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HIGHLIGHTS

• The advantages of biomass materials for electromagnetic interference (EMI) shielding are analyzed, the mechanism of EMI shielding 
is summarized, and the factors affecting EMI shielding are analyzed systematically.

• Various biomass materials (wood, bamboo, lignin, cellulose) were modified to obtain unique structures and improve EMI shielding perfor-
mance.

• The problems encountered in the application of biomass materials for EMI shielding are summarized, and the potential development 
and application in the future are prospected.

ABSTRACT Research efforts on electromagnetic interference (EMI) shielding materials 
have begun to converge on green and sustainable biomass materials. These materials offer 
numerous advantages such as being lightweight, porous, and hierarchical. Due to their 
porous nature, interfacial compatibility, and electrical conductivity, biomass materials 
hold significant potential as EMI shielding materials. Despite concerted efforts on the 
EMI shielding of biomass materials have been reported, this research area is still relatively 
new compared to traditional EMI shielding materials. In particular, a more comprehensive 
study and summary of the factors influencing biomass EMI shielding materials including 
the pore structure adjustment, preparation process, and micro-control would be valuable. 
The preparation methods and characteristics of wood, bamboo, cellulose and lignin in EMI 
shielding field are critically discussed in this paper, and similar biomass EMI materials are 
summarized and analyzed. The composite methods and fillers of various biomass materi-
als were reviewed. this paper also highlights the mechanism of EMI shielding as well as 
existing prospects and challenges for development trends in this field.
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1 Introduction

The universal practice of mobile phones [1–3], computers 
[4], and other electronic devices [5–11] has transformed 
human society with unprecedented convenience [12–15]. 
However, this convenience comes at a cost, as these elec-
tronic devices are also responsible for electromagnetic inter-
ference (EMI) and pollution [16–20]. In fact, The World 
Health Organization (WHO) has listed electromagnetic radi-
ation as the fourth largest source of environmental pollution 
after water pollution, air pollution and noise pollution. This 
escalating issue has sparked significant public concern [21]. 
It was found that electromagnetic pollution can obstruct the 
normal functioning of electronic equipment which would 
lead to malfunctions and potential data leakage. Addition-
ally, it poses significant health risks to individuals such as 
headaches, insomnia, and lethargy [22, 23]. Therefore, it 
is crucial to prioritize the evolution of materials with effi-
cient electromagnetic shielding to alleviate these risks while 
maintaining their properties for respective applications 
[24–27]. Figure 1a–c shows the potential source of electro-
magnetic waves in daily life and relevant studies published 
in the past few years. In recent years, the research on EMI 
shielding materials has gradually increased, but there are 
still relatively few studies on biomass EMI shielding mate-
rials. With people’s attention to electromagnetic pollution 
and environment, biomass EMI materials have been studied 
relatively more in the past two years. This allows us to see 
the prospect of biomass EMI shielding materials, this paper 
will introduce the current biomass EMI shielding materials 
preparation, characteristics for the reference of researchers.

In the past, studies of electromagnetic shielding mate-
rials focused on metal oxides [28–30], metals [25, 31], 
carbon-based materials [32–35], metal carbide [36], sulfide 
[37], magnetic materials, and polymer shielding materials 
(Fig. 2) [38–43]. Among these, metals (e.g., Fe, Ag, Ni, 
Cu, and Al) and their compounds have been extensively 
studied for their effectiveness in shielding electromagnetic 

and electrostatic fields [44–46]. It was found that transition 
metal sulfides exhibit strong electrochemical activity, higher 
specific capacitance, and enhanced conductivity [47, 48]. 
However, challenges related to the strong electromagnetic 
waves (EMWs) that has caused secondary interference, 
depletion of metal resources, high density, susceptibility to 
corrosion, and processing difficulties have constrained their 
widespread application [37, 49–51]. Magnetic materials 
exhibit strong absorption and attenuation properties when 
exposed to low-frequency electromagnetic radiation [52, 
53]. However, their effectiveness diminishes when exposed 
to high-frequency electromagnetic radiation, and their thick-
ness further restricts their practical application in electro-
magnetic shielding [54].

Recently, the primary research direction for polymer 
shielding materials centers around polythiophene (PT), 
polyurethane (PU), polypyrrole (PPy), polyacetylene (PA), 
and other polymers with conjugated π-bonds [55–57]. These 
materials have secured substantial spotlight due to their 
outstanding performance, which includes high efficiency, 
lightweight, corrosion resistance, and excellent processing 
capabilities [58]. For example, Sun et al. used electrostatic 
assembly and molding to load  Ti3C2 onto the surface of pol-
ystyrene particles. Due to the high conductivity of MXene 
and its efficient conductive network in the polystyrene 
matrix, the polystyrene/Ti3C2 composite was constructed 
with a high conductivity of 1081 S  m−1 and an electromag-
netic interference shielding effectiveness (EMI SE) of 64 dB 
[59]. However, the preparation process is complex, and the 
individual materials do not possess exceptional electro-
magnetic shielding performance. As such, large amount of 
conductive fillers is usually added, which in turn limits its 
application in electromagnetic shielding and compromises 
the mechanical properties of the material [60–62].

On the other hand, carbon-based materials like reduced 
graphene oxide (RGO), carbon nanofibers (CNF), carbon 
nanotubes (CNT), and their composite materials [63–68] 
exhibit excellent electrical conductivity, high dielectric 
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loss, specific surface area, outstanding chemical stabil-
ity, and large aspect ratio, suggesting their potential use in 
electromagnetic shielding applications [69–72]. For exam-
ple, Li et al. successfully constructed a CNT/SiC coaxial 
three-dimensional porous composite sponge using a low-
temperature growth strategy. Its comprehensive performance 

is excellent, low density, super elasticity, excellent thermal 
resistivity, EMI of 75.7 dB in the X-band [73]. However, 
their relatively high production costs, expensive manufac-
turing equipment, and complex processing methods present 
challenges in meeting large-scale production requirements 
[60, 74].

Fig. 1  a Objects that often cause electromagnetic waves in life. b Articles published on electromagnetic shielding in the past few years. c Arti-
cles published on electromagnetic shielding of biomass in the two decades
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1.1  Application of Biomass Materials 
in Electromagnetic Shielding Field

The call for effective electromagnetic shielding materials 
has elevated in recent years owing to resource scarcity and 
growing environmental concerns. Unfortunately, exist-
ing traditional materials have struggled to meet practical 
demand, but problems such as their difficulty in processing, 
non-degradability, and depletion of raw materials have led 
to the exploration of alternative options [75–77]. Biomass 
materials have garnered attention due to their low cost, sus-
tainability, lightweight nature, and porous hierarchical struc-
ture, making them a promising alternative to traditional EMI 
shielding materials [78–81]. Biomass-based multi-function 
electromagnetic shielding materials not only effectively 
shield electromagnetic waves, but also have other functions, 
such as electrical conductivity, significant flame retardancy 
and antibacterial activity. Compared with traditional mate-
rials, biomass materials can adjust their structure through 
different treatment and processing methods, for example, 
by optimizing the pore structure, shape, size and distribu-
tion to improve the material’s absorption loss and multiple 
reflection attenuation, thereby enhancing its shielding effect. 
Some common biomass materials used for electromagnetic 
shielding are wood, bamboo, lignin, and cellulose (Fig. 3). 

In particular, wood-based composites are known for their 
excellent electrical conductivity, lightweight and stable 
structure, and porous nature, making them a strong candi-
date for EMI shielding.

Wood-based materials such as wood metal composites, 
wood polymer composites, and wood-derived carbon com-
posites are employed in EMI shielding [82–84]. Addition-
ally, graphene is a demanding option for EMI materials 
due to its extensive surface area, exceptional electrical 
conductivity, mechanical flexibility, and other remarkable 
physical and chemical properties [85]. For instance, Guo 
et al. prepared Wood/Cu-Fe3O4@ graphene /Ni compos-
ites. The conductivity of the composite was improved by 
adding  Fe3O4@graphene with high crystallinity and purity. 
The micro and nano particles are evenly distributed on the 
surface of the wood, forming a dense coating. The EMI SE 
of the composite material is 96.79 dB [86]. Furthermore, 
nanocellulose (i.e., a natural polymer derived from cellu-
lose), which has a high specific surface area and impres-
sive mechanical properties [87, 88], shows promise for 
application in biomass EMI shielding materials [31, 89, 
90]. For example, Han et al. utilized magnetic Ni particles 
to modify graphene oxide and nano-fibrillated cellulose 
in order to create EMI shielding films. Their research 

Fig. 2  Traditional EMI shielding materials, preparation methods and 
properties

Fig. 3  Various types of biomass materials for EMI shielding field, 
with wood, cellulose, lignin as an example
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found that EMI shielding effectiveness (SE) could reach 
32.2 dB [91]. Additionally, Zhang et al. utilized bamboo as 
a renewable biomass material to prepare a bamboo-plastic 
composite electromagnetic shielding material. By filling 
high-density polyethylene (HDPE) with nickel-plated 
bamboo, they achieved an impressive EMI SE of 82 dB 
[92]. Moreover, cellulose and lignin were highlighted for 
their wide availability, low cost, and porous nature [93]. 
Exploration of a wide range of materials including wood-
based composites, graphene-enhanced polymers, and bam-
boo-plastic composites [94], demonstrates the potential for 
high levels of EMI shielding effectiveness. These innova-
tive approaches address the urgent need for effective EMI 
shielding and demonstrate the potential of using renew-
able biomass materials to develop sustainable solutions 
for mitigating electromagnetic pollution.

Currently, there is a growing concern for the environ-
ment and an increased awareness of the importance of 
developing effective wearable protective materials and EMI 
shielding materials [95, 96]. For example, Yuan et al. have 
documented the development of a highly elastic, stretchy 
polyurethane nanofiber fabric coated with  Ti3C2Tx, which 
maintains an EMI SE of over 20 dB and exhibits stable 
mechanical properties [97]. Cao et al. have also introduced 
a composite film utilizing CNTs/MXene/CNFs to create 
wearable yet flexible EMI shielding materials through a 
sandwiching process [98]. Similarly, Zhao et al. obtained 
the polyacrylamide/2-hydroxypropyl trimethylammonium 
chloride chitosan (PAM/HACC) interpermeable network 
by heat-initiated polymerization through the strong electro-
static interaction and hydrogen bonding between the posi-
tively charged group on HACC and the PAM polymer chain. 
It was used as skeleton in situ polymerization of PPy. It 
has flexibility, good mechanical strength, and EMI SE up 
to 40 dB [99]. Biomass materials have delineated a remark-
able possibility for EMI shielding due to their rich interface 
and porous structure. This allows them to achieve EMI SE 
of over 20 dB. Furthermore, these materials can be tailored 
to provide resistance to mildew, electrical conductivity, and 
flame retardancy, making them applicable for use in various 
extreme environments [68, 100]. Despite their promising 
characteristics, biomass-based EMI shielding materials have 
limited reported applications, hence suggesting significant 
untapped potential [101–103]. Therefore, there is an urgent 
need to explore and review existing works related to these 
promising biomass materials for EMI shielding.

This paper comprehensively reviews preparation meth-
ods, material structure design, EMI shielding mechanisms, 
and other relevant aspects of various biomass materials. A 
detailed summary of recent research on different types of 
biomass EMI shielding materials was proposed, along with 
an analysis of the associated challenges, issues, and future 
trends. The review emphasizes recent advancements and 
noteworthy accomplishments in applying biomass-based 
materials in electromagnetic shielding. It is anticipated that 
this review will significantly influence the development of 
environmentally friendly, lightweight, and sustainable elec-
tromagnetic shielding materials. The content provided would 
inspire contemporary design for the creation of relevant bio-
mass electromagnetic shielding materials and propose new 
possibilities for the design of green yet degradable biomass 
materials with excellent electromagnetic shielding properties 
that can be used in various industries such as construction, 
medical treatment, and clothing [104–106].

2  Mechanism of Electromagnetic Shielding

When a magnetic field changes, it causes an electric field to 
change. These fields oscillate vertically in the same direction 
and create electromagnetic waves (EMW) in the changing 
field [107, 108]. Unlike other types of wave propagation, 
EMWs transfer energy efficiently without a medium. The 
resulting electromagnetic radiation from EMWs has an 
irreversible impact on the surrounding environment. This 
effect is known as EMI. EMI shielding involves using spe-
cific materials to isolate EMWs and effectively control their 
transmission in a certain area. The shielding mechanism 
includes internal multiple reflections, reflection, and absorp-
tion (Fig. 4).

2.1  Shielding Effectiveness

EMI SE represents the primary indicator to evaluate the 
electromagnetic shielding effect of materials. The EMI SE 
principally relies on the internal multiple reflection loss, 
absorption loss and reflection loss of electromagnetic shield-
ing material.

EMI SE defines the ratio of the intensity of the incident 
electromagnetic field to the emitted electromagnetic field 
and is expressed by Eq. (1) [109–111]:
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where Pt denotes the transmitted EMW power, Pi is the inci-
dent EMW power, Hi represents the incident EMW magnetic 
field, Ht refers to the transmitted EMW magnetic field, Et 
denotes the transmitted EMW electric field and Ei is the 
incident EMW electric field.

According to Serkunov’s theory, the EMI SE can be 
defined in Eq. (2) [112]:

where SET is the total EMI shielding effectiveness, SER 
denotes the surface reflection, SEA represents the internal 
absorption and SEM refers to the multiple internal reflection.

Surface reflection (SER) is influenced by a mismatch 
among the intrinsic impedance of the EMI shielding mate-
rial and the free-space impedance. SER can be calculated 
by Eq. (3) [113–115]:

(1)SE = 10 log

(

Pi

Pt

)

= 20 log

(

Hi

Ht

)

= 20 log

(

Ei

Et

)

(2)SET = SER + SEA + SEM

where f is the frequency of the incident battery wave, σrel 
denotes the relative conductivity, and μrel refers to the rela-
tive permeability.

Multiple internal reflection (SEM) is caused by macro-
scopic multiple reflections within the two shielding layer 
interfaces. SEM can be obtained via Eq.  (4) as follows 
[116–119]:

When SET > 15 dB, SEM can be ignored [120].
Internal absorption (SEA) represents the attenuation of 

electromagnetic energy influenced by magnetic loss and 
dielectric loss in the EMI shield. The calculation is demon-
strated in Eq. (5) as follows [121, 122]:

where t denotes the thickness of the EMI shield.

2.2  Effect of Porous Structure of Biomass Materials 
on EMI Shielding Properties

Figure 5 demonstrates the electromagnetic shielding mecha-
nism of biomass materials. When an electromagnetic wave 
comes to the shielding material surface, a portion of the 
wave is reflected due to the mismatch between the imped-
ance of the travelling medium its inherent impedance, hence 
reducing the energy that passes through the interface. The 
remaining energy is absorbed by the shielding material and 
converted into heat, this further reducing the EMW. The 
remaining electromagnetic wave is gradually attenuated 

(3)SER = 168.2 + 10 log

(

�rel

f�rel

)

(4)SEM = 20 log
(

1 − 10
−

SEA

10

)

(5)SEA = 131.43t
√

f�rel�rel

Fig. 4  Electromagnetic shielding mechanism diagram of EMI shield-
ing material

Fig. 5  a Diagram of electromagnetic shielding mechanism of AgNW@MXene/Wood [125]. b Microwave attenuation mechanisms of Graphene/
lignin-derived carbon [126]
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through multiple reflections inside the shield, with only a 
small amount passing through the material [107, 123, 124]. 
The higher the conductivity and magnetic permeability 
of the shielding material, the better the shielding effect. 
In addition, high-frequency electromagnetic waves have a 
skin effect in conductive media, resulting in energy loss and 
reduced field amplitude, making it easier to shield. Over-
all, the microstructure of biomass materials can effectively 
shield EMI through the reconfiguration and scattering of 
EMWs. Adding conductive fillers to biomass materials, such 
as carbon fiber and graphene, will form a conductive mesh 
structure. Stacking different polymer composite layers can 
optimize impedance matching, improve absorption losses 
and multiple reflection attenuation, and thus enhance the 
shielding effect. Biomass materials such as crop straw can 
be converted into conductive carbon after high temperature 
carbonization, which can improve the EMI SE of compos-
ite materials. The porous structure of biomass materials 
combined with various reflection and absorption processes 
would block the majority of the electromagnetic waves pass-
ing through the material.

Figure 6 illustrates the factors that affect reflection, 
absorption, and multiple reflections in EMI shielding. By 
adding conductive fillers, stacking different composite lay-
ers and carbonization treatment, the biomass material has 
high magnetic conductivity. The composite material can 
selectively shield EMW in EMI shielding field. The EMI 
SE of hybrid polymer composites is influenced by several 
properties and factors, including the magnetic and electri-
cal properties of fillers, fibers, and polymer substrates, as 
well as the manufacturing methods and composite struc-
ture. Composites typically have a combined shielding 

mechanism of reflection and absorption at the interface, 
followed by absorption. As electromagnetic waves propa-
gate through the material, they scatter at scattering centers, 
interfaces, or defects, leading to electromagnetic radiation 
attenuation [127].

The EMWs inside the material decay due to a variety 
of mechanisms, mainly including dielectric and magnetic 
losses, which convert electromagnetic energy into heat. 
Dielectric loss is when EMWs pass through biomass mate-
rial, the atoms or molecules in the medium are vibrated by 
the electric field, reducing EMW propagation. Magnetic 
loss is the energy loss caused by the change in magnetic 
field energy during EMW propagation, which is converted 
into heat energy, thereby improving EMW absorption. 
In experiments, multilayer shielding structures are usu-
ally designed to achieve impedance matching. Interfacial 
polarization is the polarization charge induced at the mate-
rial interface due to uneven charge distribution, which will 
produce a dissipative effect under an alternating electric 
field. Moreover, Polarization loss is the energy loss caused 
by dielectric polarization under electric field action [128]. 
In experiments, multilayer shielding structures are usu-
ally designed to achieve impedance matching. Improved 
impedance matching can reduce the EMW reflection on 
the material surface so that the EMWs enter the material 
and are absorbed [129]. Through the application of these 
mechanisms, we can better prepare biomass composites 
with high significant EMI SE. For example, the overall 
absorption effect can be enhanced by designing multi-
layer structures that take advantage of the impedance and 
absorption characteristics of different materials.

Fig. 6  Factors affecting reflection, absorption and multiple reflection in EMI shielding
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3  Preparation and Characterization

There is a significant amount of literature on the EMI 
shielding properties of biomass materials. A summary of 
various biomass materials used for electromagnetic shield-
ing is available. The following section will describe the 
preparation and properties of biomass materials for EMI 
shielding.

3.1  Wood and Its Derivatives

Wood represents an environmentally friendly yet biode-
gradable material with a large specific surface area and 
rich layered porous structure [130, 131]. The presence 
of these pores improves the impedance matching perfor-
mance, improves the absorption efficiency of EMWs and 
facilitates multiple EMWs reflection in the pores. Besides, 
the wood surface also consists of abundant active hydroxyl 
groups, which provides an ideal environment for binding 
of inorganic particles [132–134].

3.1.1  MXene Compounding

MXene is a class of two-dimensional nanoscale transi-
tion metal carbides whose excellent metal conductivity, 
chemical stability, a high density of electron states and 
adjustable surface functional groups make them suitable 
for EMI shielding [135–138]. However, the poor mechani-
cal properties of MXene materials lead to oxidation and 
degradation in humid environments, which in turn limits 
their effectiveness in applications requiring electromag-
netic shielding [139–141].

Figure 7 depicts the fabrication process of MXene/wood 
composites and their electromagnetic shielding properties. 
Wei et al. applied MXene coating on both the tangential-
section and cross-section of wood. They discovered that 
the impedance matching of the tangential-section was 
higher than the cross-section. This disparity was due to 
the unique pore structure of wood and the presence of 
free radicals (Fig. 7a) [142]. In addition, Wei et al. pre-
pared MXene/wood composites by applying MXene on 
the wood surface and then coating it with self-crosslinking 
polyurethane-modified waterborne acrylic resin to achieve 
waterproof performance. Remarkably, the EMI SE of the 

composite reached 31.1 dB [143]. The study broadens 
the application prospects of MXene/wood composites 
and solves the problem of oxidization and degradation 
in oxidization and degradation in humid environments. 
The spraying method is an expandable preparation tech-
nique applied to poplar, pine, and lychee wood. The EMI 
shielding requirements can be achieved commercially after 
3–5 coats. Similarly, Cheng et al. employed UV-assisted 
chemical and mechanical spraying techniques to apply 
a coating of silver nanowires (AgNW) and MXene onto 
transparent wood. This process resulted in a sandwich 
composite material. They introduced structural shielding 
through a multilayer stacking method, leading to an EMI 
SE of 44 dB (Fig. 7b) [125]. In this case, the AgNW was 
sprayed on the MXene surface to enhance the electrical 
conductivity, and the ordered microtubule channel array of 
transparent wood induced multiple reflections of EMWs to 
enhance the EMI shielding performance [144].

Similarly, Jiang et al. prepared MXene/wood composites 
by immersing wood veneer boards with lignin removed by 
acid treatment into MXene suspension, which were hot-
pressed into alternating multilayer structures, resulting in 
significant EMI shielding capability with an EMI SE of 
32.7 dB (Fig. 7c) [145]. It is worth noting that as the MXene 
load increases, the EMI SE gradually increases. The EMI 
SE reaches its maximum when the load is 6.7 mg  cm−3. The 
experimental densification process enhances the flame retar-
dancy and mechanical stability of the material and produces 
a dense conductive network that contributes to the absorp-
tion and reflection of EMW [146]. The surface of MXene/
wood is noticeably smoother than natural wood, with MXene 
covering the narrow cracks. This MXene layer expedites 
electron transfer among neighboring MXene sheets, effec-
tively creating a continuous conductive path.

Wang et al. developed a simple top-down method to trans-
fer d-Ti3C2Tx nanosheets onto cellulose scaffolds using vac-
uum pressure-assisted impregnation to make densely layered 
d-Ti3C2Tx/cellulose scaffolds, which resulted in excellent 
mechanical and EMI shielding properties with an EMI SE 
of 39.3 dB [147]. The microstructure of d-Ti3C2Tx/wood 
composites prepared in this experiment has an ordered lami-
nar structure, which ensures the mechanical properties of the 
material and the reflection and absorption of battery waves. 
The pearly layered microstructure allows the remaining elec-
tromagnetic waves to combine with the high electron density 
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Fig. 7  a Preparation of highly anisotropic MXene@Wood composites and EMI shielding properties of cross sections [142]. b Illustration of the 
preparation process of WA-M/wood [125]. c Schematic diagram illustrating the fabrication for Flexible MXene/wood composite and EMI shield-
ing performance of composite [145]. d Preparation and characterization of the d-Ti3C2Tx/DW and EMI shielding performance of the d-Ti3C2Tx/
DW [147]
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MXene layer and multiple internal reflections in the wood, 
allowing energy dissipation and absorption of EMWs [147, 
148]. With the increase of impregnate time, the content of 
d-Ti3C2Tx was escalated, and the corresponding EMI SE was 
also enhanced. The maximum shielding efficiencies of the 
d-Ti3C2Tx/wood composites with diverse impregnate periods 
were higher than 99.95%.

MXene/wood composite methods are divided into two 
categories: impregnation method and spraying method. The 
primary objective of adding MXene to biomass materials is 
to create electric dipoles and interfacial polarization, thus 
affecting the propagation of EMWs. The EMI SE of the 
composites obtained is more than 30 dB, which meets the 
EMI shielding requirements of common industrial electronic 
instruments. The use of MXene composite offers a novel 
approach to creating electromagnetic shielding materials 
from biomass and opens up new possibilities for prepara-
tion methods. Research has demonstrated that MXene/wood 
composites can be tailored to meet specific property require-
ments, including mechanical strength, flame retardancy, 
flexibility, and transparency [149–151]. This advancement 
significantly broadens the potential applications of MXene/
wood composites in EMI shielding, making them appropri-
ate for application in extreme environments and presenting 
exciting opportunities for the future [152, 153].

The integration of MXene with wood is showing great 
promise for EMI shielding materials [154]. While MXene 
possesses remarkable conductivity and chemical stability, its 
poor mechanical properties in humid conditions pose a chal-
lenge. Various methods such as impregnation and spraying 
techniques, have been explored to address this limitation. 
The resulting MXene/wood composites have demonstrated 
significant EMI shielding capabilities exceeding 30 dB. 
These composites possess ordered microstructures that 
improve mechanical stability and EMI SE through electro-
magnetic wave reflection, absorption, and multiple internal 
reflections. Customizing MXene/wood composites may 
offer flexibility in meeting specific property requirements 
and expanding their potential applications across various 
industries [155].

3.1.2  Metal Compounding

Figure 8a–d shows the wood/metal composite preparation 
process and the EMI SE under different conditions. Pan 

et al. developed a composite material with highly effective 
EMI shielding properties by creating a sandwich structure 
on wood with a nickel-plated surface. The material demon-
strated an impressive absorption efficiency of 94.1 dB for 
EMI shielding which could be attributed to the synergistic 
impact of surface absorption loss and interfacial polariza-
tion loss [156]. When the coating is applied, the composite 
surface becomes smoother as it tightly integrates the Ni layer 
with the wood, resulting in a dense composite coating. This 
coating not only creates an effective conductive network but 
also enhances the hydrophobic properties of the composite 
material. Based on the loss mechanism, the Ni/wood com-
posites leverage interfacial polarization loss, conductivity 
loss, and magnetic loss to absorb incident EMW [46]. How-
ever, a relatively large Ni layer thickness is required for bet-
ter electromagnetic shielding properties. Therefore, it affects 
the degree of coating uniformity and manufacturing cost.

In addition, Pan et  al. used electroless Cu plating to 
deposit Cu particles on the surface of poplar pasteboards 
to prepare laminated laminar composites. These compos-
ites exhibit absorption-based and reflection-based shield-
ing mechanisms, providing an EMI SE of 96 dB and good 
hydrophobicity [157]. The multi-interfacial polarization 
within Cu and wood and the anisotropic internal porous 
structure of the wood matrix gives the prepared composites 
excellent EMI shielding properties [158]. As the duration 
of electroless Cu plating increases, the wood surface tex-
ture becomes smooth and the uneven pores are covered by 
metal particles, creating a consistent metal layer that forms 
a reliable conductive network. The presence of numerous 
interfaces between adjacent conductive networks such as air-
Cu, Cu-Cu, and Cu-wood, leads to the absorption of incident 
EMW through multiple reflections [50, 159]. Additionally, 
the difference in dielectric constants results in the accumu-
lation of free charge at the non-uniform interface boundary 
among metallic copper and wood, causing interfacial polari-
zation and the generation of macroscopic dipole moments 
and Debye relaxation. This ultimately leads to the attenua-
tion of EMW energy [160, 161].

Guo et al. conducted electroless Cu-Ni plating on wood 
surfaces. Firstly, Cu was deposited onto the wood, resulting 
in some Cu particles in the activation holes and on the wood 
surface. Subsequently, a Ni layer was applied to the Cu layer 
through electroless Ni plating, followed by the deposition 
of electroless Cu plating on the Ni layer. This process led 
to the creation of Cu-Ni multilayered composites with an 
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exceptional EMI SE of 93.8 dB. These composites exhib-
ited impressive EMI shielding properties, favorable surface 
roughness, hydrophobicity, and electrical conductivity 
[162]. The fine Cu particles can fill the porous structure and 
surface defects of the wood, promoting the formation of a 
uniform metal layer on the wood surface. At the same time, 
the uniform Cu layer provides an autocatalytic substrate 
for the Ni particles deposition. The Cu and Ni layers on 
the wood act synergistically for electromagnetic shielding 
due to the conductive networks and the specific interfacial 
polarization mechanism of the composite coating and pro-
mote the absorption of incident EMW via the polarization 
of the electric field [163]. Furthermore, Dai et al. prepared a 

Cu-Ni wood sandwich structure composite with an EMI SE 
of 57.4 dB by electroless copper-nickel plating. The compos-
ite formed a three-dimensional electromagnetic network and 
possessed an ideal microchannel structure with the copper-
nickel coating (Fig. 8) [164]. It was found that the Ni and 
Cu nanoparticles within the composites form a network that 
facilitates electron movement, thus decreasing resistivity. 
The multiple non-uniform interfaces within the Cu, Ni, and 
wood and Ni layers and air also contribute to interfacial 
polarization [46].

Electroless plating is the primary method for laminating 
metal particles with wood, leveraging the abundant pores of 
wood to infuse metal particles and create a uniform metal 

Fig. 8  Sandwich-structured Cu-Ni wood-based composites. a Preparation of Cu-Ni wood-based composites; b Electromagnetic parameters, 
magnetic loss tangent and dielectric loss tangent of each sample; c EMI shielding properties of sandwich-structured Cu-Ni wood-based compos-
ites; d Schematic illustration of absorption mechanism of Cu-Ni wood-based composites [164]
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layer on the surface. Copper (Cu) and nickel (Ni) are com-
monly used metal particles. The integration of metal parti-
cles into biomass materials significantly enhances magnetic 
loss and EMW absorption capabilities while also improving 
electrical conductivity, impedance matching, and interface 
polarization within the composite [165]. The combination of 
wood-metal complexes with their porous wood structure and 
interfacial polarization facilitated by the metal layer exceeds 
commercial EMI shielding requirements with over 90 dB. 
This exceptional shielding effectiveness not only meets but 
surpasses the strict demands of sensitive instruments for 

EMI shielding, representing a significant advancement in 
the field.

3.1.3  Polymer Compounding

Figure  9 shows the polymer/wood composite prepara-
tion process and their respective EMI SE. Karteri et al. 
utilized camphor pine wood chips, polyethylene (PE) and 
graphene nanoparticles to make microspheres through a 
twin-screw extruder and thermally pressed them to produce 

Fig. 9  a Scheme for preparing PEDOT/wood and EMI shielding performance of composite [167]; b Preparation process of PANI-WA aerogel 
and wood and EMI shielding performance of composite [168]
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wood-polyvinyl chloride/graphene nanoflake nanocompos-
ites with EMI SE of more than 25 dB [166]. This study dem-
onstrates that a higher graphene content in the composite 
material reduces EMW penetration and enhances shielding 
efficiency. Specifically, the composite containing 9 wt% gra-
phene exhibits superior EMI shielding performance, with a 
higher EMW absorption than reflection. This indicates that 
the material functions as an absorption-based EMI shielding 
material. In addition, Chen et al. used an in-situ polymeriza-
tion method to eliminate lignin from wood by chlorination. 
Then, the monomers were coated on the carbohydrate frame-
work of the delignified wood surface for in-situ polymeriza-
tion to produce a polythiophene (PT)/wood composite with 
an EMI SE of 46 dB (Fig. 9a) [167]. The conductive network 
formed by PT in wood constitutes a continuous current path-
way and the conductivity of the composite increases with 
increasing the mass fraction of thiophene. The shielding 
effect of its composites is mainly absorption, accounting for 
80% of the total shielding effectiveness [158]. Additionally, 
the material has significantly enhanced mechanical proper-
ties, including a compressive strength of 50.9 MPa and a 
tensile strength of 67.8 MPa.

Additionally, Chen et al. have formed a non-carbonized 
nanostructured polyaniline (PANI)/wood composite with 
a 2–3 mm thickness, achieving an impressive EMI SE of 
27.63 dB (Fig. 9b) [168]. PANI has an exclusive doping/de-
doping and REDOX chemical structure that allows it to tran-
sition between insulating and conducting states and attach 
or detach various anionic groups [169]. This unique prop-
erty can be harnessed to make wood electrically conduc-
tive. Delignified wood was coated with polypyrrole (PPy) 
via an in situ chemical vapor deposition as reported by Gan 
et al. The resulting product exhibited a tensile strength of 
20.18 MPa and an EMI SE of 21–28 dB. However, the pre-
pared composite has a low mechanical strength and a large 
thickness, which greatly limits its applicability.

Currently, the predominant method for fabricating 
wood-plastic electromagnetic shielding composites is 
in-situ polymerization. The resulting composites rely on 
electromagnetic wave absorption to achieve effective elec-
tromagnetic shielding performance. This is achieved by 
adjusting the dielectric properties of the polymer to ensure 
favorable impedance matching with air. Furthermore, the 
incorporation of conductive fillers facilitates the conduc-
tive network formation, thereby enhancing the EMI shield-
ing performance of the material. This approach allows 

efficient reflection and absorption of EMW, consequently 
reducing their penetration. However, challenges like low 
mechanical strength and substantial thickness impose limi-
tations on its practical application.

3.1.4  Modified Adhesive

Figure 10a shows the principle that plywood can be used for 
electromagnetic shielding. Ma et al. found that by construct-
ing microporous structure and isolation structure simultane-
ously, the material can have excellent EMI shielding per-
formance based on absorption [170]. Xu et al. combined 
antibacterial agent quaternary ammonium salted hyper-
branched polyamide (QHBPA) with graphene nanosheets 
(GNSs) to obtain G-co-Q hybrid [171]. The organic and 
inorganic hybrid plywood adhesive was prepared by elec-
trostatic interaction and hydrogen bonding with soybean pro-
tein isolate (SPI) and phytic acid (PA). It not only shows the 
electromagnetic shielding performance of 43 dB, but also 
has good flame retardancy and mold resistance. A conduc-
tive layer isolated from each other is formed in the plywood 
through the adhesive, and the thickness of the conductive 
layer can be controlled by adjusting the thickness of the 
veneer to achieve better EMI SE. Among them, GNS is the 
main reason for its EMI shielding performance. Adjusting 
the concentration of G-co-Q hybrid ensures the mechani-
cal strength and electromagnetic shielding performance of 
the plywood, among which, the adhesive containing 7.5% 
concentration of G-co-Q hybrid has the best performance 
(Fig. 10b). Similarly, Zhang et al. used dichloromethane, 
methacrylate anhydride (MA) to modify SPI, and grafted 
pyrrole (PY) and dopamine hydrochloride (DOPA) on SPI 
[172]. Ag NPs is generated locally in the adhesive and com-
bined with self-synthesized biological crosslinkers to form 
hybrid adhesives. Among them, the addition of conductive 
polymer is the main reason for electromagnetic shielding, 
when adding 20 wt% PY adhesive, its conductivity can reach 
7.09 S  cm−1, SET is 24.05 dB (Fig. 10c).

There is little research on adhesives that can be used in 
EMI shielding field. It is mainly the addition of highly con-
ductive polymers to improve the conductivity, so as to meet 
the commercial requirements of EMI shielding. At present, 
further exploration of adhesives is still needed to provide 
better help for plywood in the field of EMI shielding.
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Fig. 10  a Principle of plywood for electromagnetic shielding [171]. b Preparation of organic–inorganic hybrid structures in protein adhesives 
and EMI shielding properties [171]. c Schematic diagram of preparation of strong conductive soybean protein adhesive [172]
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3.2  Cellulose and Its Derivatives

Cellulose represents the most widely distributed and the 
largest reserves of natural polymer materials [173–176]. 
Cellulose has the advantages of being easily functionalized 
[177–182], exceptional biocompatibility, environmental 
friendliness, renewability, and biodegradability [183–185]. 
It can be easily processed in aqueous solutions, making it a 
highly versatile and sustainable material with broad applica-
tions in various industries [186–192].

Figure 10 shows the preparation process of cellulose 
composites and the effects of different concentrations on 
EMI SE. Li et al. prepared lightweight EMI shielding cel-
lulose foam/carbon fiber composite material with SE of 
60 dB by freeze-drying method [193]. The orientation of 
fibrous packing within the cell wall of bubbles is influ-
enced by the significant tensile flow that occurs during the 
growth of the bubble. This flow promotes fiber enrichment 
and alignment, resulting in a tightly packed foam compos-
ite. As the volume expands, the distance between adjacent 
fibers increases. The short carbon fibers are positioned 
in the cellulose layer between the bubbles while the long 
carbon fibers can penetrate the bubbles, thus enhancing 
their electrical conductivity. Moreover, Lee et al. prepared 
a layered silver nanowire (AgNW) coated cellulose paper 
with an EMI SE of 48.6 dB via dip plating (Fig. 11a) 
[194, 195]. The cellulose fibers in AgNW/cellulose paper 
are randomly and uniformly coated with interconnected 
AgNWs. The cellulose paper interior contains AgNWs, 
forming a continuous conductive network [196]. The 
exceptional electrical conductivity of AgNWs contrib-
utes to the conductive network formation within cellulose 
paper. As a result, the composite material demonstrates 
excellent electromagnetic shielding capabilities [197]. Zhu 
et al. impregnated AgNWs into a highly arranged cellu-
lose scaffold to produce a maximum tensile strength of 
511.8 MPa, and an EMI SE of 46 dB [198]. The hydrogen 
bond between cellulose fibres and AgNWs creates a con-
tinuous conductive pathway within the CS microchannel. 
Through hot-pressing densification, nanofiber alignment 
is improved, and a more tightly packed conductive net-
work is formed. As a result, this increases dielectric and 
reflection loss, ultimately enhancing EMI shielding per-
formance (Fig. 11b). Similarly, Xu successfully prepared 
an efficient EMI shielding film by self-polymerization on 
CNFs through oxidation of dopamine (DA) and chemical 

deposition of silver nanoparticles (AgNPs) on CNFs by 
pressure extrusion process. The resulting composite film 
has a tightly connected conductive network, which sig-
nificantly improves the overall conductivity of the EMI 
shielding film and makes its EMI SE reach 93.8 dB [199].

In addition, Cui et al. created a lightweight composite 
membrane by combining MXene and CNF using freeze-
drying and vacuum filtration techniques. The resulting 
membrane exhibited excellent mechanical properties, high 
electrical conductivity, and a highly porous structure, with 
an EMI SE of 53.7 dB [200]. The CNF was linked with 
MXene nanosheets through hydrogen bonding, creating a 
continuous conductive network structure and enhancing the 
mechanical properties of the composite film [201, 202]. The 
MXene/CNF composite film demonstrated high conductivity 
and abundant free charges on its surface, which effectively 
reflected most of EMW on its surface. As EMW entered the 
film, it interacted with the high-density charge in MXene 
while passing through its lattice structure, resulting in ohmic 
loss and a significant reduction in EMW energy. The porous 
structure of the composite film expedites multiple reflections 
of EMW, thereby promoting rapid absorption and attenu-
ation of EMW [203, 204]. Similarly, Zhou et al. achieved 
an EMI SE of 60 dB by coating MXene on BC nanofiber 
film using repeated spraying and subsequently resulting in 
a dense layered nanocellulose film (Fig. 11c) [205]. Using 
chitin and aramid pulp as raw materials, Zhang et al. pre-
pared chitin cross-linked aramid nanofibers (CANFs) by a 
room temperature synchronous deprotonation-protonation 
method, and combined with cross-linked chitin to prepare 
nanocellulose aerogel (CA). Finally, it was soaked in MXene 
suspension under vacuum to obtain a uniform porous struc-
ture. CA-M aerogel with low thermal conductivity (0.01 W 
 m−1  K−1) and high EMI SE (75 dB) [206].

Overall, cellulose-based materials for electromagnetic 
shielding are primarily produced using freeze-drying and 
dipping methods, resulting in composites with impressive 
electromagnetic shielding performance. The inherent inter-
facial polarization in cellulose-based materials enhances 
EMW loss while the addition of conductive fillers helps the 
charge distribution and enhances dielectric loss. Addition-
ally, the natural porosity and abundance of hydroxyl groups 
in cellulose give it strong electrical conductivity, facilitating 
multiple internal reflections of EMW and improving EMI 
shielding performance [207]. Through hydrogen bond-
ing, these materials can also achieve excellent mechanical 
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Fig. 11  a Schematic illustration of the creation process of the composite foams, the foam structure, and EMI shielding performance of com-
posite [194]; b Preparation and EMI shielding properties of silver nanowire/aligned cellulose scaffold composite [198]; c Synthesis of  Ti3C2 
MXene/nanocellulose composite films [205]
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properties and a continuous conductive network structure, 
rendering them appropriate for a wider utilization.

3.3  Lignin and Its Derivatives

Lignin is a green and renewable biomass material known for 
its degradability, stability, and low costs [208, 209]. Lignin 
possesses a porous structure and a complex carbon skeleton 
structure with numerous benzene rings that contribute to 
its EMI shielding performance [210, 211]. Additionally, its 
porous surface is abundant with active sites and functional 
groups such as free hydroxyl and carboxyl [212], hence 
allowing it to undergo various chemical reactions with other 
materials [213–216]. These exceptional chemical proper-
ties make lignin an encouraging option for EMI shielding 
applications.

Figure 12 illustrates the preparation process of lignin 
composites and the effect of different concentrations on EMI 
SE. Zhang et al. used an in-situ insertion method to synthe-
size lignin-based polyurethanes from graphite, hexamethyl-
ene diisocyanate, polyethylene glycol and modified reduced 
iron powder with lignin. The composite material with 10% 
iron and graphite content plus 20% lignin content achieved 
an EMI SE of 22.5 dB [217]. This material exhibits excel-
lent electromagnetic shielding properties, strong mechanical 
properties, and high thermal stability. It was found that the 
presence of the phenyl group in lignin creates an opposing 
magnetic field that shifts and shields the EMW. Additionally, 
the material can form π bonds with the graphite to enhance 
the uniform distribution of graphite in the matrix, thereby 
improving the shielding effectiveness. Then, the evenly dis-
tributed iron, graphite, and polyurethane matrix also inter-
act strongly to yield a synergistic effect. However, higher 
iron and graphite content led to reduced tensile and frac-
ture strength, as well as a rougher surface which negatively 
impacted the filler-matrix interface [218].

Hu et al. synthesized lignin-based polyurethane by in-situ 
synthesis of modified  Fe3O4, modified CNT, polyethylene 
glycol and hexamethylene diisocyanate. When the composite 
contains 10%  Fe3O4, 10% CNTs, and 15% lignin, it exhibits 
an EMI SE of 37.51 dB [210]. The presence of  Fe3O4 facili-
tates electron hopping and results in high electrical conduc-
tivity in composites. Moreover, the composites demonstrate 
magnetic loss properties, abundant interfacial polarization, 
and a well-assembled conductive carbon nanotube network, 

facilitating efficient absorption, scattering, and reflection of 
incident radiation. The inclusion of lignin molecules induces 
a three-dimensional network structure formation with CNTs 
and  Fe3O4, thereby extending EMW propagation and creat-
ing multiple reflection paths within the composites [219]. 
Additionally, the uniform distribution of CNTs and  Fe3O4 
within the polyurethane matrix forms an excellent conduc-
tive network, further enhancing electromagnetic shielding 
effectiveness. Overall, the combined effect of  Fe3O4, CNTs, 
and lignin significantly enhances the EMI shielding perfor-
mance of the composite.

Besides, Zhang et al. employed the freeze-drying tech-
nique to create a sandwich structure composite with a lignin-
based epoxy acrylic ester. The freeze-drying method was 
used to obtain an intermediate layer by the in-situ reaction of 
lignin, epoxy resin, acrylic ester, modified  Fe3O4 nanoparti-
cles, and multi-walled CNTs. A 0.5 mm lignin-based epoxy 
acrylic ester coating was applied on both sides to produce 
the composite. Notably, when the  Fe3O4 and multi-walled 
CNT content was at 5% and lignin at 15%, the composite 
demonstrated an EMI SE of 14.8 dB (Fig. 12a) [220]. The 
interaction between the benzene rings in lignin and the 
CNTs facilitates a uniform distribution of CNTs, forming 
an effective conductive network and improving electromag-
netic wave reflection.

In addition, Zeng et al. employed a simple freeze-drying 
method to prepare a 2 mm thick composite aerogel made of 
lignin-derived carbon (LDC) and RGO. This aerogel demon-
strated an EMI SE of 49.2 dB, featuring three-dimensional, 
micrometer-sized pores and unidirectional cell walls [126]. 
The molecular properties of lignin result in an interaction 
with GO that further leads to RGO/LDC aerogels with 
thinner, larger, and more cell walls. As a result of tightly 
packed cell walls, it possesses a larger effective reflective 
surface area and improves its multiple reflective properties 
(Fig. 12b). Overall, the combination of numerous reflec-
tion effects, high absorption capacity of the cell wall, and 
a significant number of carrier-induced electrical losses in 
the cell wall results in the RGO/LDC aerogels with excel-
lent EMI SE at ultra-low density [221, 222]. Besides, Liu 
et al. incorporated fireproof polypropylene into lignin and 
combined it with MXene to create functional lignin nanopar-
ticles. This composite material exhibits excellent fire resist-
ance, superior electromagnetic shielding capabilities, and 
aging resistance (Fig. 12c) [223].
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Currently, lignin processing methods are relatively simple 
and usually involve freeze-drying or in-situ polymerization. 
Electromagnetic shielding materials typically use  Fe3O4, Fe, 
and CNT as fillers. By leveraging the porous structure and ben-
zene skeleton of the lignin,  Fe3O4 can regulate electron move-
ment while CNT forms an effective conductive network. The 
combined effects of these components significantly enhance 
the EMI SE of the composite [218, 224].

3.4  Bamboo and Its Derivatives

Bamboo represents a green and renewable biomass mate-
rial with abundant resources, lightweight, easy to process, 
low cost, short growth cycle and biodegradable [225–227]. 
Bamboo is composed of bamboo skin, interior and pulp, in 
which its structural composition may affect the conductivity 
of different parts [228].

Fig. 12  a Preparation process of FCLBEA shielding material and EMI shielding performance of composite [220]. b Fabrication process of 
RGO/LDC aerogels and EMI shielding performance of RGO/LDC aerogels [126]. c Preparation of multifunctional lignin nanoparticles and their 
composite structures and electromagnetic shielding properties [223]
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Figure  13 shows the preparation process of bamboo 
composite materials and the influence of various propor-
tions of concentrations on EMI SE. Zhang et al. performed 

electroless Ni–Fe-P plating on bamboo fiber as the reinforce-
ment phase. Then, the metallized bamboo fiber was incorpo-
rated into polylactic acid (PLA), followed by hot pressing. 

Fig. 13  a Fabrication process of MBF/PLA composite and EMI shielding performance of MBF/PLA composite [229]; b Process and principle 
of nickel activation and surface resistivity of bamboo outer peel, bamboo inner peel, and bamboo pulp [233]; c Preparation of transparent build-
ing bamboo and its mechanical properties and EMI shielding properties [235]
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This resulted in the creation of a metallized bamboo fiber 
(MBF)/PLA bamboo matrix composite with an EMI SE of 
45 dB (Fig. 13a) [229]. The PLA material effectively inte-
grates with the metallized bamboo fiber (MBF) by form-
ing a strong and compatible interface. As the filler content 
increases, the metal particles distribution on the bamboo 
becomes more uniform, and the conductive network is 
improved [230]. The overlapping of MBF within the PLA 
matrix creates a three-dimensional conductive network 
that enhances the scattering and electromagnetic losses of 
the MBF/PLA composite [231, 232]. The use of a higher 
bamboo fiber (BF) content results in more contact points 
between the fibers, leading to increased conductive paths 
and a complete conductive network. Additionally, the metal 
coating enhances the mechanical strength and thermal stabil-
ity of the bamboo-based composite.

Zhang et al. coated bamboo with electroless Ni–Fe-P plat-
ing [233]. The metal particles are uniformly distributed on 
the bamboo surface and continuously form a dense conduc-
tive network to obtain a uniform and dense metal coating 
with the crystal structure. For the first time, they studied the 
difference in the surface conductivity of coated bamboo. The 
results revealed that bamboo shrinkage rates varied based on 
vascular bundle density. The adhesion of the metal coating 
to the bamboo skin was weak, which affected the conductive 
pathway continuity. Conversely, the metal coating on the 
bamboo pulp was uniform and dense [92, 234]. The different 
parts exhibit varying electrical conductivity, with the edge 
demonstrating higher conductivity than the middle part. This 
is attributed to the infiltration of metal elements in both the 
longitudinal and transverse planes (Fig. 13b).

In addition, Wang et al. prepared bamboo-derived carbon 
(BC) scaffolds with aligned microchannels, layered gra-
dient and anisotropic as shielding materials by pyrolysis, 
with an EMI SE of 81.52 dB [195]. BC possesses numerous 
honeycomb pores, which are highly effective for absorbing 
and shielding EMW. The electrical conductivity of BC is 
affected by the annealing temperature. As the annealing 
temperature rises, the outer sheath of BC vascular bundles 
becomes denser and smoother, leading to increased contrac-
tion of vascular bundles and parenchyma, plus a decrease in 
the cell gap. This results in a reduction in disordered carbon 
and promotes more uniform grain growth and grain orienta-
tion. The abundant ionic motion in BC induces polarization, 
while the introduction of metal particles enhances electrical 

conductivity. It was observed that treating BC with lignin 
increases the number of porous cracks on its surface. A 
crack-rich surface, gradient porous interior, and excellent 
conductivity facilitate superior EMW dissipation through 
multiple internal reflections, relaxation loss, and conductiv-
ity loss. Notably, Wang et al. modified bamboo by impreg-
nating UV resin onto the fiber skeleton. This results in a 
building material with 60% light transmissivity, exceptional 
mechanical properties, and an EMI SE of 46.3 dB (Fig. 13c) 
[235].

In summary, electroless plating is primarily utilized in 
producing bamboo-based materials for electromagnetic 
shielding. This process capitalizes on the physiological 
properties of bamboo, resulting in anisotropy and varied 
conductivity. Bamboo-based composites are characterized 
by a rich cracked surface, porous interior, and dense conduc-
tive network. They also exhibit enhanced electromagnetic 
wave reflection, thereby achieving superior electromagnetic 
shielding performance [236].

3.5  Other Biomass Materials

Figure 14 shows the preparation process the composite 
materials and their respective EMI SE. Textile and fabrics 
have been used to prepare EMI shielding materials [237] 
and other electronics [238–242]. For example, Wang et al. 
used a hydrothermal reaction to remove lignin from sug-
arcane and annealed sugarcane (Fig. 14a). The sugarcane/
graphene oxide (GO) hybrid foam was obtained by dipping 
the treated sugarcane into the GO suspension and filling 
the GO with vacuum-assisted impregnation. The EMI SE 
of the composite reached 53 dB when the GO content was 
17 wt% [243]. The GO was found to be connected to sug-
arcane through hydrogen bonding and π-π bonding interac-
tions to facilitate electron transfer. Sugarcane cell walls were 
grafted with many GO nanosheets to enhance the connec-
tion within neighboring cell walls and form more conductive 
pathways. The GO nanosheets were in a closer contact with 
the increase of GO loading and exhibited stronger electron 
transport ability. The composite material retains the natural 
porous structure of sugarcane where its porous structure and 
rich interfaces reflect and absorb a large amount of EMW, 
thus improving its EMI shielding performance.
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In addition, Peng et al. used Ni as a catalyst to carbonize 
cotton at 900 °C to produce a textile with an EMI SE of 
107 dB [244]. The high degree of graphitization of Ni-
treated textiles produced the carbon with a high crystal-
lization degree and a perfect six-membered grid structure, 
facilitating electron transfer. Ni-treated fabrics with inter-
woven conductive networks promote the conduction loss 
in which the dipole polarization is caused by local dipoles 
on the surface defects of carbon fiber and the end func-
tional groups of affinity agents. The interface polarization 
is improved with the uniform distribution of Ni particles. 
Magnetic Ni provides excellent magnetic loss for textiles 
through eddy current loss, exchange resonance and natural 
resonance [245]. Multiple EMW scattering and reflections 
occurred in multilayer micro-structures and nano-struc-
tures. These characteristics give nickel-treated textiles 
excellent electromagnetic shielding properties (Fig. 14b).

Wheat straw has attracted interests [246, 247]. Ma et al. 
utilized wheat straw to create a structured assembly after 
carbonization (Fig. 14c). They incorporated ultra-light gra-
phene aerogel into the hollow part of the assembly, resulting 
in the development of a new electromagnetic shielding mate-
rial derived from straw. This material exhibits low density 
and an impressive EMI SE of 66.1 dB [102]. The orderly 
porous structure of the material allows for multiple EMW 
reflections within the layers, thereby enhancing its ability to 
absorb microwaves and ultimately improving its EMI shield-
ing performance.

Existing studies highlight various approaches to fabri-
cate composite materials with significant EMI SE. These 
methods include utilizing Ni catalysts for carbonization, 
KOH-activated straw carbon, integrating graphene aerogel 
into wheat straw, and forming sugarcane/GO hybrid foam. 
Each technique capitalizes on unique material properties 

Fig. 14  a Fabrication process of ASC/RGO and EMI shielding performance of ASC/RGO composite [243]; b Schematic showing the fabrica-
tion process of Ni-decorated textile and EMI shielding performance of Ni-decorated textile [244]; c EMI shielding mechanism of straw-derived 
carbon and EMI shielding properties after modification [102]
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such as a high graphitization degree, porous structures, 
interconnected pathways, and bonding interactions to 
optimize electron transfer and enhance EMW absorption. 
The results emphasize the potential of tailored composite 
materials to effectively mitigate EMI, thus offering prom-
ising solutions across diverse applications [248]. How-
ever, cotton straw usually has a high porosity, and its high 
porosity leads to the leakage of EMWs. Cotton and hemp 
straw has a large volume, which may affect its use in appli-
cations with strict volume requirements such as portable 
devices. When used in combination with other materials or 
technologies, cotton and hemp straw still have compatibil-
ity issues and requires specific treatment or formulation to 
ensure shielding effectiveness.

4  Electromagnetic Shielding Performance 
and Application of Biomass Composite 
Materials

MXene/biomass composite materials exhibit impressive 
mechanical properties, exceptional flame retardancy, and 
strong electromagnetic shielding capabilities (Table 1). 
Furthermore, coating treatments can enhance their water 
and corrosion resistance, making them suitable for use in 
various challenging environments. These versatile com-
posites find applications in communication, electronics, 
and residential (Fig. 15a–d). A metal layer is applied to 
their surfaces through complexation involving metal par-
ticles and biomass materials to create a dense conductive 

Table 1  Conductivity, electromagnetic shielding properties and tensile properties of MXene/Biomass composite materials

MXene/Biomass Tensile strength (MPa) EMI SE (dB) Conductivity (S  m−1) Reference

AgNW@MXene/ South American balsa 
wood

47.8 44.9 [125]

MXene/Cellulose Nanofiber 65.0 53.7 24,875 [200]
WA@MXene/Poplar wood 31.1 [143]
MXene/Balsa wood 68.1 32.7 1858 [145]
MXene/wood-derived hierarchical cellulose 

scaffold
39.3 6333 [147]

Fig. 15  Application of biomass EMI shielding materials in construction, furniture and clothing [145, 229, 244]
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network. This results in significantly improved conductiv-
ity and electromagnetic shielding properties, which can be 
attributed to the abundant interfaces and porosity within 
the composite.

The metal/biomass material is combined to create a consist-
ent metal layer on the surface with a dense conductive network 
[249]. This composite significantly improves conductivity 
and electromagnetic shielding properties due to its numerous 
interfaces and porosity (Table 2). The high hydrophobicity of 
the metal layer in the wood-based composite electromagnetic 
shielding material allows the multilayer composite to exhibit 
excellent hydrophobicity, making it suitable for humid envi-
ronments. While bamboo-based composites shield slightly 
less than wood-based composites, they still meet industrial 
electronic instruments shielding requirements. Considering 
the unique arrangement of microchannels and superior con-
ductivity of bamboo-based composites, they are well suited to 
energy storage, conversion, and multifunctional electromag-
netic shielding [250]. In short, lignin-based composites are 
known for their favourable mechanical properties and heat 
stability, making them a popular option for various military 
and civilian applications.

Polymer/biomass materials are known for their relatively 
thin profile compared to other composites while exhibiting 
excellent mechanical and conductive properties (Table 3) 
[84]. These materials possess strong electromagnetic shield-
ing properties that meet commercial use standards. They are 
frequently utilized in various applications, like electronics, 
military and civilian fields, robotics, communications, avia-
tion, defense, scalable packaging, and construction materials 
[17, 251, 252].

5  Challenges and Prospects

Significant advancements have been achieved in biomass 
electromagnetic shielding composites in recent years. The 
growing interest in sustainable EMI shielding composites 
is attributed to their exceptional properties. However, a 
dearth of literature on biomass composites for EMI shielding 
impedes their further advancement. Owing to their remark-
able hydrophobicity, flame retardancy and EMI shielding 
characteristics, these composite materials find potential 
applications in construction and furniture [253–256], aero-
space [257], challenging environments [258, 259], and mul-
tifunctional EMI shielding [260, 261].

Biomass materials can improve their heat resistance 
through specific treatment and modification, and then main-
tain a good electromagnetic shielding effect in high tem-
perature environment. The current research landscape in 
wood gilding predominantly revolves around an electroless 
nickel or copper plating on wood, with limited exploration 
of other metals and biomass materials. The EMI shield-
ing and mechanical properties of biomass composites can 
be enhanced by combining various metals with biomass 
materials such as silver, aluminum, and iron. In addition, 
it has a certain impact on the flame-retardant performance 
of wood, such as adding iron particles, which can catalyze 
the formation of carbon layers in the combustion process of 
wood and slow down the combustion inside the wood. Some 
metal particles may also form a protective layer of metal 
oxide on the surface of the wood to achieve flame retardant 
effect. The existing methods for synthesizing wood com-
posites are complex and time-consuming. Furthermore, the 
poor interfacial compatibility of wood with other materials 
coupled with its inherent defects including anisotropic and 
inhomogeneous characteristics, wet swelling, dry shrinkage, 

Table 2  Hydrophobicity, electromagnetic shielding properties and 
conductivity of composite materials

Metal/Bio-
mass

Hydropho-
bicity

EMI SE 
(dB)

Conductiv-
ity (S  m−1)

Reference

Ni/wood/Ni 118.3° 94.1 16.60 [156]
Ni/Cu/wood 123.0° 93.8 29.54 [162]
Ni/wood-

derived 
porous 
carbon

34.1 9.25 [46]

PLA/MBF 45.0 0.21 [229]
Fe3O4/Fe/BC 95.6 1238.93 [195]
Ni–Fe–P/ 

bamboo
119.1° 55.0 4600 [233]

Table 3  The conductivity, electromagnetic shielding properties and 
tensile properties of Polymer/Biomass composite materials

Polymer/
Biomass

Tensile 
strength 
(MPa)

EMI SE 
(dB)

Conductiv-
ity (S  m−1)

Reference

PEDOT/
wood

68.7 46.2 112.8 [167]

PANI/wood 27.6 22.07 [168]
CNT/PU/

lignin
7.25 37.5 0.48 [212]

G/PU/lignin 11.7 22.5 0.01 [217]
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and susceptibility to corrosion, could significantly impact 
electromagnetic shielding performance [168, 262]. As such, 
prospective research endeavors could commence with chem-
ical modification and surface treatment of wood to obtain 
a uniform surface coating and a dense conductive network 
(Fig. 16).

Most treatment methods for cellulose materials are 
focused on surface treatment or modification, with a par-
ticular attention to the impact of three-dimensional pores on 
electromagnetic shielding. The resulting composite exhibits 
favorable mechanical properties and lightweight character-
istics and significantly surpasses commercial requirements 
for EMI SE. However, limited research has been conducted 
on its waterproofing, heat resistance, and mildew resistance 
properties. This makes it impossible to use in wearable, port-
able designs. Cellulose materials can be used to construct 
multifunctional EMI shielding materials with flame retar-
dancy by in-situ polymerization and coating technology. 
In addition, by combining with other nano-fillers, such as 
metal nanoparticles, not only the EMI SE can be improved, 
but also the flame retardant performance can be enhanced. 
The flame retardant properties of cellulose-based materi-
als can improve the safety of electromagnetic shielding 
materials, especially in environments with dense electronic 

devices and high power applications. Moreover, it can have 
a wider application potential in aerospace, military equip-
ment, electronic products and other fields with high safety 
requirements. Future developments in cellulose materials 
should prioritize performance optimization to ensure reliable 
functionality under challenging environmental conditions.

Lignin-based composites may exhibit diminished mechan-
ical properties in terms of elongation at break and reduced 
tensile strength, which could be attributed to metallic ele-
ments and graphite. Consequently, the EMI SE of these 
composites is inferior to that of their wood-based counter-
parts, with some failing to meet commercialization stand-
ards. In order to enhance their electromagnetic shielding 
performance, the composites have been augmented with 
fillers such as  Fe3O4, Fe, G, and CNT. Optimal electromag-
netic shielding could be achieved by adjusting the lignin, 
iron powder, and graphite ratios. Nonetheless, these studies 
overlooked flame retardancy, hydrophobicity, and mildew 
resistance [212]. In order to overcome these constraints, 
forthcoming research endeavors should prioritize enhance-
ments in the mechanical properties of composites, the chem-
ical modification of lignin to instill advantageous chemical 
attributes, and the expansion of potential applications for 
lignin-based composites.

The heterogeneous physiological structure of bamboo 
results in varying coating thickness across its parts, lead-
ing to differences in resistivity and shielding effectiveness 
[263]. For future research endeavors, it is recommended that 
bamboo undergoes pretreatment to mitigate the influence of 
its structure on its functionality. This may involve acid treat-
ment, alkali treatment, and physical modification to improve 
the mechanical and physical properties of bamboo, enhance 
dimensional stability, and augment its compatibility with the 
polymer matrix [264, 265].

In addition, future research in biomass composites should 
be on developing multifunctional biomass EMI shielding 
composites that can be effectively utilized in practical appli-
cations. It is essential that these composites not only exhibit 
outstanding electromagnetic shielding properties but also 
demonstrate remarkable environmental adaptability, includ-
ing weather resistance, Flame retardancy, corrosion resist-
ance, and waterproof properties. There is still significant 
potential for innovation and advancement in the research of 
biomass EMI shielding composites, particularly in enhanc-
ing electromagnetic shielding materials to be lightweight 
and thin, while possessing multifunctional attributes.

Fig. 16  Composite direction, properties, characteristics and applica-
tions of biomass EMI shielding materials in the future [229]
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6  Conclusions

The increasing prevalence of electromagnetic pollution 
posits a considerable intimidation to information security, 
ecosystems and human health. As environmental conscious-
ness grows, and resources are increasingly depleted, tradi-
tional electromagnetic shielding materials have revealed 
their inherent limitations in research and production. Con-
sequently, the development of environmentally friendly and 
sustainable EMI shielding materials is crucial for safeguard-
ing electronic equipment, preventing information leakage, 
and protecting public health.

This paper summarizes recent developments in biomass 
EMI shielding composites, including the underlying mecha-
nisms of EMI shielding, the applications of various types of 
biomass EMI shielding materials, and the preparation meth-
ods for biomass EMI shielding composites such as coating, 
impregnation, in-situ polymerization, in-situ insertion, and 
chemical plating. Mainstream processing methods namely 
MXene composite and chemical plating, have been instru-
mental in enhancing the shielding performance, mechanical 
properties, and flame retardant capabilities of these com-
posites. Additionally, modifications to biomass materials 
have induced desirable properties such as transparency, 
waterproofing, and mildew resistance, thereby expanding 
the potential applications of biomass materials in electro-
magnetic shielding. Despite these advancements, research 
on biomass EMI shielding composite materials remains rela-
tively limited compared to other materials. Several unre-
solved issues persist involving inherent defects in biomass 
materials, anisotropy, varying electrical conductivities in 
different parts, corrosiveness, single functionality, and the 
non-waterproof nature of biomass materials.

1. Diversity of materials Biomass materials are limited 
for EMI shielding, with wood being the primary raw 
material for modification and relatively simple reagents 
being used for the modification process. However, cer-
tain wood properties, such as corrosion resistance, heat 
resistance, and hydrophobicity, do not meet the require-
ments. Additionally, wood modification often produces 
toxic gases. Therefore, it is essential to comprehensively 
compare various biomass materials and select those that 
meet the requirements for modification or composite. 
This approach can significantly reduce production costs 
and environmental pollution. The use of different fillers 
for treatment may yield varying effects such as the pro-

duction of transparent wood resistant to EMI and bam-
boo with uniform inner and outer layer properties. By 
comparing a range of biomass materials, it is feasible to 
obtain satisfactory chemical and mechanical properties 
that meet commercial standards. Thus, increasing the 
diversity of biomass materials is crucial as it creates 
electromagnetic shielding materials with special prop-
erties through modification or composite production to 
address the specific needs of consumers.

2. Net zero emissions In the production process of biomass 
materials, it is imperative to consider the modification 
of different fillers as it can release harmful gases. These 
harmful gases can be reduced by simplifying the experi-
mental steps or reselecting the appropriate fillers. It is 
also crucial to assess the potential generation of green-
house gases throughout the entire life cycle including 
the source, production, sales, and recycling stages to 
devise promising strategies for emission reduction. A 
comprehensive life cycle approach could be established 
to achieve zero carbon emissions. In order to meet com-
mercial requirements, efforts should be made to improve 
production efficiency, ensure pollution-free production, 
facilitate convenient recycling, and further reduce green-
house gas emissions and environmental pollution.

3. Machine learning Through the analysis and research 
of biomass materials, various fillers can be analyzed 
through artificial intelligence (AI) technology to 
improve the performance of biomass materials and 
improve one or more mechanical or chemical properties. 
Through machine learning, more suitable preparation 
processes or equipment can be selected to meet the high 
efficiency, safety and reliability of production. Through 
machine learning and AI technology, the performance 
and production efficiency of materials can be greatly 
improved, and the danger of experiments can be avoided, 
and environmental pollution and greenhouse gas emis-
sions can be reduced.

4. Circular economy The utilization of biomass materials 
as the primary components for electromagnetic shield-
ing materials offers several advantages. These materi-
als are readily available from natural sources and can 
be extricated from wastepaper or other products, hence 
providing sustainable secondary uses. From a life cycle 
perspective, this approach significantly extends the lifes-
pan of the materials and reduces waste. Waste can be 
recycled multiple times for pulp molding or padding and 
subsequently for versatile applications. Maximizing the 
utilization of biomass materials across the entire lifecy-
cle, from sourcing and production to sales and recycling, 
a high raw material utilization rate can be achieved to 
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increase natural recycling, thereby mitigating environ-
mental impact.
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