to its special production process, 
the concentration change of the compound affects its qual-
ity to a certain extent. Quality inspection can help prevent 
fake and shoddy products in the wine market, and ensure 
the authenticity and traceability of products by detecting the 
composition and quality characteristics of wine.

Stevan et al. [153] used a low-cost E-nose to classify blue-
berry wine samples of four different species harvested in 
different periods and used six classifiers to analyze the wine 
aroma data set. The six classification tools obtained excellent 
accuracy values (greater than 99.7%), and the data separabil-
ity of the three tools reached 100%. From a computational 
point of view, K-NN and ANN are easy-to-implement tools 
with a low computational workload structure and are suit-
able candidates for future embedded system applications. 
These systems allow the online classification of samples. 
Similarly, in the study of wine quality, Rodriguez Gamboa 
et al. [154] focused more on the threshold of acetic acid in 
wine, and its content is very important for wine quality con-
trol. It is worth mentioning that to obtain fast online detec-
tion, the authors use the deep MLP classifier to process the 
original data. The classification of the degree of corruption 
of the three wines was achieved within 3 s of gas injection. 
This method is 63 times faster than the traditional SVM clas-
sifier method. Xu et al. [155] analyzed the aroma character-
istics of cider using an E-nose, as shown in Fig. 9c, which is 
a PCA analysis of the E-nose in response to different cider. 
It can be seen from the figure that both PC1 and PC2 can 
distinguish the apple wine samples well, and it also proves 
that the presence of inorganic nitrogen and organic nitrogen 
will affect the aroma of apple wine.

In addition to fruit juice drinks or wine, dairy products 
also have a complex composition, containing over 100 com-
pounds. These compounds include low-grade fatty acids, 
acetone, acetaldehyde, carbon dioxide, and other volatile 
substances that can affect the smell of milk [156]. Proteins, 
fats, and lactose in milk undergo a decomposition process 
that produces numerous volatile compounds [157, 158]. 
Therefore, pattern recognition based on sensor arrays is 
widely employed in the detection of milk and dairy prod-
ucts. This technology can detect various adulterations, such 
as the addition of skim milk and reconstituted milk powder 
[159], detergents in raw milk [160], cheese adulteration, 
and margarine adulteration [161]. In order to achieve rapid 
prediction of the total number of bacteria (TBC) in milk, 
Yang et al. [162] proposed a combination of E-nose and 
ANN to achieve rapid assessment of milk microbial qual-
ity. Through experiments, they found that the correlation 
between the predicted value and the reference value of TBC 
using the ANN model is as high as 0.99 (Fig. 9d), and it 
is surprising that the measurement of the single product 
only takes about 2 min. This result greatly indicates that the 
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combination of E-nose and ANN can quickly and sensitively 
predict the TBC value in the milk. In order to make up for 
the gap in the establishment of a rapid identification method 
for yogurt aroma types, Hong et al. [163] combined E-nose 
data with a variety of machine-learning methods to establish 
an aroma classification model. Figure 9e is an LDA model 
of four aromas, showing good dispersion. In addition, the 

LDA classification model shows more than 90% classifica-
tion accuracy on the test set and the training set. Figure 9f 
is the confusion matrix of the four classifications in the test 
data set. Only the fermented aroma type is misclassified, and 
the others are correctly classified.

Fig. 9  Pattern recognition methods for different drinks. a Prediction performance of each model before data interpolation. b Prediction perfor-
mance of each model after data interpolation. Reproduced with the permission from Ref. [152], Copyright Elsevier 2023. c PCA diagram of dif-
ferent apple wines. (D0-60, D0-150, and D0-240 refer to ciders with 60, 150, and 240 mg N/L of DAP added, respectively. A0-60, A0-150, and 
A0-240 indicate ciders supplemented with 60, 150, and 240 mg N/L of the amino acids mixture, respectively). Reproduced with the permission 
from Ref. [155], Copyright Elsevier 2022. d Relationship between the predicted value and the reference value of TBC in the test set and the vali-
dation set. Reproduced with the permission from Ref. [162], Copyright Elsevier 2021. e Visualization of LDA model classification shows that 
the four categories are well distinguished. f Confusion matrix of four categories on the test data set. Reproduced with the permission from Ref. 
[163], Copyright Elsevier 2023
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4.2  Environmental Monitoring

Due to the increase in human activities, air pollution has 
become a major threat to human health and safety [164]. 
Studies have shown that exposure to air pollutants such as 
particulate matter and ozone is associated with higher rates 
of mortality and hospitalization due to respiratory and car-
diovascular diseases [165]. In addition, long-term exposure 

to contaminated environments can promote the spread of the 
virus [166]. Therefore, it is of great significance to monitor 
air quality in real-time, ensure industrial safety, and pro-
tect the living environment. This section will discuss the 
application of a multi-sensor array combined with a pattern 
recognition method in environmental monitoring, focusing 
on the above three aspects. Table 4 presents a summary of 
how pattern recognition algorithms are utilized to tackle 

Table 4  Summarizes and describes the different pattern recognition methods used in environmental monitoring

Species Purpose Detectable gases Sensor 
Number

Pattern Recognition References

Flammable and 
explosive toxic gas

Industrial harmful gas process 
monitoring

CH3COCH3,  C2H5OH,  C6H14, 
 C8H10, isopropamide vapors

5 PCA, MVLR [295]

Toxic gas detection, identifica-
tion, concentration estimation

CH4, LPG,  H2, CO,  C2H5OH, 
smoke

2 Levenberg–Marquardt, 
ANN, LSR

[179]

Qualitative and quantitative 
detection of flammable liquid

H2, CO,  H2S, VOCs,  C2H5OH, 
 CH4,  C4H10, Stench,

etrahydrofuran, turpentine, 
petroleum, gasoline, natural 
gas, lacquer thinner, tet-
rahydrofuran,  CH3CH2CH3, 
lacquer thinner

14 BPNN, PCA [296]

Outdoor harmful gas Detection and classification of 
volatile gases in diesel–bio-
diesel blends

C2H5OH,  CO2, combustion 
gases,  NH3,  C6H6, sulfide 
steams,  SO2,  H2S,  CH4, 
 CH3CH2CH3, organic sol-
vents steam,  C7H8

8 SVM, QDA, LDA [297]

Five typical odors identification H2, CO, combustible gas, 
 C2H5OH,  C7H8,  CH4S,  C6H6, 
 C4H10,  CH4,  NH4

9 RF, BPNN, PCA, LDA, 
SVM

[298]

Urban road  NOx monitoring CO2, HCHO, CO,  NH3,  SO2, 
 CH4,  H2S,  NO2, NO

16 PCA, SVM [299]

ozone monitoring O3,  NO2,  C3H6O,  CH2O, 
 C2H6O

7 PCA [300]

Detection of environmental pol-
lution gases such as methane

CH4, CO,  SO2,  NH3 9 PCA [301]

air pollutant CO,  NO2,  H2S,  SO2 6 ANN [210]
Indoor harmful gas Indoor air pollution detection HCHO,  NH3 3 BPNN [302]

Indoor harmful gas anti-inter-
ference detection

CH4,  C2H5OH,  C7H8, VOCs, 
 CH3CH2CH3,  H2, CO,  CH2O, 
 C4H10, sulfide

6 LDA, PCA, BP-ANN [181]

The sources affecting indoor air 
quality were classified

CO2, VOCs,  O3,  NO2 4 ANN [303]

Odor monitoring in compost-
ing hall

C2H5OH,  C6H6,  CH3COCH3, 
 H2, natural gas,  CH4, 
 CH3CH2CH3,  C4H10, organic 
solvents, water

6 PCA, DFA, PLS [304]

Indoor pollution gas monitoring C6H6,  C8H10,  C7H8,  C2H5OH, 
 CH2O,  NO2

5 PCA [171]

Monitoring of indoor air pol-
lutants

CH2O,  C6H6,  C7H8, CO,  NH3, 
 NO2

4 SFAM, MLP, FLDA, 
HSVM, SVM

[172]
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cross-sensitivity issues within the realm of environmental 
protection. It includes information on the algorithms used, 
the gases they are associated with, and the total number of 
gas sensor arrays deployed.

4.2.1  Flammable and Explosive Toxic Gas

The concentration measurement of harmful gases is crucial 
as different gases have varying exposure thresholds. Contin-
uous monitoring of these gases poses a significant challenge 
to enterprise safety, particularly in industries such as power, 
coal, and petrochemicals [167]. Hence, there is immense 
value in the timely and accurate detection and monitoring 
of these hazardous gases [168]. Multisensor arrays are com-
monly employed to detect concentrations of toxic gases in 
industrial settings, as well as flammable gases, and trace 
vapors released by explosives, or to assess the condition of 
explosives during storage.

Sensitive and selective detection of nitro explosive vapors, 
such as 2,4,6-trinitrotoluene (TNT), dinitrotoluene (DNT), 
and hexogen (RDX), remains a challenge due to their low 
concentrations (in parts per billion) and the extremely low 
vapor pressure of RDX (in parts per trillion) at room tem-
perature [169]. In a recent study, Li et al. [170] successfully 
identified 11 types of military and improvised explosive 
vapors employing a  TiO2 gas sensor array. These included 
5 types of nitro-explosive vapors (TNT, DNT, para-nitro 
toluene (PNT), RDX, and picric acid (PA)) and 6 types of 
improvised explosive vapors (such as potassium nitrate, 
potassium chloride, potassium permanganate, sulfur, ammo-
nium nitrate and urea). The identification of these vapors 
was achieved within 75 s at room temperature using PCA 
and fingerprint pattern recognition methods, which proved 
to be more efficient than capillary electrophoresis and ion 
mobility spectrometry [171, 172]. Furthermore, Liu et al. 
[173] proposed a novel method for rapid explosive trace 
detection by utilizing gas sensors exposed to ultraviolet light, 
as shown in Fig. 10a. This method successfully detected 
trace amounts of TNT, cyclotetramethylene tetranitroam-
ine (HMX), and pentaerythritol tetranitrate (PETN) in the 
gas phase. Additionally, the accuracy of six common clas-
sification models was combined for sampling times of 5, 
10, and 15 s (Fig. 10b). The confusion matrix of 128 sam-
ples was tested and the results demonstrate that all samples 

were accurately predicted (Fig. 10c). The accuracy of a 
one-dimensional CNN for rapid trace recognition of TNT, 
HMX, and PETN reached 97.7%, with a response time of 
within 15 s. However, the identification of explosive vapor 
based on MOS sensors needs to overcome problems such as 
nonlinear changes in concentration and drift caused by con-
trol circuits. For this reason, López et al. [174] proposed to 
use the transition region of the MOS signal as characteristic 
information to provide chemical vapor properties. Finally, 
combined with PCA and Mahalanobis distance for feature 
analysis, triacetone trioxide can be identified in real-time 
within the full steam concentration range of solid explosive 
spontaneous combustion emissions.

Similarly, the effective detection of flammable and haz-
ardous gases during the industrial production process is 
crucial for ensuring the safety of workers and factories. Uti-
lizing pattern recognition methods can aid in understanding 
environmental changes and enhance our ability to cope with 
them [175]. Attallah [176] proposes an intelligent detection 
device for industrial gas leaks, which consists of seven MOS 
sensor arrays and utilizes infrared thermal imaging. They 
also developed a multi-modal data fusion method based on 
three CNN models and bidirectional long-short memory to 
improve gas detection performance. The accuracy of inter-
mediate and multitask fusion reaches 98.47% and 99.25% 
respectively, making it suitable for industrial harmful gas 
detection applications.

Sinju et al. [177] developed a novel ZnO NWs-based 
E-nose to qualitatively and quantitatively identify toxic 
gases  NO2 and  H2S by combining pattern recognition meth-
ods. The surface of hydrothermally grown ZnO NWs was 
modified with Au, CuO, NiO, and MgO to achieve multi-
ple sensors. The experiments demonstrated that the sensor 
exhibited a significant response to  H2S and  NO2. Figure 10d, 
e shows the graphical analysis of the response of multiple 
sensors (MS) towards two distinct gases namely  H2S and 
 NO2. Using this graph, the data can be easily analyzed quali-
tatively. Furthermore, multivariate data analysis combined 
with PCA analysis was utilized to establish the correlation 
between measurement parameters (gas concentration, sensor 
response, response and recovery time of the developed MS). 
This correlation, as depicted in Fig. 10f, facilitated a clear 
separation between the target gases  (H2S and  NO2). Attallah 
and Morsi [178] proposed a smart E-nose system based on 
AI and feature selection to identify a variety of flammable 
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and harmful gases and their concentrations. The features 
were extracted in the time domain, frequency domain, and 
time–frequency domain of the five MOS sensors, and their 
effects on the recognition performance were analyzed. As 
shown in Fig. 10g, the combination of time features with 
frequency and time–frequency features improved the per-
formance of the proposed E-nose. For the identification of 
gas concentration, Fig. 10h demonstrates the accuracy of 
concentration prediction using different schemes, highlight-
ing the superiority of combining multiple domain features 
over a single feature.

Improper use of combustible gases such as CO and  CH4 
can have severe adverse effects on human life, including the 
risk of fires and explosions. A study by Areej Shahid et al. 
[179] developed a sensor array based on  SnO2 for detect-
ing CO and  CH4. The artificial neural network achieved a 
high classification accuracy of 98.7% for these toxic gases. 
Furthermore, the least squares regression (LSR) estima-
tor achieved a minimum accuracy of 95.5% and 94.4% for 
 CH4 concentrations of 50–1000 parts per million (ppm) and 
CO concentrations of 10–200 ppm, respectively. In 2020, 
Kang et al. [180] utilized five different metal oxides to cre-
ate a high-throughput multi-sensor array and successfully 

Fig. 10  Pattern recognition methods in flammable and explosive harmful gas monitoring. a Sensitivity of the sensor array is enhanced by UV 
irradiation. b Accuracy of different models between 5, 10 and 15 s c Confusion matrix obtained by verifying all samples. Reproduced with the 
permission from Ref. [173], Copyright American Chemical Society 2023. d‒e Detection of toxic gases by E-nose based on ZnO nanowires 
Graphical analysis: Bar chart of MS towards  H2S and  NO2. f PCA was used to distinguish  H2S and  NO2. Reproduced with the permission from 
Ref. [177], Copyright Elsevier 2021. g Accuracy of the three algorithms corresponding to the gas type identification in four scenarios. h Accu-
racy of the three algorithms corresponding to the gas concentration level identification in four scenarios. Reproduced with the permission from 
Ref. [178], Copyright Elsevier 2022
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classified seven target analytes  (C7H8, NO,  NH3,  C2H5OH, 
 C3H6O,  C6H14) using PCA pattern recognition analysis. 
Moreover, Zhang et al. [181] proposed a semi-quantitative 
and synchronous anti-interference E-nose system based on 
a MOS sensor array to detect mixtures of 10–1000 ppm CO 
and 500–10,000 ppm  CH4, with the addition of interfering 
gases  H2 and  CH2O to simulate more complex environ-
ments. They employed LDA, PCA, and BPNN for pattern 
recognition. The LDA model was still able to distinguish 
most levels even after adding interference samples, while the 
PCA method showed a high misjudgment rate, particularly 
for CO. Ni et al. [182] used a sensor array composed of 14 
MOX gas sensors to predict the CO concentration under dif-
ferent conditions and proposed a new deep learning model 
Gaussian-TCN based on time CNN and Gaussian error lin-
ear unit. The original activation function is replaced by the 
Gaussian error linear unit of TCN to obtain better nonlinear 
performance. When Gaussian-TCN is used for regression 
prediction of CO concentration, the final result is better 
than TCN, LSTM, and GRU. It can be seen that Gaussian-
TCN is a good technique for E-nose prediction analysis. 
Recently, Mao et al. [183] proposed a hybrid deep neural 
network (H-CRNN) combining CNN and RNN to predict 
CO concentration. A gated attention mechanism is proposed 
to enhance the reliability of H-CRNN to enhance the ability 
to capture key features. Compared with TCN, temporal pat-
tern attention LSTM, space–time correspondence network, 
long- and short-term time-series network, LSTM and other 
algorithms, the average accuracy of the algorithm is as high 
as 96.42%, and the relative square error and relative absolute 
error are significantly reduced by 50.51%.

4.2.2  Indoor Harmful Gas

The improvement of life quality has led to an increasing 
demand for good indoor air quality, so the detection of 
indoor air quality has received significant attention, par-
ticularly concerning the presence of harmful gases such as 
benzene, toluene, ethylbenzene, and xylene. These gases can 
be emitted from sources such as smoking, building mate-
rials, furniture, and paint, making them difficult to detect. 
Studies have shown that prolonged exposure to such gases 
can increase the risk of cancer [184, 185]. Therefore, it is 
crucial to accurately detect and measure the concentrations 

of these specific harmful gases in indoor environments to 
safeguard human health.

Zhang et al. [172] studied the potential applicability of 
E-nose combined with different data processing methods in 
the classification of six indoor air pollutants (HCHO,  C6H6, 
 C7H8, CO,  NH3, and  NO2). Compared with Euclidean Dis-
tance to centroid, simplified fuzzy adaptive resonance theory 
mapped network (SFAM), and MLP based on backpropa-
gation learning rules, single fisher LDA, and single SVM, 
their proposed hierarchical SVM (HSVM) model has the 
best classification performance in three different training 
and testing ratios. Ma et al. [186] proposed a novel hid-
den neuron number optimization method, which uses the 
hierarchical clustering (HC) tree structure to reduce the 
complexity of the classifier training process. At the same 
time, the ANN based on ELM is used for classification at 
the same level. The improved hierarchical classifier was used 
to quantitatively test six toxic gases and three binary gas 
mixtures. In order to verify the performance of the proposed 
algorithm in selecting the number of optimal layer neurons, 
a single classifier ELM for sparse coding (ELM-SC) based 
on the ELM is used for verification. Figure 11a shows that 
the number of hidden layer neurons corresponding to the 
peak of the labeled sample and the unlabeled sample is dif-
ferent. Figure 11b shows that the classification accuracy of 
ELM-SC changes with the number of hidden layer neurons 
after applying the proposed algorithm. It can be seen that 
when the number reaches 45, the classification accuracy of 
labeled samples and unlabeled samples reaches the peak. 
The experimental results show that the classification accu-
racy of the hierarchical classifier is improved from 80% to 
92% compared with the non-hierarchical classifier, which 
has better performance. Jia et al. [187] proposed a multi-core 
Laplacian SVM (LapSVM) algorithm to study the optimal 
ratio of labeled data to unlabeled data in E-nose training 
data, to achieve higher recognition accuracy. During the 
experiment, LapSVM, Twin SVM, RBFNN, and ELM were 
used to classify and identify four common indoor pollutants 
 (C6H6,  C7H8, HCHO, and CO). The classification perfor-
mance of LapSVM under different proportions of labeled 
and unlabeled samples is described in Fig. 11c. When the 
training data is divided into 20% labeled data and 80% unla-
beled data, the highest accuracy is obtained. The multi-core 
LapSVM achieves the best accuracy and the training time 
is shorter. At the same time, it is found that the higher the 
number of cores, the higher the accuracy.
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In order to improve the performance of distinguishing 
four common indoor pollution gases(C6H6,  C7H8,  CH2O, 
and CO) based on an MOS multi-sensor array, Wang et al. 
[188] proposed an effective enhanced krill herd algorithm 
that is based on a novel decision weighting factor computing 
method. By optimizing the two parameters of SVM, they 
obtained a higher gas recognition rate. The experimental 
results demonstrate that the algorithm outperforms krill herd 
(KH), chaotic KH, quantum-behaved particle swarm opti-
mization, particle swarm optimization (PSO), and GA. It 
proves to be an ideal optimization method for distinguishing 
indoor pollutant gases using a gas sensor array. Similarly, 
Fan et al. [189] introduced a clustering-based method (KmP 

algorithm) to address the lack of indoor harmful gases and 
interference source information in uncontrolled environ-
ments. During the experiment, they tested four data sets and 
compared the performance of the KmP algorithm with four 
classical clustering algorithms (Rodriguez–Laio, K-means, 
gaussian mixture model, and HC, with the KmP algorithm 
exhibiting stable and good gas recognition performance.

In order to detect low concentrations of indoor harm-
ful gases, Leidinger et al. [190] developed an E-nose that 
operates under dynamic temperature conditions and utilizes 
LDA pattern recognition technology. This E-nose can detect 
dangerous VOCs levels as low as part per billion (ppb) and 
sub-ppb, enabling the detection of formaldehyde, benzene, 

Fig. 11  Application of pattern recognition method in indoor harmful gas detection. a Existing approach. b Presented approach. Reproduced 
with the permission from Ref. [186], Copyright Elsevier 2021. c Ratio of labeled and unlabeled samples from left to right was (1:9, 2:8, 3:7, 
4:6 and 5:5) corresponding to the classification performance of LapSVM. Reproduced with the permission from Ref. [187].  Copyright Elsevier 
2019. d Concentration of the test set is less than 1 ppm. e The concentration of the test set is greater than 1 ppm. Reproduced with the permis-
sion from Ref. [191], Copyright Elsevier 2017. f‒i Classification accuracy of the test data set for single different gases and mixed gases of  C6H6, 
 C7H8, HCHO and mixture of  C6H6,  C7H8 and HCHO. Reproduced with the permission from Ref. [156], Copyright Elsevier 2017
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and naphthalene. These three harmful gases are monitored 
to ensure indoor air quality. Similarly, He et al. [191] intro-
duced a new type of E-nose for indoor air quality monitor-
ing, which utilizes BPNN to process measurement data and 
predict formaldehyde concentration. Figure 11d, e shows 
the cumulative distribution function values of the absolute 
error of the concentration prediction of the four machine 
learning algorithms when the concentration of the test set 
is less than 1 ppm and more than 1 ppm, respectively. It can 
be seen that in either case, the performance of BP is usually 
better than that of SVM and radial basis function (RBF), 
while learning vector quantization (LVQ) performs poorly. 
In addition, they have designed an indoor air quality applica-
tion service system to process, store, and display sensor data 
for users to help users master indoor air quality anytime and 
anywhere. Jiang et al. [156] proposed a RBFNN active learn-
ing algorithm based on improved committee query (QBC) 
(EQBC-RBFNN) and used it to distinguish three indoor 
pollutant gases (toluene, formaldehyde, and benzene). This 
technique effectively combines QBC and RBFNN with 
labeled and valuable unlabeled samples for E-nose train-
ing. Figure 11f–i describes the classification accuracy of 
benzene, toluene, formaldehyde, and three mixtures in the 
test data set. It can be seen that the recognition rate of these 
three gases, whether it is a single case or all three gases, has 
been improved to varying degrees.

4.2.3  Outdoor Harmful Gas

With the acceleration of urbanization and industrial devel-
opment [192], as well as the increasing demand for trans-
portation energy consumption [193], the emissions of 
atmospheric pollutants, including  NOx,  SOx,  COx,  O3, and 
particulate matter, are also increasing. Even when the con-
centration of these harmful gases is only slightly higher than 
one million, it can have a serious impact on human health 
[194]. Therefore, effective monitoring of atmospheric pol-
lutant emissions can greatly contribute to environmental pro-
tection and human health [195, 196]. Improving the sensitiv-
ity and selectivity of gas sensors is crucial for applications 
like air quality monitoring.

Reducing greenhouse gas methane is important for miti-
gating climate change. Domènech-Gil et al. [197] proposed 
the use of multiple types of sensors to obtain data, and the 
PLSR model prepared by tenfold cross-validation was used 

for quantification. Figure 12a shows the PLSR results of 
methane at different water vapor concentrations. Figure 12b 
shows that the method produces effective time prediction. 
Their work provides a fast, effective, and low-cost method 
to detect changes in methane concentration and verify the 
effectiveness of mitigation measures.

NO2 not only poses a threat to human health but also 
contributes to environmental hazards such as smoke and 
acid rain [198]. Another E-nose developed by Sayago et al. 
[199], was designed to detect  NO2 at concentrations below 
0.5 ppm, particularly between 150 and 200 °C. Impressively, 
it exhibited high responsiveness even at room temperature, 
making it suitable for monitoring low concentration gases. 
This development is expected to provide valuable insights 
into subtle changes in air pollution. Building upon the con-
cept of artificial intelligence, Arroyo et al. [158] introduced 
an E-nose integrated with digital gas sensors for monitoring 
various concentrations of nitrogen oxides. They employed a 
multi-sensor neural network to classify sensor data in smart-
phone applications. Freddi et al. [157] utilized an E-nose to 
track and distinguish  NO2 for environmental safety moni-
toring. Through PCA and LDA analysis, they were able to 
effectively differentiate between gases, achieving a predic-
tion accuracy of over 95% for  NO2 even in the presence of 
gas mixtures. As shown in Fig. 12c, the PCA results showed 
that  NO2,  NH3, NaClO, and  C3H6O could be well classi-
fied, with only significant overlap  betweenC2H5OH and 
 C22H47NO. Figure 12d shows the results of two categories 
using LDA, and the cross-validation accuracy of the data 
set is 100%. In addition, they also studied the influence of 
the dimension of the training live test data set on the clas-
sification accuracy (Fig. 12e), where the prediction accuracy 
was 95%–100%, and the accuracy of cross-validation was 
83%–100%. They also explored the possibility of enhancing 
the gas sensing performance of the array by improving the 
data set, the test set, and employing other analytical methods 
like neural networks.

In addition to nitrogen oxides,  SO2 is also a common 
atmospheric pollutant. It is typically released into the atmos-
phere during processes such as fossil fuel incineration and 
sulfide ore metallurgical processing [198]. Inhalation of  SO2, 
whether long-term or short-term, can have serious impacts 
on human health, particularly causing respiratory, lung, and 
eye injuries [200]. Developing gas sensors with high sensi-
tivity, strong selectivity, and corrosion resistance remains a 
significant challenge. However, selecting appropriate pattern 
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recognition methods can contribute to the analysis of spe-
cific gases.

Zhai et al. [201] proposed a novel convolutional network 
(MIGACN) model based on multi-level staggered group 
attention and responded to 10 industrial pollution gases 
including  C2H4O,  SO2, CHS,  H2S, HCl, CO,  NH3, NO,  H2, 
and  NO2 through a self-made E-nose system composed of 
15 MOS gas sensors. Two feature learning modules are pro-
posed to extract features at the time level and the sensor 
level, respectively. In addition, the data enhancement module 
is introduced to avoid the problem of insufficient training 
due to the small amount of gas sensor data. Figure 12f shows 
the classification accuracy of different algorithms before and 

after adding the data augmentation module. It can be seen 
that MIGACN has better classification performance and can 
achieve the highest average dynamic detection accuracy of 
98.19% after adding the data augmentation module. The gas 
dynamic detection and identification problem in the future 
mixed gas scene provides a new solution. Environmental 
monitoring, particularly real-time gas detection, is crucial 
for maintaining air quality and ensuring public safety. Gas 
sensors play a significant role in this domain, but they face 
several challenges, especially in real-time applications. The 
response time of gas sensors is critical for real-time moni-
toring. Traditional gas sensors often have slower response 
times, which can impede their effectiveness in dynamic 

Fig. 12  Application of pattern recognition methods in air pollutant detection. a PLSR was used to predict methane concentration under different 
concentrations of water vapor. b Change of methane with time in the model. Reproduced with the permission from Ref. [197], Copyright Ameri-
can Chemical Society 2024. c PCA results of six gases  (NO2,  NH3, NaClO,  C3H6O,  C2H5OH and  C22H47NO). d Results of LDA on  NO2 and all 
gases over the entire data set are plotted. e Cross-validation and prediction of the accuracy of training test sets for different dimensions. Repro-
duced with the permission from Ref. [157], Copyright Wiley 2023. f Average dynamic detection accuracy of each model before and after data 
enhancement is added. Reproduced with the permission from Ref. [201], Copyright Elsevier 2024
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environments. This issue is particularly relevant in applica-
tions requiring immediate detection and action.

Burgués’s team integrated their previously designed 
portable E-nose onto a drone, using dynamic sensor signals 
under flight conditions to train machine learning models 
for real-time odor measurement at a wastewater treatment 
plant [202]. This E-nose is equipped with 21 MOS sensors, a 
global positioning system receiver, and a radio communica-
tion system for real-time data transmission [203]. Measure-
ment signals are sent to the base station every 6 s, where a 
designed PLS model combined with variable importance 
in projection scores analyzes the data in real time. This 
approach offers higher accuracy compared to traditional 
steady-state calibration methods. Recent advancements in 
deep learning have significantly improved the real-time 
capabilities of gas sensors, particularly E-nose systems. 
Deep learning models, such as CNN and RNN, enable real-
time processing and prediction by allowing streaming data 
input and automatic feature extraction. For instance, Kang 
et al. [204] employed a 10-s time window, compressing 
gas sensor data collected over 10 s into 1 s for input into a 
CNN, enabling real-time data analysis. They achieved real-
time detection and analysis of six gases, with a minimum 
response time of 1 s for CO and an accuracy of 98%. Simi-
larly, Lee et al. [205] used a CNN model to detect ethanol 
and  NO2 within 10 s and acetone and methanol within 30 s. 
The multi-task convolutional neural network designed by 
Wang et al. [206] only needs to input the response data for 
several seconds into the model to distinguish the prediction 
of gas type, concentration, and state. The model uses data 
from more than 10 million sensors for training. When the 
baseline is automatically tracked, 12 VOCs can be predicted 
by inputting 4 s data during the electronic nose response 
period, with an accuracy rate of up to 95%. The system can 
achieve real-time output of the results.

With the rapid advancements in device integration, IoT, 
and data processing technologies, combining E-nose tech-
nology with IoT system design promises to significantly 
enhance the efficiency of detecting hazardous gases. For 
instance, Abdullah’s team [207] developed a cloud-based 
laboratory air quality monitoring system, deploying E-noses 
as nodes across five different laboratories to collect real-
time air pollutant data. This data is transmitted to a network 
server, where the cloud-based system processes, analyzes, 
and displays the results in real time.

Another team [208] developed an edge computing IoT 
device that supports wireless field monitoring platform inter-
faces and introduced an environmental adaptive continuous 
learning (EACL) method. Experimental validation with haz-
ardous gases demonstrated that EACL could reduce training 
cycles by a factor of three and improve efficiency by 25%. In 
edge computing, data processing can be performed directly 
on the microcontroller unit (MCU) embedded in the E-nose. 
These compact devices can independently perform sensing, 
data collection, and processing, eliminating the dependence 
on external facilities, reducing hardware costs, and enabling 
real-time measurements.

Wang et al. [209] developed a gas detection microsys-
tem comprising an application-specific integrated circuit 
chip and MEMS gas sensors to detect various odor compo-
nents, such as ethylene glycol and ammonia. This integrated 
microsystem boasts high sensitivity, flexibility, and portabil-
ity. Wang’s team [110] also designed an E-nose system with 
eight MEMS sensors, consisting of a sensor array, front-end 
analog circuit, MCU subsystem, communication subsystem, 
and power management unit. The MCU can process data 
from mobile devices while performing edge computing. 
Additionally, the E-nose features multiple communication 
interfaces, including universal serial bus (USB) and Blue-
tooth. By integrating onboard edge computing with the 
ANN model, this system can quantitatively identify 15 types 
of VOCs. The fault tolerance of this group-based E-nose 
is enhanced by at least tenfold compared to array-based 
E-noses. In the same year, Kwon et al. [210] implemented 
pattern recognition algorithms within an edge computing 
environment to alleviate the overload on monitoring servers. 
These studies contribute significantly to the development of 
advanced next-generation gas sensors with improved com-
munication and monitoring systems.

4.3  Medical Diagnosis

From a clinical perspective, endogenous VOCs produced 
through internal metabolic processes can serve as valu-
able indicators for disease detection. Numerous studies 
have demonstrated that analyzing VOCs in blood, urine, 
feces, and exhaled gases can help differentiate between dif-
ferent diseases. VOCs are gaseous molecules that can be 
easily and non-invasively sampled from breath [211]. Cur-
rently, respiratory analysis is being utilized in medicine and 
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clinical pathology as a non-invasive method to assess an 
individual’s health status. The pattern recognition method, 
employing a multi-sensor array, is used to diagnose various 
diseases. These include liver diseases, diabetes, asthma, as 
well as cancers such as lung cancer, prostate cancer, rectal 
cancer, advanced adenoma, breast cancer, head and neck 
cancer, ovarian cancer, and bladder cancer. However, endog-
enous VOCs typically exist in concentrations ranging from 
1 to 5000 ppb, and there is a wide variety of gases [212]. 
Detecting the specific marker VOCs to confirm a disease 
remains a significant challenge. Consequently, researchers 
are increasingly focused on identifying suitable pattern rec-
ognition methods for analyzing auxiliary sensor response 
data to develop fast, non-destructive, efficient, and reliable 
diagnostic instruments for diseases. This section will discuss 
the application of multi-sensor arrays combined with pattern 
recognition methods in disease diagnosis, specifically focus-
ing on malignant tumors, typical respiratory diseases, and 
metabolic diseases. Table 5 encapsulates the sophisticated 
deployment of pattern recognition algorithms for addressing 
cross-sensitivity challenges in disease diagnosis, detailing 
the specific algorithms employed, their corresponding target 
gases, and the comprehensive count of gas sensor arrays 
implemented.

4.3.1  Cancer

Cancer is a significant public health issue worldwide. In 
2020, the American Cancer Society reported over 1.8 mil-
lion cancer cases in the United States. The four major can-
cers are lung cancer, colorectal cancer, breast cancer, and 
prostate cancer [213]. Medical studies have established a 
connection between the presence and growth of tumors and 
the emission of VOCs resulting from cell membrane per-
oxidation or cell metabolism. These VOCs can be detected 
either directly from the top space of cancer cells or through 
exhaled respiration. Therefore, the analysis of human 
exhaled gas plays a crucial role in predicting the progres-
sion of cancer in patients who exhibit few early indicators 
and slow progression [214].

Lung cancer, the leading cause of cancer death worldwide, 
is a primary malignant tumor of the lung [215]. Research-
ers have explored the use of endogenous VOCs, including 
hydrocarbons, primary alcohols, secondary alcohols, alde-
hydes, and branched aldehydes, ketones, esters, nitriles, and 

aromatic compounds, as potential biomarkers for studying 
lung cancer. For instance, Shlomi et al. [216] conducted 
a study using a set of arrays with 40 sensors to analyze 
exhaled gas and diagnose epidermal growth factor receptor 
mutations in lung cancer patients. The results showed that 
exhaled gas analysis had a high accuracy (about 88%) in 
identifying patients with early-stage lung cancer and benign 
pulmonary nodules, supporting the use of VOCs as markers 
for lung cancer diagnosis. However, it should be noted that 
the concentration of VOCs in clinical respiratory samples is 
typically at the ppb level. To address this challenge, the per-
formance of MOS-based sensor arrays can be enhanced by 
utilizing pattern recognition algorithms for optimized data 
analysis. For instance, Kononov et al. [217] employed an 
array of six metal oxide gas sensors to analyze exhaled gas 
samples from 118 volunteers, including 65 individuals in the 
lung cancer group and 53 in the healthy group. The respira-
tory analysis program is depicted in Fig. 13a. The response 
of the sensor, representing an online mode peak (Fig. 13b), 
was selected by the authors as the analysis signal. Figure 13c 
illustrates five different models used for analysis, displaying 
the receiver operating characteristic (ROC) and area under 
the curve for each model. The findings indicate that logistic 
regression and K-NN classification models exhibited supe-
rior performance in distinguishing lung cancer patients from 
healthy controls. De Vries et al. [218] tested the prospec-
tive discovery of early lung cancer in chronic obstructive 
pulmonary disease (COPD) patients using E-nose technol-
ogy. By using PCA, all PCs with eigenvalues greater than 1 
are retained, and the data dimension is reduced to prevent 
the risk of overfitting. Then, three machine learning meth-
ods including gradient hoist, adaptive minimum absolute 
shrinkage and selection operator, and sparse PLS discrimi-
nant analysis were used to classify the data after dimen-
sionality reduction. The results showed that the accuracy of 
distinguishing COPD patients from lung cancer patients was 
87%, the sensitivity was 86%, and the specificity was 89%. 
It provides a fast method for early identification of COPD 
patients with malignant tumors.

Colorectal cancer (CRC) is a common type of tumor. Pre-
vious research has demonstrated that chemical resistance gas 
sensors can detect tumor gas markers at concentrations as 
low as 10 ppb or even 0.1 ppb [219]. By utilizing gas sen-
sors to detect colorectal cancer biomarkers, it is possible to 
screen and detect tumors early, preventing them from pro-
gressing into malignant cancers and improving the chances 
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of a cure. Zonta et al. [220] used E-nose and fecal occult 
blood tests to distinguish CRC patients from healthy people. 
In order to find the best gas sensor combination, they tested 
19 different materials including metal oxides and sulfides 
and tested them on 157 samples. Figure 13d, e are the confu-
sion matrix and ROC curve after PCA analysis, respectively. 
The ROC curve shows 95% sensitivity and specificity. In 
addition, after selecting five sensors, PCA and SVM were 
combined to find that all CRC patients and 98% of healthy 
subjects in the test samples could be identified. Similarly, 
Zonta et al. [221] introduced a non-destructive testing device 
called SCENT A1, which is based on semiconductor gas 
sensors. They analyzed 398 samples of fecal odor from 
colorectal cancer patients and healthy individuals using 

machine learning techniques. The SVM-based algorithms 
yielded average sensitivity and specificity values of 84.1% 
and 82.4%, respectively.

Prostate cancer (PCa) is a prevalent malignant tumor in 
men worldwide, with its incidence increasing year by year 
[222]. According to the global cancer statistics of 2018, 
there were approximately 1,276,106 new cases of PCa and 
358,989 deaths worldwide [223]. Prostate cancer is typically 
asymptomatic and slow-growing. However, if detected early, 
the cure rate is very high [224]. Traditionally, a prostate 
biopsy is required to confirm the presence of cancer. Unfor-
tunately, prostate biopsy is an invasive examination that 
carries significant risks and increases patient management 
costs [225]. Therefore, there is a need for more reliable and 

Fig. 13  Application of pattern recognition methods in lung cancer diagnosis. a Working diagram of online respiratory analysis setting. b Con-
tinuous response of six sensors to exhaled gas samples (S1-S6 represents the six sensors used in the experiment). c Five models correspond to 
ROC curves. Reproduced with the permission from Ref. [217], Copyright IOP Publishing 2020. d Confusion matrix of 157 samples. e ROC 
curve of 157 samples. Reproduced with the permission from Ref. [220], Copyright Elsevier 2018. f Diagnostic accuracy report of E-nose. 
Reproduced with the permission from Ref. [227], Copyright Wiley 2022. g Comparison of classification performance obtained by internal cross-
validation of new sensor arrays and old sensor arrays before and after drift correction (error line = 95% confidence interval). Reproduced with 
the permission from Ref. [228], Copyright Elsevier 2022. h Discriminatory accuracy is expressed as AUC with a 95% confidence interval. i The 
partial area under the receiver operating curve (pAUC). Reproduced with the permission from Ref. [232], Copyright Nature 2021
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non-invasive methods to diagnose prostate cancer. Numer-
ous studies on biomarkers of prostate cancer have been 
published. Laura Capelli et al. [226] analyzed the perfor-
mance of an E-nose in diagnosing prostate cancer patients 
by analyzing the volatiles extracted from the urine of 132 
PCa patients and 60 control groups. They used Boruta algo-
rithm and RF algorithm to construct a PCa classification 
model, achieving 83% accuracy, 82% sensitivity, and 87% 
specificity. It is believed that E-nose can be used for rapid 
and non-invasive diagnosis of PCa, showing high accuracy 
and promising prospects for the future, further clinical tri-
als are needed to verify its application in PCa diagnosis. In 
a prospective study conducted by Taverna et al. [227], the 
accuracy of an E-nose in identifying prostate cancer in urine 
samples was evaluated among patients with continuous PCa. 
The E-nose utilized six n-type doped MOS sensors printed 
by inkjet printing, which differed from the active layer.  TiO2, 
ZnO, and  SnO2 were the sensors used for urine analysis. 
The E-nose recorded the typical response signals, and an 
RF pattern recognition model was established for analysis. 
The diagnostic accuracy of E-nose is reported as the area 
under the ROC 0.821 (95% CI 0.764–0.879) (Fig. 13f). Bax 
et al. [228] think that the problem of sensor drift may be 
one of the reasons why the E-nose has not yet been intro-
duced into clinical practice. To this end, they proposed a 
data processing protocol to compensate for drift. It was 
applied to the urine headspace data set of 81 prostate cancer 
patients and 41 healthy people obtained within 9 months. 
The experimental results are shown in Fig. 13g. Compar-
ing the classification performance of the three sensor arrays 
(old and new sensors and old sensors for drift compensa-
tion), it can be seen that the accuracy is restored from 55% 
to 80%, which effectively reduces the drift of the old sen-
sor for 1 year. Durán Acevedo et al. [229] used E-nose and 
E-tongue equipment to analyze urine and exhaled gas sam-
ples to detect prostate cancer. The control group included 
benign prostatic hyperplasia, prostatitis group, and healthy 
group. Different machine learning methods are used, such 
as QDA, naive Bayes, SVM, K-NN, RF, and DT. The clas-
sification accuracy of E-tongue and E-nose was 92.9% and 
100%, respectively.

Breast cancer is the most common cancer among women 
and the leading cause of cancer death. However, current 
image-based techniques like mammography cannot accu-
rately identify tumors in women with fibrosis-cystic mastop-
athy, leading to a high number of false positives. Fortunately, 

the evaluation of diseases like breast cancer has been exten-
sively studied using human VOCs. For instance, Lavra et al. 
[230] conducted an in vitro study demonstrating that VOCs 
analysis can provide clinically relevant information about 
proliferative and molecular features of breast cancer cells. 
They also developed a partial least squares-discriminant 
analysis (PLS-DA) model to classify the signals of tem-
perature-modulated MOS gas sensors, which lays the foun-
dation for the development of low-cost cancer diagnostic 
equipment. The pattern recognition method is crucial in the 
gas classification ability of the system. The experimental 
results obtained by Judith Giro Benet et al. [231] demon-
strate that the introduction of a neural network has a signifi-
cant impact on the classification of E-nose data. This leads 
to an increase in the model’s accuracy from 58.3% to 75%. 
Although the overall accuracy is not optimal, the author sug-
gests that better classification results could be achieved with 
a larger sample size, particularly with the number of train-
ing samples for the CNN model. In a separate study, Yang 
et al. [232] collected alveolar air samples from both breast 
cancer patients and non-cancer patients. They utilized RF 
to develop prediction models for breast cancer and molecu-
lar phenotypes. The 95% confidence interval of the ROC 
for 2000 replicates using bootstrap resampling is shown in 
Fig. 13h. Figure 13i shows the partial area under the work-
ing curve (pAUC) for 899 subjects, the prediction accuracy 
was 91%, the sensitivity was 86%, and the specificity was 
97%. Among them, the positive predictive value was 97%, 
and the negative predictive value was 97%. This study dem-
onstrates high accuracy and reliability in the identification 
of breast cancer and molecular subtypes, indicating great 
potential for the future development of rapid breast cancer 
diagnostic tools.

4.3.2  Respiratory Diseases

Respiratory diseases encompass conditions that affect the 
airways and lungs involved in human breathing. Common 
examples include asthma, pneumonia, and respiratory infec-
tions like the coronavirus disease that emerged in 2019. The 
widespread occurrence of certain epidemic respiratory dis-
eases can have significant impacts on both the economic 
development of society and the overall health of the popula-
tion. Consequently, there is a growing demand for large-scale 
real-time detection tools. Analyzing exhaled gas patterns 
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offers a promising approach to disease detection and classifi-
cation. For instance, Nakhleh et al. [233] employed artificial 
intelligence nanoarrays to analyze respiratory samples from 
1404 individuals, diagnosing and classifying 17 diseases. 
To explore the correlations or distinctions among different 
diseases, HCA was utilized, revealing substantial similari-
ties between subgroups sharing common pathophysiology. 
Subsequently, the gas information obtained from the sensor 
array was qualitatively or quantitatively analyzed using pat-
tern recognition methods, enhancing its practical application 
in the diagnosis of human diseases. Kwiatkowski et al. [234] 
conducted a study using gas sensors to detect exhaled gas 
from 33 COVID-19 patients and 17 healthy volunteers in 

local hospitals. The study utilized four algorithms, namely 
neural network, RF, KNN, and SVM, for analysis. The clas-
sification accuracy of all algorithms exceeded 91%, with the 
ability to detect COVID-19 patients reaching 80% even in 
the worst-case scenario.

Another study by Nurputra et al. [235] employed four dif-
ferent machine learning methods (LDA, SVM, stacked MLP, 
and deep neural network (DNN)) to test 615 respiratory sam-
ples for evaluating the performance of an E-nose in rapidly 
identifying COVID-19. The study also included respiratory 
samples from 40 COVID-19 patients and healthy controls. 
The integrated E-nose system for detecting COVID-19 is 
illustrated in Fig. 14a. Furthermore, Fig. 14b, c presents 

Fig. 14  Application of pattern recognition method combined with a multi-sensor array in the diagnosis of respiratory diseases. a Integrated 
E-nose system and its components for detecting COVID-19. b, c Four machine learning algorithms (LDA, SVM, MLP, and DNN) are used to 
analyze the sensitivity and specificity histograms obtained from the training and the test sample data sets, respectively. Reproduced with the 
permission from Ref. [235], Copyright Springer Nature.2022. d Integrated E-nose system includes four 16-sensor arrays. e Logistic regression 
model. f SVM model. Reproduced with the permission from Ref. [237], American Chemical Society 2023. g Establish a standardized protocol 
based on machine learning algorithms and its implementation process. h AUC curves of the training set, test set, and all data sets. Reproduced 
with the permission from Ref. [238], Copyright Springer Nature.2020
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the sensitivity and specificity of the four machine learning 
algorithms for both the training set and the test set. Notably, 
the DNN model demonstrated the best results, achieving a 
sensitivity of 95.5% and specificity of 95.7%. These findings 
provide support for the utilization of E-nose technology in 
large-scale COVID-19 screening and monitoring for medical 
efficiency. In a separate study, Bhandari et al. [236] designed 
a mechanical lung ventilation device using a sensor array 
for monitoring severe COVID-19 patients in a mechanical 
lung ventilator. This array includes an environmental sensor 
measuring temperature, pressure, and relative humidity, as 
well as a series of chemical resistance MOX gas sensors that 
detect VOCs (methylpent-2-enal, 2,4-octadiene, 1-chloro-
heptane, and nonanal) patterns in the patient’s breath. The 
sensor device is installed on the ventilation exhaust port 
for real-time monitoring and displays stable readings. The 
PCA separation is satisfactory. However, further research 
is needed to enhance the sensor data set in order to accu-
rately infer the severity of the patient’s condition. Li et al. 
[237] designed a cylindrical E-nose device that integrates 
a resistivity-based nanosensor, a wireless USB interface, 
and a rechargeable battery, and the device can also be con-
nected to a tablet or mobile phone to display data in real 
time (Fig. 14d). Through this new electronic nose device, 
human exhaled VOC was analyzed, and logistic regression 
(Fig. 14e) and SVM model (Fig. 14f) were established for 
classification, so as to realize on-site rapid screening of 
COVID-19 infection. In Fig. 14e, green dots represent true 
label values, while blue dots denote predicted values by the 
model. In Fig. 14f, black and white dots represent two dif-
ferent label values.

Rianne de Vries et al. [218] conducted a study using 
SpiroNose to analyze exhaled breath and evaluate its diag-
nostic accuracy in differentiating between COPD patients 
and lung cancer patients. Additionally, the study aimed 
to predict early lung cancer in COPD patients. The signal 
processing of the E-nose involved various steps such as 
detrending, filtering, ambient air correction, automatic peak 
detection, and parameter selection. Four machine learning 
methods were employed to classify the E-nose data. The 
findings revealed a cross-validation accuracy of 88% and 
an AUC of 0.93. This study demonstrates that pattern rec-
ognition methods in exhaled breath analysis can effectively 
distinguish between lung cancer and COPD.

Chen et  al. [238] utilized machine learning tech-
niques to analyze respiratory gases for the detection of 

ventilator-associated pneumonia (VAP), as depicted in 
Fig. 14g. They employed eight machine learning algorithms, 
including K-NN, naive bayes, DT, neural network, SVM, 
linear kernel, polynomial kernel, radial basis kernel, and 
RF, to construct prediction models. The AUC values for 
the training set, test set, and all data sets are presented in 
Fig. 14h. The analysis of exhaled breath from 33 patients 
and 26 healthy controls revealed that the average accuracy 
of the training set was 0.81 ± 0.04, with a sensitivity of 
0.79 ± 0.08 and a specificity of 0.83 ± 0.00. The utilization 
of an E-nose can assist doctors in clinical diagnosis and 
enhance the efficiency of VAP detection. Interstitial lung 
disease (ILD) is a rare respiratory disease with a global 
incidence of 0.09% [239]. Due to the overlap of symptoms 
with other respiratory diseases, community hospitals have 
a poor ability to identify patients with suspected ILD [240, 
241], which affects the timely diagnosis and treatment of 
patients. Van der Sar et al. [242] evaluated the accuracy of 
E-nose in distinguishing respiratory characteristics between 
ILD patients and patients with asthma, COPD, and lung can-
cer. Using PLS discriminant analysis, the AUC of the test 
set is 0.99, which has a high potential for identifying ILD, 
and is helpful for early diagnosis of ILD and distinguish-
ing suspected ILD patients. Wijbenga et al. [243] found that 
electronic nose technology and pattern recognition methods 
have good potential in the diagnosis and phenotypic analysis 
of asthma, COPD and ILD, but have almost no application 
in the field of lung transplantation. To this end, they studied 
the diagnostic value of E-nose technology in chronic lung 
allograft dysfunction (CLAD), CLAD phenotype and CLAD 
staging of learning to rank. The supervised machine learning 
method was evaluated on the random training set and the 
test set, where the AUC of the test set was 0.82. At the same 
time, they used some known risk factors including age, gen-
der, transplantation type and time as data features to improve 
the discriminant ability of the model to 0.94.

4.3.3  Metabolic Diseases

Metabolic diseases refer to a class of diseases related to 
the abnormal metabolic function of the body, involving the 
body’s utilization of nutrients, energy production, hormone 
regulation, and other aspects. For example, diabetes is a 
chronic metabolic disease associated with defects in insulin 
secretion or function. The liver plays an important metabolic 
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function in the body, including fat metabolism, glucose 
metabolism, protein metabolism, etc. Hepatitis, cirrhosis, 
fatty liver, and other diseases are related to the abnormal 
structure and function of the liver. Gastrointestinal diseases 
are usually more related to the structural and functional 
abnormalities of digestive organs. Metabolic abnormalities 
may cause a variety of health problems. This section mainly 
introduces the prediction of diagnosis of gastrointestinal dis-
eases, liver disease, and diabetes based on MOS and related 
pattern recognition algorithms.

The liver, responsible for metabolism and protein absorp-
tion, is the main organ of the human body. Liver patients 
experience metabolic changes due to liver deterioration. 
Previous studies have demonstrated that isoprene [244], 
dimethyl sulfide (DMS) [245, 246], and limonene [247] can 
serve as respiratory markers of cirrhosis. These changes 
can be detected through respiratory analysis, enabling non-
invasive assessment of liver function. In this context, Zaim 
et al. [248] combined the E-nose and E-tongue. With the 

aid of pattern recognition methods, they achieved signifi-
cantly better results in distinguishing liver cirrhosis from 
healthy individuals using exhaled breath and urine samples 
compared to using a single system, as depicted in Fig. 15a.

NH3 can serve as a marker for kidney disease, as its con-
centration in the human body increases significantly when 
the kidney is damaged. The gastrointestinal tract, as the main 
part of the human digestive system, plays a crucial role in 
absorbing nutrients and eliminating waste. In recent studies, 
various volatile chemical biomarkers have been discovered 
in the intestinal tract of patients [249]. These biomarkers 
have shown potential in detecting different disease states 
within the gastrointestinal tract [250, 251]. For instance, 
Arasaradnam et al. [252] utilized an E-nose to monitor 
VOCs present in the urine tract successfully identifying 
patients with inflammatory bowel disease (IBD). Through 
PCA and DFA, the E-nose demonstrated its ability to distin-
guish between 48 IBD patients and 14 healthy controls, as 
well as differentiate between active and remission diseases. 

Fig. 15  a Comparative analysis of the use of E-nose and voltammetric E-tongue for the identification of VOCs in respiratory and urine samples 
from patients with cirrhosis and healthy controls. Reproduced with the permission from Ref. [248], Copyright Elsevier 2021. b MOF-based 
E-nose combined with CLAC for the detection of kidney diseases. Reproduced with the permission from Ref. [254], Copyright American Chem-
ical Society 2021
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Utilizing pattern recognition methods can further enhance 
the sensitivity and specificity of the E-nose in diagnosing 
VOCs. For example, in the diagnosis of infectious colitis, 
McGurie et al. [253] employed short multi-capillary chro-
matography column and MOS sensors combined with an 
ANN to analyze VOCs in the headspace of 100 fecal samples 
(positive and negative samples accounted for half and half 
respectively). The results of the ANN analysis of the data 
indicated that despite the small sample size, the sensitivity 
and specificity were 85% and 80% respectively, which was 
comparable to the results of the commercial test. McGuire 
et al. [253] also utilized the ANN algorithm to examine fecal 
samples for the detection of Clostridium difficile-infected 
Stool and achieved a sensitivity of 80% and specificity of 
85%. A new numerical algorithm, which combined linear 
adsorption coefficients, was proposed by Day et al. [254], 
aiming to quantify the composition of respiratory samples. 
They used five metal–organic framework (MOF)-based sen-
sors to test 100 anhydrous respiratory kidney disease sam-
ples by this method, and successfully quantified the nitrogen 
content in all samples, as shown in Fig. 15b.

Diabetes is an insulin-related disease and is the most 
common metabolic disorder. Research has indicated that 
diabetic patients have a concentration of acetone in their 
exhaled breath that exceeds 1.7 ppm, which is at least 
118 times higher than that of healthy individuals [255]. 
This disparity in acetone concentration can be utilized for 
diagnosing diabetes by analyzing the breath. In fact, in 
1997, Ping et al. [256] proposed a non-invasive diagnostic 
method for diabetes using an E-nose. They employed a 
clustering algorithm to analyze the sensor response data 
and clustered samples from 18 diabetic patients and 14 
normal individuals separately. Furthermore, Jin et al. [257] 
utilized PCA and Euclidean distance comparison to iden-
tify the sensor array with the best selection performance 
in differentiating acetone from various interfering gases 
in exhaled breath. They successfully detected five VOCs, 
including acetone, using real breath samples from 12 dia-
betic patients and 13 healthy controls. The PCA analysis 
of the test data illustrated that the five gases could be accu-
rately distinguished. Additionally, apart from analyzing 
respiratory gases, the gases and vapors emitted from urine 
can also be examined. Esfahani et al. [258] conducted a 
study to investigate the feasibility of using urinary VOCs 
as biomarkers for diagnosing diabetes. The researchers 
employed FOX 4000 and FAIMS E-nose instruments to 

analyze volatile compounds in urine samples. They uti-
lized four classifiers, namely sparse logistic regression, 
RF, Gaussian Process, and SVM, for classification pur-
poses. The findings from both E-noses demonstrated that 
the experimental urine VOCs can effectively distinguish 
diabetes mellitus type 2 (DM2) from the healthy control 
group. Additionally, the authors suggest that the accuracy 
of the E-nose may be influenced by the storage time of the 
urine samples. Similarly, Lee et al. [259] used four CuO-
based gas sensor arrays to detect VOCs related to exhaled 
breath and employed PCA to differentiate acetone gas from 
other VOCs gases such as ethanol and formaldehyde. The 
sensor array displayed a response to acetone as low as 
9 ppb, indicating its potential for early detection of diabe-
tes. The PCA score plot demonstrated a clear separation 
between acetone and the other tested VOCs (ethanol and 
formaldehyde).

5  Summary and Prospect

Aiming to overcome the cross-sensitivity in chemiresistive 
gas sensors, this review comprehensively discusses a variety 
of pattern recognition methods based on the sensor array. 
The review delves into the advantages and disadvantages of 
different algorithms within the realm of gas recognition and 
their respective application scenarios. Traditional machine 
learning methods are well-suited for scenarios with limited 
resources or where rapid deployment is essential due to 
their modest data requirements, strong interpretability, and 
low computational complexity. These methods are particu-
larly useful in situations like chemical monitoring, where 
the interpretability of models is crucial. On the other hand, 
neural network algorithms such as FNN, CNN, and RNN 
excel in processing intricate data relationships and patterns 
by automatically extracting features, making them more 
appropriate for recognizing multi-component gas mixtures 
within extensive datasets. When faced with gas identifica-
tion challenges characterized by high complexity and data 
interference, ensemble learning methods enhance prediction 
accuracy and robustness through model fusion. In practi-
cal applications, it is often necessary to compare various 
methods to identify the most suitable strategy for efficiently 
and accurately completing gas identification tasks. Further-
more, with the ever-increasing development trend of IoT, the 
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advancement of multi-sensor array cloud-edge-end integra-
tion is poised to revolutionize applications across diverse 
industries such as food safety, environmental protection, and 
disease diagnosis.

6  Challenges

As the proverb says, every coin has two sides. The cross-
sensitivity of gas sensors can weaken the accurate recog-
nition of target gases in complex environments and limit 
their application range. However, this challenge presents 
an opportunity to identify multiple gas species and concen-
trations using pattern recognition methods. Gas identifica-
tion difficulty often stems from the complexity of mixed 
compounds in the air, as seen in the more than 3,000 types 
of exhaled gases discovered. Utilizing pattern recognition, 
it is possible to accurately detect multiple gases with a 
small number of sensors in specific environments, which 
shows great promise. Despite the progress made, the fol-
lowing challenges may arise when applying pattern recog-
nition technology to artificial olfactory systems:

1. Sensor drift compensation: Machine learning uses his-
torical and real-time data to predict sensor behavior. 
Compared to hardware-based solutions, implement-
ing machine learning for drift compensation is cost-
effective, extends sensor lifetimes, and offers flexibility. 
However, machine learning models face challenges in 
data collection, model updating, generalization, online 
learning, and adaptability. Managing model complexity, 
computational demands, interpretability, and long-term 
performance are also critical. Addressing these requires 
strategies like incremental learning, adaptive algorithms, 
and ensemble modeling.

2. Scalable models with dimensionality fusion: The com-
plexity of handling high-dimensional data and integrat-
ing multiple sensors poses a challenge in the context 
of multi-sensor fusion. Exploring efficient techniques 
for reducing data dimensionality and seamlessly inte-
grating multimodal sensor data is crucial to simplify-
ing input complexity. Additionally, scalable and trans-
ferable machine learning models are needed to adapt 
easily across diverse E-nose platforms and application 
domains, thereby reducing the reliance on extensive 
domain-specific training data.

3. Data interpolation issue: Interpolation techniques are 
common in processing VOC sensor data, while simple 
interpolation methods may fail to capture complex non-

linear relationships, resulting in generating data that may 
lack real-world significance. Machine learning methods 
can enhance data generation techniques like generative 
learning to produce samples closer to real data. Future 
exploration should focus on adaptive algorithms with 
continuous learning and feedback mechanisms to adapt 
to dynamic data changes.

4. Real-time monitoring: In the context of real-time moni-
toring, rapid data processing and response are essential. 
Models need to continuously learn and update from new 
data to adapt to dynamic changes in data and sensor 
drift. Traditional machine learning models face chal-
lenges in effectively handling rapidly changing data 
patterns or real-time events. Deep learning models for 
electronic noses can circumvent manual feature extrac-
tion, accepting streaming data acquired as time win-
dows, while leveraging cloud computing platforms to 
accelerate real-time prediction and analysis.

7  Prospects

The rapid development of IoT has brought unprecedented 
convenience to people’s lives, bringing a growing market for 
mobile devices, and E-noses will also face new opportuni-
ties. For the cross-sensitivity of gas sensors, the develop-
ment of pattern recognition methods will also usher in new 
directions:

1. Integration with IoT and edge computing: The integra-
tion of E-nose with the IoT and edge computing presents 
a promising avenue for real-time monitoring and analy-
sis. Machine learning algorithms optimized for low-
power, edge devices can enable decentralized, immedi-
ate decision-making.

2. Advanced deep learning techniques: Leveraging recent 
advancements in deep learning, such as transformer 
models, reinforcement learning, and online learning, 
can significantly enhance the analytical capabilities of 
E-noses, enabling them to learn from limited data and 
generalize across diverse conditions.

3. Sense-storage-computing integrate: The development 
of an integrated olfactory chip that combines sensing, 
data storage, and computational capabilities represents 
a significant leap forward. Utilizing memristor arrays, 
these chips could mimic the human olfactory system’s 
efficiency and adaptability, leading to compact, energy-
efficient E-noses with enhanced sensitivity and selectiv-
ity.



Nano-Micro Lett.          (2024) 16:269  Page 45 of 57   269 

4. Large model calculations of molecular: Bridging the gap 
between theoretical molecular and chemical models and 
empirical sensor data can greatly enhance understanding 
and prediction of sensor behavior in complex environ-
ments. By integrating large-scale models of molecular 
interactions with real-world sensor outputs, researchers 
can develop more robust and accurate predictive models 
for odor detection.

In conclusion, the continuous innovation of chemiresistive 
gas sensor technology and the development of pattern recogni-
tion methods are expected to extend the application of intel-
ligent olfactory systems to other scenes. Overcoming current 
challenges not only improves the selectivity of chemical gas 
sensors but also unleashes their full potential to meet the criti-
cal needs of various industries.
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