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HIGHLIGHTS

• This review summarizes current developments in the fabrication of tin (Sn)‑based electrocatalysts for  CO2 reduction.

• Sn‑based electrocatalysts are comprehensively summarized in terms of synthesis, catalytic performance, and reaction mechanisms for 
 CO2 electroreduction.

• The remaining challenges and opportunities for Sn‑based electrocatalysts in the field of  CO2 electroreduction are briefly proposed and 
discussed.

ABSTRACT The increasing concentration of  CO2 in the atmosphere has led to 
the greenhouse effect, which greatly affects the climate and the ecological bal‑
ance of nature. Therefore, converting  CO2 into renewable fuels via clean and eco‑
nomical chemical processes has become a great concern for scientists. Electro‑
catalytic  CO2 conversion is a prospective path toward carbon cycling. Among the 
different electrocatalysts, Sn‑based electrocatalysts have been demonstrated as 
promising catalysts for  CO2 electroreduction, producing formate and CO, which 
are important industrial chemicals. In this review, various Sn‑based electrocata‑
lysts are comprehensively summarized in terms of synthesis, catalytic perfor‑
mance, and reaction mechanisms for  CO2 electroreduction. Finally, we concisely 
discuss the current challenges and opportunities of Sn‑based electrocatalysts.

KEYWORDS Greenhouse effect; CO2 electrochemical reduction; Sn‑based 
electrocatalysts

1 Introduction

The excessive dependence on fossil fuels in the past has 
created an energy crisis, and a large quantity of carbon diox‑
ide  (CO2) has been released into the atmosphere, which is 
responsible for global warming [1, 2]. This inspired us to 
develop efficient methods to reduce  CO2 emissions and 
to convert  CO2 into value‑added chemicals, which would 

not only mitigate the high atmospheric  CO2 concentration 
but also produce renewable fuels to relieve the shortage of 
energy [3]. At present, some  CO2 conversion technologies, 
including enzymatic, photocatalytic, thermocatalytic, as 
well as electrochemical reduction, have been developed to 
convert  CO2 into useful fuels and chemicals [4–8]. Among 
these technologies, the electrochemical reduction of  CO2 
 (CO2ER) is preferred owing to its three advantages: First, 
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it can be conducted under milder conditions, such as ambi‑
ent pressure and temperature, compared with conventional 
industrial processes. Second, its products can be customized 
by manipulating reaction parameters (e.g., electrocatalysts, 
electrolyte, and redox potential). Third, the  CO2ER can com‑
pletely utilize intermittent electricity such as wind electricity 
and solar electricity.

Generally,  CO2 can be converted to various products, such 
as formic acid (HCOOH), carbon monoxide (CO), methane 
 (CH4), methanol  (CH3OH), and ethanol  (C2H5OH), via dif‑
ferent pathways and half‑reactions, as shown in Table 1 [9]. 
Of these, formate (HCOOH and  HCOO−) is a basic organic 
chemical raw material that can be used as fuel in a direct 
formate fuel cell, as a means of  H2 storage, and as feedstock 
in the synthesis of fine chemicals that are of interest to the 
pharmaceutical industry [10]. Additionally, Sargent and 
coworkers evaluated the economic viability of various chem‑
icals from the  CO2ER and they found that formic acid has 
great business value [11]. Thus, formate is one of the most 
desired products. In addition to formate, CO is another major 
product produced during the process of  CO2ER, and it is 
easy to separate from solution and can be further converted 
to hydrocarbons through the Fischer–Tropsch process [12]. 
Although the theoretical potentials, as shown in Table 1, 
required to form target products are not negative, more nega‑
tive potentials must be applied in practical reactions because 
of complicated reaction mechanisms and sluggish kinetics. 
The overpotential of each step must be overcome, and one 
of those steps could have a large overpotential that makes 
the overall reaction sluggish [13, 14]. The high reduction 
overpotential leads to a waste of energy and significant  H2 
evolution reaction (HER), which is a major side reaction that 

prevails over the  CO2ER [15]. Therefore, the exploitation of 
an electrocatalyst with high activity and selectivity is highly 
desirable for expediting reaction kinetics and efficiency.

CO2 electrocatalysts, including Au, Ag, Pd, Cu, Sn, and 
their related metal oxide and carbon nanocomposites, have 
been widely used in the  CO2ER to produce formate and CO. 
Among them, Sn‑based catalysts have emerged as an inter‑
esting metal for their catalytic power, selectivity to formate, 
and their non‑noble, eco‑friendly, and low‑cost characteris‑
tics [16–18]. Until now, various Sn‑based catalysts including 
single metals, alloys, oxides, sulfides, and their hybrids with 
carbon nanomaterials (e.g., carbon nanotubes and graphene) 
or metal oxide have been reported for the  CO2ER. At pre‑
sent, the Faradaic efficiency (FE) of formate and CO can 
reach ~ 100% and over 90%, respectively [19–21]. Moreover, 
the catalyst types, sizes, morphologies, surface modification, 
and reaction conditions exhibit excellent effects on the per‑
formance of  CO2ER. Until now, many excellent reviews have 
focused on the preparation and applications of metal‑based 
 CO2 electrocatalysts [3, 22–26]. However, most of them are 
broad and comprehensive summaries. Therefore, there is a 
great need to provide a timely and specific overview of Sn‑
based catalysts for the  CO2ER.

In this review, we first discuss the representative reaction 
pathways of Sn‑based electrocatalysts, followed by summa‑
rizing the recent progress of Sn‑based heterogeneous  CO2ER 
electrocatalysts. All Sn‑involved catalysts can be classified 
into four categories: monometallic Sn, bimetallic or multi‑
metallic Sn, Sn oxides, and Sn sulfides. For each category, 
we provide examples of catalysts, including the description 
of their preparation process, catalytic activity and products, 
and strategies for improving its performance. Finally, we 
briefly propose and discuss the challenges and opportunities 
in this field.

2  Reaction Mechanism and Pathways 
of the Sn‑Based Electrocatalysts

Sn‑based catalysts have high selectivity in forming for‑
mate and CO, and the reaction mechanism of the formate 
and CO pathways are relatively simple compared to other 
pathways. To date, although many works have experi‑
mentally demonstrated Sn‑based electrocatalysts to be 
an effective kind of catalyst for reducing  CO2 to formate 
and CO, the underpinned mechanisms are not yet fully 

Table 1  Electrochemical potentials of several possible  CO2 reduc‑
tion reactions in aqueous solutions

CO2 reduction half‑reactions Electrode potentials 
(V vs. RHE) at pH = 7

CO2 (g) + 2H+ + 2e− → CO (g) + H2O (l) − 0.106
CO2 (g) + 2H+ + 2e− → HCOOH (l) − 0.250
CO2 (g) + 4H+ + 2e− → HCHO (l) + H2O (l) − 0.070
CO2 (g) + 6H+ + 6e− → CH3OH (l) + H2O (l) 0.016
CO2 (g) + 8H+ + 8e− → CH4 (l) + 2H2O (l) 0.169
2CO2 (g) + 12H+ + 12e− → C2H4 (g) + 4H2O 

(l)
0.064

2CO2 (g) + 12H+ + 12e− → C2H5OH 
(l) + 2H2O (l)

0.084
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understood. Generally, there are three steps involved in 
the generation of products, in theory: (1) adsorption of 
the reactant on the surface of the electrocatalyst; (2) elec‑
tron/proton transfer to the reactant; and (3) desorption of 
the products from the electrocatalyst surface. A variety of 
approaches, including computational [27, 28], electroki‑
netic [29], and in situ analysis [30], have been proposed 
to study the reaction mechanism. The selectivity for a 
catalyst, which is largely determined by the first proton 
coupling, takes place at the C or O of CO2

·−. As shown in 
Fig. 1, based on some prevalent viewpoints, the formation 
of formate and CO goes through the following three path‑
ways. Pathway 1: CO2

·− radical anion (i) is first formed via 
a one‑electron transfer to  CO2 [18, 31], where the oxygens 
in the CO2

·− radical anion (i) are bound to the electrode 
surface. In this case, the protonation takes place on the 
carbon atom and forms an  HCOO· intermediate (ii), and 
then, a second electron transfer and protonation step result 
in the HCOOH product [32]. Pathway 2: unlike pathway 1, 
theoretical calculations propose that ·OCHO intermediates 
(iii) can be formed after the  HCOO· intermediate (ii) via 
an electron transfer [33]. After that, HCOOH production 
occurs via the ·OCHO (iii) protonation step. Pathway 3: 
when the carbon in CO2

·− is bonded to the electrode surface 
(iv), the CO2

·− may also be reduced via the protonation of 
its oxygen atom, resulting in the formation of ·COOH (v). 
This intermediate is then either reduced to HCOOH or 
loses  H2O to form CO [34].

A mechanism is closely related to the types of catalysts 
and environments; therefore, theoretical researchers can 
design catalysts to manipulate the reaction mechanism in 
the desired pathways. For example, Wallace et al. developed 
Sn‑modified N‑doped porous carbon nanofiber (Sn‑CF) cata‑
lysts for  CO2 electroreduction [21]. Two kinds of catalysts 
were synthesized in which the Sn species existed in differ‑
ent forms. The first catalyst consisted of Sn nanoparticles 
(NPs) covering the nanofiber surface (Sn‑CF1000) and had 
high FE for formate; the other one was simply atomically 
dispersed Sn in an N‑doped carbon nanofiber catalyst (AD‑
Sn/N‑C1000) that drove efficient CO formation. For the 
Sn‑CF1000, the slope of the Tafel curve was 79 mV dec−1, 
close to the theoretical value of 59 mV dec−1 for a rapid 
one‑electron transfer step followed by a rate‑determining 
step (RDS). The result suggested that Sn‑CF1000 could 
bind the CO2

· – intermediates strongly. This might account 
for the increased formate formation at a relatively low over‑
potential. The AD‑Sn/N‑C1000 exhibited a Tafel slope of 
140 mV dec−1, which is close to the theoretical value of 
120 mV dec−1 for a mechanism in which the initial single‑
electron transfer forming CO2

· – intermediates is the rate‑
determining step for  CO2 to CO conversion. The improved 
activities for CO formation on AD‑Sn/N‑C1000 may be 
mainly attributed to the enhanced stabilization of CO2

· – and 
subsequently facilitate the formation of ·COOH intermedi‑
ates on the Sn–N moieties. In addition, the local pH has 
great influence on the mechanism. It has been reported 
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Fig. 1  Possible reaction pathways for electrocatalytic  CO2ER on the Sn‑based catalysts in aqueous solutions
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that high current density means a higher consuming rate 
of the proton source, which leads to a significant increase 
in the local pH value (making the local pH alkaline) near 
the catalytic sites. A higher local pH leads to an increase 
in CO selectivity, or the formation of other C1–C2 prod‑
ucts through reaction intermediates, such as CO. Herein, we 
take SnO/C as an example. Hu’s group reported that densely 
packed ultra‑small SnO NPs could enhance CO2

· – absorption 
and increased the local pH, and demonstrated that the local 
pH increase suppressed formate formation, while it had less 
influence on the formation rate of CO [35].

Jaramillo et al. combined an experiment with the theoreti‑
cal investigation of the  CO2ER to  HCOO− on polycrystalline 
Sn surfaces to understand the mechanism and key intermedi‑
ates for  HCOO− production [33]. They focused on gaining 
insight by comparing the CO and  HCOO− production of Sn 
electrodes to other polycrystalline metal foil catalysts (e.g., 
Au, Ag, Cu, Zn, Pt, and Ni) at − 0.9 V versus the revers‑
ible hydrogen electrode (RHE) . For CO production, each 
metal’s partial current densities while forming CO were 
plotted against the binding energies of ·COOH (v) on each 
metal surface. A clear volcano trend can be observed, and 
Sn appeared on the weak binding leg of the volcano, sup‑
porting the notion of ·COOH intermediate as a descriptor 
for CO production (Fig. 2a). For  HCOO− production, a clear 
volcano trend for partial current against binding energy of 
·OCHO (iii) can be observed as well (Fig. 2b). Sn appeared 
near the top of this volcano, implying that Sn had a near‑
optimal binding energy for the key intermediate ·OCHO (iii) 
to produce  HCOO−. This volcano suggests that ·OCHO is a 

key intermediate for  HCOO− production on transition met‑
als, and it rationalizes the high selectivity toward  HCOO− of 
an Sn catalyst.

In addition to computational science and kinetic studies, 
in situ characterization techniques, such as IR and Raman 
analyses, were conducted to characterize the surface spe‑
cies at Sn interfaces when  CO2 reduction was taking place. 
Bocarsly’s group applied attenuated total reflectance infra‑
red (ATR‑IR) spectroscopy in situ to study the mechanism 
of  CO2 reduction on Sn films covered by  SnOx [30]. They 
found that the surface‑bound monodentate Sn carbonate spe‑
cies was a crucial electroactive intermediate for transform‑
ing  CO2 into  HCOO− at Sn electrodes. Broekmann et al. 
utilized potential‑ and time‑dependent operando Raman 
spectroscopy to monitor the oxidation state changes of  SnO2 
that accompany  CO2 reduction [36], and they established 
a correlation between the oxidation state of the  SnO2 NPs 
and their FE for the production of formate. They found that 
the NPs exhibited a high FE in the production of formate at 
moderately cathodic potentials, while the oxide was reduced 
to metallic Sn at negative potentials, which led to a signifi‑
cant degradation in efficiency.

3  Advanced Sn‑Based Catalysts 
for Electrochemical  CO2 Reduction

Recently, various Sn‑based electrochemical  CO2 reduc‑
tion electrocatalysts have been studied intensively, includ‑
ing monometallic Sn catalysts, bimetallic or multimetallic 
Sn catalysts, Sn oxides, and Sn sulfides. Detailed  CO2ER 
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performances of Sn‑based electrocatalysts are summarized 
in Table 2.

3.1  Sn Monometallic Catalysts

Metallic Sn is the active form of the catalyst because it is the 
most thermodynamically stable form under electrocatalytic 
 CO2 reduction conditions [37, 38]. Therefore, many studies 
on metallic Sn electrodes have been conducted to improve 
its catalytic performance.

Engineering the thickness, size, and morphology of 
a material has been regarded as popular and effective 
method to increase the catalytic performance of catalysts 
[39, 40]. For example, recent works have witnessed that 

the thickness of the catalyst layer has a great effect on 
the FE and current density for the conversion of  CO2 to 
formate, which is related to the local proton concentration 
and electrical field when current density varies with layer 
thickness [19, 41]. Aside from the thickness, controlling 
the size and morphology of a catalyst is another effec‑
tive way to tune catalytic activity [42]. The ratio of edge, 
corner, and plane sites can be adjusted by changing the 
morphology and size of the catalysts, so as to optimize the 
binding strength of intermediate ·COOH and ·CO during 
the  CO2ER process [43, 44]. Kim et al. reported a new 
solar electrodeposition method to synthesize Sn catalysts 
with different morphologies, including rod, rectangular 
sheet, and dendrite structures, and then investigated their 

Table 2  Performance of Sn‑based catalysts in  CO2 electroreduction

Catalyst FE (%) Major products Potential at  FEmax (V) Electrolyte Current density 
(mA cm−2)

References

Sn rod 94 HCOOH − 1.6 (vs. Ag/AgCl) Pure water – [45]
Sn quantum sheets/GO 89 HCOO− − 1.8 (vs. SCE) 0.1 M  NaHCO3 – [48]
Sn‑CF1000 62 HCOO− − 0.89 (vs. RHE) 0.1 M  KHCO3 11 [21]
AD‑Sn/N‑C1000 91 CO − 0.69 (vs. RHE) 0.1 M  KHCO3 1.75
Cu@Sn 100 HCOO− − 0.93 (vs. RHE) 0.5 M  NaHCO3 16.52 [19]
CuxO–Sn nanowire 90 CO − 0.8 (vs. RHE) 0.1 M  KHCO3 4.5 [63]
Cu–Sn foams 93–94 CO − 0.75 to − 0.9 (vs. RHE) 0.1 M  KHCO3 6.2 [12]
Cu–Sn alloy 90 CO − 0.6 (vs. RHE) 0.1 M  KHCO3 1.0 [58]
CuSn3 95 HCOO− − 0.5 (vs. RHE) 0.1 M  KHCO3 33 [64]
Cu0.2Sn0.8 85 HCOOH − 0.35 (vs. RHE) 0.5 M  NaHCO3 – [59]
Cu0.2Zn0.4Sn0.4 86 CO − 0.4 (vs. RHE) 0.5 M  NaHCO3 –
Sn56.3Pb43.7 79.8 HCOO− − 2.0 (vs. Ag/AgCl) 0.5 M  KHCO3 45.7 [60]
PdSn/C > 99 HCOOH − 0.46 (vs. RHE) 0.5 M  KHCO3 – [20]
AgSn/SnOx 80 HCOOH − 0.80 (vs. RHE) 0.5 M  NaHCO3 16 [28]
SnOx/AgOx > 95 HCOOH, CO − 0.80 (vs. RHE) 0.1 M  KHCO3 – [69]
Urchin‑like  SnO2 62 HCOO− − 1.0 V (vs. SHE) 0.5 M  KHCO3 – [71]
SnO2 Wire‑in‑tube 93 HCOOH, CO − 0.89 to − 1.29 V (vs. RHE) 0.1 M  KHCO3 – [74]
SnO2 porous nanowires 80 HCOO− − 0.80 (vs. RHE) 0.1 M  KHCO3 – [77]
Ultra‑small  SnO2 NPs 64 HCOO− − 1.12 (vs. RHE) 1.0 M  KHCO3 145 [78]
Ultra‑small SnO 66 HCOO− − 0.9 (vs. RHE) 0.5 M  KHCO3 20 [35]
SnO2/graphene 93.6 HCOO− − 1.8 (vs. RHE) 0.1 M  NaHCO3 10.2 [70]
SnO2/CC 87 ± 2 HCOO− − 1.6 (vs. Ag/AgCl) 0.5 M  NaHCO3 45 [80]
Pd/SnO2 NS 55 ± 2 CH3OH − 0.24 (vs. RHE) 0.1 M  NaHCO3 – [83]
TNS‑2.0‑SnO2 73 HCOOH − 1.6 (vs. RHE) 0.1 M  KHCO3 – [84]
Cu, S Co‑doped  SnO2 58.5 HCOO− − 0.75 (vs. RHE) 0.5 M  NaHCO3 5.5 [88]
Sn(S)/Au 93.3 HCOO− − 0.75 (vs. RHE) 0.1 M  KHCO3 55 [92]
SnS2/RGO 84.5 HCOO− − 1.4 (vs. Ag/AgCl) 0.5 M  NaHCO3 13.9 [93]
SnS2 monolayers 94 ± 5 HCOO− − 0.8 (vs. RHE) 0.1 M  KHCO3 – [96]
5%Ni–SnS2 93 CO,  HCOO− − 0.9 (vs. RHE) 0.1 M  KHCO3 19.6 [97]
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performance in the  CO2ER [45]. Compared with other 
catalysts, the tiny rod‑shaped Sn catalyst showed a high 
HCOOH formation rate with the maximum FE of 94.5% at 
1.6 V (vs. Ag/AgCl). The results demonstrated that cata‑
lyst morphology plays a major role in formation rate and 
FE at various potentials.

The poor dispersion of active inorganic materials leads 
to less active sites and low electroconductivity, resulting 
in a high overpotential, which considerably increases the 
energy cost [46]. For the  CO2ER, the applied high voltage 
also accelerates the HER, thus suppressing the production 
of carbon compounds. Conventionally, they are loaded on 
electrically conducting carbon nanomaterials (e.g., carbon 
black, carbon nanotube, and graphene) to further improve 
their activities. Recently, such a support effect or interfacial 
interaction has been used to promote the  CO2ER [21, 47, 
48]. For example, Xie and coworkers constructed highly 
reactive Sn quantum sheets confined in graphene, which 
showed enhanced electrocatalytic activity and stability [28]. 

At a potential of − 1.8 V versus saturated calomel electrode 
(SCE), the Sn quantum sheets confined in graphene attained 
a maximum FE of 89%, and the value was larger than 85% 
during the long test period of 50 h. The graphene sheet‑
supported Sn nanosheets increased the electrochemically 
active surface area (ECSA) and enhanced the overall elec‑
tronic conductivity and then promoted fast electron transfer 
to  CO2 to form the CO2

· – radical anion intermediate, which 
plays a fundamental role in facilitating formate formation. 
The other works are expanded to another study of carbon‑
supported Sn catalyst; for example, Wallace et al. developed 
Sn‑CF catalysts for the  CO2ER via an electrospinning tech‑
nique followed by pyrolysis (Fig. 3a, b) [21]. The selectivity 
of the dominant product could be tuned by changing the 
structure of the Sn species. The catalyst containing Sn NPs 
(Sn‑CF1000) resulted in efficient formate formation with a 
high current density of 11 mA cm−2 and an FE of 62% at 
a moderate overpotential of 690 mV (Fig. 3c). The activ‑
ity was a result of stronger electronic interactions between 
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the abundant pyridinic‑N in the carbon nanofibers and the 
anchored Sn NPs. After the Sn particles were removed via 
acidic leaching, the obtained catalyst (AD‑Sn/N‑C1000) had 
only abundant atomically dispersed Sn species, which pro‑
moted the conversion of  CO2 to CO with a high FE of 91% 
at a low overpotential of 490 mV. Because of the abundance 
of pyridinic‑N defects in carbon nanofibers, the Sn atoms in 
AD‑Sn/N‑C1000 might have coordinated with pyridinic‑N, 
and the formed Sn–N moieties may have acted as new active 
sites for the  CO2ER.

In addition to carbon materials, oxides have also been 
demonstrated as a kind of excellent support material to 
obtain hybrids for the  CO2ER. Some metal oxides with 
restricted conductivity, high surface area, and large poros‑
ity like g‑Al2O3 and ZSM5 also work as good substrates 
for catalysts. Basu et al. used the pore walls of g‑Al2O3 and 
ZSM5 to support metallic Sn to overcome the disadvantage 
of non‑conductive of substrates [49]. At a 20 wt% Sn catalyst 
loading, the Sn adhered to the porous wall of g‑Al2O3 and 
ZSM5 in a monodispersed form without intermissions or 
agglomerates. In an electroreduction cell, the 20Sn/ZSM5 
cathode produced a higher current of 190 mA cm−2 at − 2 V 
(vs. Ag/Ag+) and greater FE (20.4%) toward methane com‑
pared with the 20Sn/Al2O3 cathode (160 mA cm−2, 12.9%).

3.2  Bimetallic or Multimetallic Sn Catalysts

In contrast to pure metal electrodes, alloy catalysts, which 
help to accurately control the surface electronic state and 
binding energy of electrocatalysts to optimize catalytic activ‑
ity, are of particular interest [50]. This strategy has been 
widely used to optimize a range of electrocatalytic reactiv‑
ity, such as the oxygen reduction reaction (ORR) and HER 
[51–53]. For the  CO2ER, early studies have shown that the 
modification of foreign atoms on the metallic surface can 
alter the selectivity for CO or  HCOO− on the electrodes 
[18]. As Sakata et al. reported for Cu alloys with other met‑
als, they found that alloying had a considerable effect on 
the onset potentials for  CO2 electroreduction and that some 
alloys were able to create products that two separate metals 
could not produce [54]. Until now, a good deal of evidence 
has suggested that the combination of different types of met‑
als to catalyze  CO2 reduction affords the opportunity to bet‑
ter modulate the surface chemical environment and relative 
binding with different intermediates [55–57].

At present, many kinds of metals (e.g., Cu, Pd, Pb, Bi, 
etc.) have been chosen to combine with Sn to obtain binary 
or ternary alloys [58–62]. For example, a bimetallic Cu–Sn 
electrocatalyst was prepared through the electrodeposition of 
Sn species on the surface of oxide‑derived copper, followed 
by annealing [58]. The introduction of Sn species changed 
the surface selectivity, with the result that the H binding 
sites were disturbed, inhibiting the evolution of  H2 without 
altering the activity of  CO2 reduction. The results showed 
that the Cu–Sn bimetallic surface exhibited highly selec‑
tive and stable performance, resulting in better than 90% FE 
toward CO for long period of time (> 14 h) at − 0.6 V (vs. 
RHE). Recently, Wallace and coworkers have reported Sn 
NP‑decorated copper oxide hybrid nanowire (NW) catalysts 
that were able to reduce  CO2 to CO with an FE of 90% at 
a moderate overpotential of 0.69 V (Fig. 4a–f) [63]. The 
enhanced performance might have arisen from the synergis‑
tic interaction between the Sn NPs and  CuxO NWs, which 
was confirmed by changing the properties of the  CuxO NWs. 
If Sn NPs in the composite were replaced with Au NPs, 
Cu–Au NWs were formed, displayed an  FECO similar to 
Cu NWs. However, the  FECO changed dramatically after 
introducing Sn onto the Cu–Au NWs (Fig. 4g). It can be 
deduced that the introduction of Sn was the key to improving 
the CO selectivity. Cui and coworkers presented a thermo‑
dynamic analysis of the reaction energetics using density 
functional theory (DFT) calculations, which also suggested 
that Cu–Sn alloys could suppress the production of  H2 and 
CO to achieve high formate selectivity. In the in situ X‑ray 
absorption studies of Sn  L3‑edges and Cu K‑edges, Sn has 
presented positive oxidation states in  CuSn3 catalysts. The 
synthesized  CuSn3 exhibited an FE of 95% toward formate 
at − 0.5 V (vs. RHE) and an excellent stability after 50 h 
in an initial study [64]. Moreover, Cu–Sn catalysts with a 
dendritic foam structure were also prepared for the  CO2 con‑
version, showing excellent selectivity toward CO, and an FE 
for CO formation with a value up to 93–94% over a wide 
potential range [12]. In addition, better properties can be 
achieved by the incorporation of additional metal ions. For 
instance, Berlinguette and coworkers reported on Cu–Zn–Sn 
ternary alloys for  CO2 electrocatalysis and showed that the 
addition of Sn suppresses  H2 production in favor of CO or 
HCOOH production [59].

The phase composition of the catalysts has great influ‑
ence on activity and selectivity. To probe this, Ismail 
et  al. fabricated Au–Sn bimetallic NPs with different 
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intermetallic phases for direct use as a catalyst for the 
 CO2ER. It was found that the formation of syngas and 
formate could be tuned by changing the composition of the 
intermetallic phase(s) efficiently. Selective isotopic labe‑
ling experiments have suggested that  CO2 supplied through 
fast equilibrium with the bicarbonate on the electrode sur‑
face, which was proved by Raman spectroelectrochemistry. 
The results also showed the generation of formate anions 
on the AuSn phase at a notably less negative potential than 
on the pure Sn electrode [65]. Another research study by 
Chen’s group confirmed the close relationship between 
composition and properties [20]. They developed an acti‑
vated carbon (AC)‑supported Pd–Sn alloy NP electrocata‑
lyst with varied Pd/Sn composition (Fig. 5a, b) and found 

a variation in the relative intensity ratios of  Pd0/PdII and 
 Sn0/SnIV with respect to the molar ratios of Pd/Sn in Pd, 
Sn, and alloyed  PdxSn NPs (Fig. 5c). The authors found 
that the activity of HCOOH and CO, and the selectivity 
were highly dependent on the surface electronic structure 
of the alloy. The highest FE of nearly 100% for produc‑
ing HCOOH was obtained over the PdSn/C catalyst at the 
lowest overpotential of − 0.26 V, where both CO forma‑
tion and  H2 evolution were completely suppressed. The 
changes in the HCOOH FE and the overpotential were 
synchronous with those of  Pd0/PdII in  PdxSn NPs, indicat‑
ing that the activity for producing HCOOH is sensitive 
to the surface oxide species on alloyed NPs. DFT calcu‑
lations suggested that the formation of the key reaction 
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intermediate  HCOO·, as well as the product formic acid, 
was the most favorable over the PdSn alloy catalyst surface 
with an atomic composition of  PdSnO2, which is consist‑
ent with experimental findings.

3.3  Sn Oxides

Many reported works have proved that an oxide layer with 
higher roughness and greater surface area on the surface of 
the metal would greatly influence the electrochemical pro‑
cess and is significant to the selectivity and activity of the 
electroconversion of  CO2 [66, 67]. In the study of metallic 
Sn, a growing supply of experimental evidence, suggests 
the existence of surface oxides on Sn during the  CO2ER, 
and it is a key factor in the formation of formate [29, 30, 
68]. For example, in a recent work, Jiao’s group synthe‑
sized AgSn/SnOx core–shell catalysts through a method 
of galvanically displacing Sn seeds with Ag, in which the 
AgSn bimetallic core influenced the high electronic conduc‑
tivity, and an ultra‑thin partially oxidized  SnOx shell was 
responsible for catalytic  CO2 conversion (Fig. 6) [28]. They 
found a volcano‑like relationship between the composition 
and the electrocatalytic performance, in which the optimal 
partially oxidized  SnOx shell thickness was ~ 1.7 nm. In the 
electrokinetic studies, the Tafel slope for  CO2 conversion to 
formate was ~ 110 mV dec−1, which suggested that the RDS 
on AgSn/SnOx core–shell catalysts was the first electron 

transfer. Moreover, DFT calculations showed that the SnO 
(101) surfaces with oxygen vacancies were active and stable 
at highly negative potentials, and crucial for  CO2 activation. 
Similarly, relevant research for  SnOx film was also reported 
by Cuenya’s group through electrodepositing Sn on  O2 
plasma pre‑oxidized Ag films to create  SnOx/AgOx catalysts. 
They proposed that the surface roughness and stable  Snδ+/
Sn species in  SnOx showed enhanced activity and stable CO/
HCOO− selectivity [69]. In addition, Broekmann and cow‑
orkers utilized in operando Raman spectroscopy to monitor 
the oxidation state changes of  SnO2 during the  CO2ER [36]. 
They found that the efficiency of formate production was 
significantly decreased after the  SnO2 was reduced to metal‑
lic Sn at very negative potentials. It gave powerful evidence 
that oxides can be used as a kind of efficient catalyst.

Following this trend, many studies on Sn‑based oxides 
have been conducted to further improve electrocatalytic 
performance. Deliberately designing Sn‑based oxides with 
controlled morphologies, structure, and chemical composi‑
tions are popular research topics at present. For example, 
Meyer et al. synthesized tin oxide nanocrystals with a high 
surface area and found that the FEs for formate produc‑
tion on Sn electrodes were varying with morphologies, 
and the maximum current efficiency reached on 5 nm tin 
oxide NPs [70]. In addition, urchin‑like  SnO2 [71], coral‑
line‑like  SnO2 [72], and hierarchical  SnO2 microsphere 
[73] catalysts have been synthesized, and they exhibited 
good catalytic activity toward  CO2 electroreduction. 
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Considering that a 1D structure possesses a high surface 
area and more edge sites, and can also facilitate charge 
transfer, Li’s group fabricated a 1D  SnO2 with a wire‑in‑
tube (WIT) structure via electrospinning and calcining at 
air, with a nanofiber that was composed of NPs intercon‑
nected through grain boundaries (GBs) (Fig. 7a, b) [74]. 
The WIT  SnO2 nanofiber showed superior selectivity and 
stability for  C1 products (HCOOH and CO), and the FE 
achieved was greater than 90%. The excellent catalysis 
activity may have resulted from the following aspects: (1) 

The BET analysis showed that the surface area of the WIT 
 SnO2 nanofiber was 10 times that of the  SnO2 NP, which 
may introduce more active sites for CO2

·− absorption. (2) 
The authors speculated that the field‑induced reagent con‑
centration (FIRC) effect might help stabilize the adsorbed 
CO2

·− intermediates, leading to superiority in the  CO2ER 
to explain the catalysis activity enhancement. (3) The 
generation of high‑density GBs could reform the bonding 
strengths between the adsorbate and the metal to stabi‑
lize the catalytically active surfaces [75, 76]. Recently, 
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the dominant role of GBs in  SnOx for the  CO2ER has 
been further explained by Spurgeon’s group and Ajayan’s 
group. They synthesized  SnO2 porous nanowire catalysts 
(Sn‑pNWs) and ultra‑small  SnO2 NPs with a high density 
of GBs (Fig. 7c, d), respectively [77, 78]. The authors 
confirmed that the structure rich in GBs would introduce 
new catalytic active sites to exhibit a higher energy con‑
version efficiency of  CO2 to value‑added chemicals than 
analogous catalysts.

Apart from  SnO2, tin monoxide (SnO) has been also 
explored for  CO2 reduction by Hu’s group [35]. They pre‑
pared SnO through the pyrolysis of  SnC2O4/C precursor 
in  N2 atmosphere. Ultra‑small SnO NPs (2.6 nm) were 
completely reduced to Sn NPs of similar size and disper‑
sion during the  CO2 electroreduction. The derived cata‑
lyst exhibited a higher selectivity and a higher partial cur‑
rent density in CO formation than other Sn catalysts. The 
authors suggested that the high activity could be attributed 

to the ultra‑small size of the SnO NPs, while the high 
selectivity could be attributed to a local pH effect arising 
from the dense packing of NPs in the conductive carbon 
black matrix.

The combination of nanostructure engineering and 
hybridization are effective strategies that have been widely 
employed to improve electrocatalytic performance. Car‑
bon material is undoubtedly the first choice of researchers 
for obtaining hybrid materials that can facilitate charge 
transfer [79]. Recently, Zhang’s group has fabricated a 
3D hierarchical structure composed of mesoporous  SnO2 
nanosheets on carbon cloth  (SnO2/CC) via a facile com‑
bination of hydrothermal reaction and calcination [80]. 
The as‑prepared electrode showed high current density, 
high selectivity, and long‑term stability at moderate over‑
potentials for the electroreduction of  CO2 to formate in 
aqueous media. The superior performance of the  SnO2/
CC electrode was attributed to both the robust and highly 
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GBs. Reprinted with permission from Ref. [74]. c, d HRTEM images of  SnO2 nanoparticles. Reprinted with permission from Ref. [78]
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porous hierarchical feature and the conductive CC as a 3D 
support and a current collector. Another effective strategy 
is the fabrication of metal/oxide interactions, which has 
been widely utilized to improve the kinetics for chemi‑
cal catalysis. For instance, Wang et al. have reported on 
composition‑dependent Cu/SnOx NPs supported on a car‑
bon nanotube (Cu/SnOx–CNT) catalyst. The productions 
changed with the composition of the catalysts [81]. Pd as 
a potential catalyst for  CO2ER is very easily poisoned by 
CO, which is an important intermediate during the  CO2ER 
[82]. This poison then inhibits further electroreduction 
of the ·CO intermediate. Recently, Zheng and coworkers 
have fabricated a 2D hierarchical structure comprised of 
ultra‑thin Pd nanosheets partially capped by  SnO2 NPs 

(Pd/SnO2) [83]. The authors took advantage of  SnO2 to 
enhance the adsorption of  CO2, but weakened the CO 
binding on Pd due to the as‑built Pd–O–Sn interfaces, and 
enable multielectron transfer for selective electroreduction 
of  CO2 into  CH3OH as a major product. A maximum FE 
of 54.8 ± 2% for  CH3OH was achieved at − 0.24 V (vs. 
RHE) in 0.1 M  NaHCO3 solution. The selectivity of pro‑
duction is always a vexing question for  CO2ER electro‑
catalysts. Zheng et al. constructed a 2D confined space as 
a molecular reactor, skillfully assembling the Sn (IV) ions 
into the interlayer spacing of neighboring atomically thin 
titanium nanosheets (TNSs), and further converting them 
into  SnO2 NPs by hydrolysis (Fig. 8a) [84]. This hybrid 
structure effectively provided a hydrophobic environment 
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and a confined space, which impeded the transfer of buffer 
electrolyte onto the  SnO2 electrocatalyst surface, thus tun‑
ing different selectivities of  CO2ER and HER (Fig. 8b). 
The interlayer spacing of lamella assemblies can vary 
from ~ 0.9 to 3.0 nm, and this was tailored by a variety 
of cationic surfactants. The varied interlayer spacing was 
also confirmed by XRD and HRTEM imaging (Fig. 8c, 
d). TNS‑2.0‑SnO2 with a medium interspace distance 
(~ 2.0 nm) showed an excellent FE of 73% for formate at 
− 1.6 V (vs. RHE). Moreover, the whole assembled struc‑
tures and performances remained good after a lengthy time 
test.

It is well known that doping can change local structures 
and generate extrinsic defects, and thus improve reactiv‑
ity and conductivity [85]. Doping other elements into the 
crystal lattice of metal oxide is another effective method 
for improving the electrochemical performance of electro‑
catalysts. Keith et al. predicted that doping Sn electrodes 
with Ti, V, Nb, or Zr would result in lower overpotentials 
for  CO2 reduction compared with undoped tin oxide [86]. 
Mu’s group prepared nanosized fluorine‑doped tin oxide 
(n‑FTO) via direct chemical reaction between tin oxide 
powders and hydrofluoric acid at room temperature [87]. 
The n‑FTO electrode exhibited good electrocatalytic abil‑
ity for  CO2 reduction under low potentials. Liang et al. 
prepared a series of Cu and S co‑doped  SnO2 materials 
through a facile hydrothermal method [88]. The ele‑
ments Cu and S  (Cu2+ in a 1:1 molar ratio with  S2− ions) 
were doped in  SnO2 at a mole ratio of 1:10 and labeled 
 SC10, which showed the optimum electrocatalytic activ‑
ity for the reduction of  CO2 to formate as compared with 
undoped  SnO2. The overpotential examined was as low as 
130 mV, and the maximum current density also increased 
to 5.5 mA cm−2 at − 1.2 V (vs. Ag/AgCl), which was 7 
times higher than that of pure  SnO2. The stability of the 
catalyst was maintained for more than 33 h, and the FE of 
formate was 58.5%.

3.4  Sn Sulfides

As earth‑abundant materials in nature, sulfide‑derived 
metals have attracted tremendous attention for various 
applications due to their unique surface structures, local 
environments, and physicochemical characteristics of 
high electrical conductivity and good thermal stability, 

which enhances the kinetics of electron transfer and thus 
improves catalytic activity [89]. Sulfide‑derived materials 
have been used as an effective way to optimize the activity 
and selectivity of  CO2 reduction performance. For exam‑
ple, sulfur‑modified Cu catalysts [90] and sulfur‑doped 
indium catalysts [91] produce formate with high selectiv‑
ity and high activity.

For Sn sulfides, sulfur‑modulated tin (Sn(S)) catalysts 
were synthesized through the atomic layer deposition of 
 SnSx followed by a reduction process [92]. This was done 
by sputtering the Sn(S) film on Au needles (Sn(S)/Au) as 
the electrode for further electrochemical tests The Sn(S)/
Au electrodes showed significantly better performance than 
the pure Sn NPs/Au samples, which reduced  CO2 to formic 
acid with a FE of 93% at − 0.75 V (vs. RHE). Moreover, 
 SnS2 with a unique layered structure has been reported to 
have outstanding properties for applications in the  CO2ER. 
Li et al. synthesized a 2D  SnS2/RGO composite for electro‑
catalytic reduction of  CO2 to formate at an overpotential as 
low as 0.23 V, and a maximum FE of 84.5% was achieved at 
an overpotential of 0.68 V [93]. Atomic thickness facilitates 
the exposure of low‑coordinated metal atoms on the surface 
and increases electron transport and mass diffusion, which 
provides more active sites, superior corrosion resistance, and 
high mechanical toughness in the electroreduction of  CO2 
[94, 95]. In a work published by the Luo’s group,  SnS2 mon‑
olayers were synthesized by a facile Li intercalation/exfolia‑
tion method. The resulting catalyst exhibited efficient pro‑
duction of  HCOO− with a high FE of 94 ± 5% at − 0.8 V (vs. 
RHE) and excellent long‑term durability (over 80 h) [96]. 
The XRD analysis of the catalysts after electrolysis indicated 
that the  SnS2 monolayers were partially reduced to metallic 
Sn in the  CO2 electroreduction. In sharp contrast, the bulk 
counterpart  (SnS2 bulk) generated only a small amount of 
formate. Theoretical studies revealed that the atomic‑scale 
thickness favored the key initial step for producing  HCOO· 
intermediates and the subsequent proton–electron transfer, 
leading to superior electrocatalytic performance for the pro‑
duction of formate from  CO2.

Typically, elemental doping is helpful not only to the band 
structure and charge redistribution, but also to adjusting the 
valence state of the active sites, resulting in good electro‑
chemical performance. Zeng’s group modified atomically 
thin  SnS2 nanosheets with Ni doping for enhanced perfor‑
mance in  CO2 electroreduction (Fig. 9) [97]. The Ni‑doped 
 SnS2 nanosheets exhibit a dramatic increase in current 
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density and FE for a carbonaceous product than those of the 
pristine  SnS2 nanosheets. When the Ni content is 5 at% (5% 
Ni‑SnS2), the catalysts achieve an excellent FE of 93% for 
carbonaceous products, with a considerable current density 
of 19.6 mA cm−2 at − 0.9 V (vs. RHE). Moreover, the 5% 
Ni‑SnS2 nanosheets maintained high stability for FE without 
great decay of current density during the potentiostatic test. 
The mechanistic study showed that the Ni doping increased 
the defect level and reduced the work function of the  SnS2 
nanosheets, which resulted in promoting  CO2 activation and 
further improving performance in  CO2 electroreduction.

4  Conclusions and Outlook

In this review, we have briefly summarized several major 
kinds of Sn‑based materials in terms of synthesis, the effect 
of structure and composition factors on the performance, as 
well as key factors for applications in  CO2 electroreduction. 
Until now, a variety of Sn‑based catalysts have been devel‑
oped to convert  CO2 to valuable products. Metallic Sn is 
an active form and the most stable form of these Sn‑based 

catalysts; however, only a few strategies have been used to 
tune the performances of metallic Sn catalysts, such as by 
modifying their thickness, size, and morphology. Sn alloy 
catalysts are also effective catalysts for the  CO2ER. Their 
catalytic activity and selectivity is highly depended on the 
kinds of metals and phase composition, while the accu‑
rately controlled preparation of Sn alloy catalysts is chal‑
lenging work. During the study of metallic Sn catalysts, it 
was found that the existence of surface oxides on Sn is of 
benefit to the formation of formate; therefore, Sn oxides 
with different morphologies, structures, and chemical com‑
positions were prepared. As earth‑abundant materials in 
nature, sulfide‑derived Sn sulfides have been applied as 
catalysts for  CO2 reduction with high activity and selec‑
tivity. Currently, significant progress has been made in the 
area of Sn‑based catalysts for the  CO2ER. However, from 
the perspective of the catalysts, there are still several obsta‑
cles to overcome before nanostructured Sn‑based catalysts 
are widely employed in practical and commercial applica‑
tions of the  CO2ER. To achieve this goal, the following 
challenges related to Sn‑based catalyst development for the 
 CO2ER should be focused on:
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1. Low catalytic activity, selectivity, and durability. Gen‑
erally, a large overpotential is inevitable, which stems 
from the formation of the key intermediate CO2

·−, mul‑
tiple electron or proton coupling processes, and differ‑
ent reaction pathways, and as a result, catalysts always 
exhibit low catalytic activity and efficiency. In addition, 
the competition between  CO2 reduction and HER always 
exists. Thus, the products obtained at a fixed overpoten‑
tial are usually a mixture rather than a single product, 
and poor product selectivity is one of the biggest bug‑
bears during the  CO2ER for Sn‑based and other kinds 
of catalysts. Meanwhile, the changes in structure and 
composition, and the deposition of inert by‑products on 
the catalyst surface after a long reaction time lead to the 
inactivation of the catalyst. As a consequence, activity 
degradation is also a severe problem due to the instabil‑
ity of Sn‑based catalysts. Therefore, the preparation of 
catalysts and the development of new technologies to 
enhance catalytic efficiency and product selectivity, and 
to prolong the catalyst lifetime are goals to strive for.

2. Insufficient fundamental understanding and standard 
experimental systems. Although the underpinning mech‑
anisms of Sn‑based catalysts have been studied exten‑
sively, the underlying fundamental processes are still not 
well understood at the molecular level. DFT is a power‑
ful tool for understanding the intermediates and active 
species in the reaction. However, with the increasing 
complexity of catalyst components, the identification of 
actual catalytic active sites will become more difficult. A 
combination of in situ, ex situ, and operando studies on 
the model catalysts with computational strategies is an 
effective means to find insight into the electrochemical 
reaction mechanisms involved at the molecular level. 
This strategy will provide a way to design and find high‑
performance electrocatalysts for the  CO2ER. In addition, 
the test systems and the operating environments in the 
literature are different, which is not conducive to the 
mutual evaluation and comparison of different experi‑
mental cases.

The development of Sn‑based catalysts could have break‑
throughs related to the following aspects:

1. Manipulation of surface structure and defects of the 
catalysts. Improving the surface properties of nanoma‑
terials is an effective strategy for finding high‑efficiency 
and stable electrocatalysts. In the surface properties of 
catalysts, defects exist widely in most materials, which 
may furnish unexpected physical and chemical proper‑
ties through the modulation of catalyst electronic prop‑
erties. Therefore, it is helpful to enhance electrocatalytic 

performance. In recent years, despite the remarkable 
progress in Sn‑based catalysts, the studies on defects 
are still scarce. Defect engineering in Sn‑based nano‑
structured catalysts has provided an exciting opportunity 
to improve the performance of the  CO2ER. Realizing 
the controllable synthesis of defects and making clear 
what effects the defect type and concentration have on 
electrocatalytic performance provide the opportunity to 
further improve the performance of Sn‑based catalysts.

2. Single‑atom catalysts with fully exposed, highly selec‑
tive, and well‑defined active sites have shown great 
potential for tackling the above challenges in the  CO2ER. 
For example, atomically dispersed Ni, Fe, and Co coor‑
dinated with nitrogen atoms in carbon substrates have 
demonstrated impressive activity for the  CO2ER. Based 
on this, more attention should be paid to Sn–N–C materi‑
als, which could be ideal catalysts for  CO2 reduction.

In conclusion, we have summarized recent progress on 
the Sn‑based catalysts for the  CO2ER. In spite of tremen‑
dous challenges facing this field for large‑scale applications, 
including low performance, unsatisfactory produce yield, 
and high energy consumption, it is believed that by continu‑
ously optimizing the catalysts and measurement systems, the 
dream of obtaining high‑yield useful fuels/chemicals from 
 CO2 reduction will be true in the future.
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