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HIGHLIGHTS

• Co/Co3O4@NC nanosheets with gradient magnetic heterointerfaces have been fabricated by the high-temperature carbonization/
low-temperature oxidation processes.

• Experimental and theoretical simulation results indicate that magnetic heterointerfaces engineering is beneficial for optimizing imped-
ance matching and promoting electromagnetic wave absorption.

• Gradient magnetic heterointerfaces with magnetic-heteroatomic components realize the adjustment of interfacial polarization, magnetic 
coupling, and long-range magnetic diffraction.

ABSTRACT Gradient magnetic heterointerfaces have injected infinite 
vitality in optimizing impedance matching, adjusting dielectric/mag-
netic resonance and promoting electromagnetic (EM) wave absorption, 
but still exist a significant challenging in regulating local phase evolu-
tion. Herein, accordion-shaped Co/Co3O4@N-doped carbon nanosheets 
(Co/Co3O4@NC) with gradient magnetic heterointerfaces have been 
fabricated via the cooperative high-temperature carbonization and low-
temperature oxidation process. The results indicate that the surface 
epitaxial growth of crystal  Co3O4 domains on local Co nanoparticles 
realizes the adjustment of magnetic-heteroatomic components, which 
are beneficial for optimizing impedance matching and interfacial polar-
ization. Moreover, gradient magnetic heterointerfaces simultaneously 
realize magnetic coupling, and long-range magnetic diffraction. Spe-
cifically, the synthesized Co/Co3O4@NC absorbents display the strong 
electromagnetic wave attenuation capability of − 53.5 dB at a thickness of 3.0 mm with an effective absorption bandwidth of 5.36 GHz, 
both are superior to those of single magnetic domains embedded in carbon matrix. This design concept provides us an inspiration in 
optimizing interfacial polarization, regulating magnetic coupling and promoting electromagnetic wave absorption.
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1 Introduction

The popularization of wireless communication technology, 
especially the explosive growth and implementation of 5G 
technology, greatly promotes the upgrading of global indus-
tries and the development of the economy and society [1–3]. 
However, technological advancements often bring greater 
challenges. The emergence of electromagnetic (EM) radia-
tion and the responding pollution inevitably affects the nor-
mal operation of electronic devices and the health of human 
beings [4–6]. Therefore, fabricating efficient EM wave absor-
bents with thin, light, strong absorption and wide broadband 
has become the promising and effective solution to address 
these issues [7–11]. Based on these requirements, many strate-
gies have been proposed to construct high-performance EM 
wave absorbents [12–14]. The magnetic–dielectric synergistic 
effect is a classic theory which is usually used to elucidate the 
mechanism of EM wave attenuation [15]. Based on the theo-
retical research, the focus has gradually shifted to using mag-
netic and nonmagnetic components to regulate and improve 
the absorption intensity and effective absorption bandwidth 
[16–19]. However, among these methods, hydrothermal treat-
ment and etching are usually required, which greatly limit the 
mass production of materials and introduce more uncertainty.

In recent years, metal–organic frameworks (MOFs) and 
their derivatives have been considered as the most promising 
candidates in EM wave absorption due to their tunable chemi-
cal composition, mesoporous properties, and diverse micro-
structures [20–24]. As early as 2015, Du et al. firstly used 
Prussian blue as a precursor to synthesize Fe/C nanocubes 
through a one-step pyrolysis method, which opened a new era 
in the field of EM wave absorption for MOFs derivatives [25]. 
After that, various morphologies of MOFs derivatives have 
been employed as EM wave absorbents [26–31]. However, 
few researchers focus on constructing MOFs derivatives via 
the manipulation of pyrolysis process, and the mechanism of 
structural design and EM wave absorption performance has 
not been clarified. Besides, due to the larger magnetic force 
between single magnetic nanoparticles, they are preferred 
to agglomerate to form larger magnetic domains during the 
pyrolysis process. To address this issue, constructing hollow 
nanoparticles or yolk–shell structures with coexisting micro- 
and mesopores has been proposed to reduce material density 

and improve skin depth. It is well known that the prominence 
of EM wave absorbing materials prepared through the direct 
pyrolysis of single MOFs has declined due to the inherent 
limitations of non-tunability and the singularity of a single-
component system. To address these challenges, there is an 
imperative need to develop MOF-derived carbon materials 
that integrate structural design and component control, thereby 
streamlining the preparation process.

Herein, Co/Co3O4@NC nanosheets with gradient magnetic 
heterointerfaces have been fabricated by the high-temperature 
carbonization/low-temperature oxidation processes. Experi-
mental data and simulation results indicate that the generation 
of gradient magnetic heterointerfaces is beneficial for optimiz-
ing impedance matching and EM wave absorption, realizing 
the adjustment of interfacial polarization, magnetic coupling 
and long-range magnetic diffraction. As expected, when the 
filler ratio is 25 wt%, the optimal reflection loss is − 53.5 dB 
and the bandwidth reaches 5.36 GHz. This study is the pio-
neer to investigate the internal relationship between gradient 
magnetic heterointerfaces and EM wave absorption attenua-
tion, which provided a new theoretical basis to pursue high-
efficiency EM wave absorbents by magnetic heterointerfaces 
engineering.

2  Experimental Section

2.1  Synthesis of Accordion‑Shaped ZIF Precursors

In a typical synthesis, 6 mmol of dimethylimidazole and 
0.5 mmol of Co(OAc)2·4H2O were dissolved in 20 mL of 
deionized water and stirred for 24 h. The resulting accordion-
shaped ZIF precursors were collected by centrifugation, 
washed with ethanol several times, and dried in a vacuum oven 
at 60 °C for 24 h.

2.2  Synthesis of Co@N‑Doped Carbon (Co@NC) 
Nanosheets

The obtained accordion-shaped ZIF precursors were calcined 
at 800 °C for 3 h under Ar atmosphere, resulting in the forma-
tion of Co@NC nanosheets.
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2.3  Synthesis of Co/Co3O4@N‑Doped Carbon (Co/
Co3O4@NC) Nanosheets

The obtained Co@NC nanosheets were calcined at 230 °C 
for 3 h under Air atmosphere, yielding to the formation of 
Co/Co3O4@NC nanosheets.

2.4  Synthesis of  Co3O4@N‑Doped Carbon  (Co3O4@
NC) Nanosheets

The obtained accordion-shaped ZIF precursors were cal-
cined at 320 °C for 3 h under Air atmosphere, resulting in 
the formation of  Co3O4@NC nanosheets.

2.5  Characterizations

The microstructures were imaged by scanning electron 
microscopy (SEM, FEI Verios G4). The high-resolu-
tion morphologies and elemental mapping section were 
obtained by transmission electron microscopy (TEM, FEI 
Talos F200X). X-ray diffraction (XRD) data containing the 
information of crystal structures were characterized by a 
Bruker-D8-DISCOVER X-ray diffractometer. The surface 
chemical composition and valence state of elements were 
obtained by a Phoibos-100-spectrometer X-ray photoelec-
tron spectrometer (XPS). The static magnetic properties 
were characterized by vibrating sample magnetometer 
(VSM, LakeShore7404). The reflection loss (RL) values, 
impedance match degree  (Zin/Z0), radar cross section (RCS) 
simulation, and computational analysis were presented in the 
Supporting Information.

3  Results and Discussions

The synthesized processes of Co@NC, Co/Co3O4@NC, 
and  Co3O4@NC nanosheets are illustrated in Fig. 1a. First, 
accordion-shaped ZIF precursors with multilayer nanosheets 
were synthesized by the co-precipitation method (Fig. S1a) 
[32]. TEM and the corresponding element mapping images 
indicate that C, N, O, and Co elements are uniformly distrib-
uted in the accordion-shaped ZIF. As shown in Fig. S2, the 
diffraction peaks of the obtained ZIF precursors are consist-
ent with the simulation results. Subsequently, the obtained 
precursors were annealed in a tubular furnace under differ-
ent annealing temperatures and atmospheres, resulting in 

the phase evolution with gradient magnetic heterointerfaces 
[33–35]. Under high-temperature argon and low-tempera-
ture air environment, Co@NC nanosheets with Co phase 
(Fig. 1b–d) and  Co3O4@NC nanosheets with  Co3O4 semi-
conductor phase (Fig. 1h–j) are generated, respectively. For 
Co@NC nanosheets, these reduced Co domains are pre-
ferred to agglomerate to form larger magnetic nanoparticles 
due to the larger magnetic force [36], thus the average size 
of Co nanoparticles is in the range of 120–180 nm (Fig. 
S3). For  Co3O4@NC nanosheets, it is clear that small  Co3O4 
nanoparticles are embedded in carbon nanosheets, and the 
average size of  Co3O4 nanoparticles is only about 8 nm 
(Fig. S4). By the cooperative high-temperature carboniza-
tion and low-temperature oxidation, the surface epitaxial 
growth of crystal  Co3O4 phase on local Co phase is realized 
(Fig. 1e–g), and the phase evolution inevitably decreases the 
size of Co nanoparticles, as shown in Fig. S5.

TEM and HRTEM images of Co@NC, Co/Co3O4@NC, 
and  Co3O4@NC nanosheets are shown in Fig. 2. Obviously, 
Fig. 2a, b further confirms the phenomenon of Co nanopar-
ticles in Co@NC, while small  Co3O4 nanoparticles are uni-
formly distributed on the carbon nanosheets for  Co3O4@NC 
(Fig. 2h, i), and the size of Co nanoparticles decreases due 
to the presence of  Co3O4 for Co/Co3O4@NC (Fig. 2d, e). In 
Fig. 2c, HRTEM image shows that the lattice of 0.205 nm 
corresponds to the (111) plane of Co. Based on the polariza-
tion resonance theory, different planes or orientations usu-
ally lead to modified electronic bands and intracrystalline 
interface coupling, thus inducing discrepant band realign-
ment to enhance dipole relaxation and interfacial polariza-
tion. Figure 2f illustrates that these reduced Co nanoparticles 
are completely wrapped by the graphite carbon layer under 
high-temperature conditions, exposing a large number of 
defects (Fig. S6). The pseudo-color image in Fig. 2g pro-
vides a more intuitive explanation of the presence of crystal 
hybridization in  Co3O4 nanoparticles. The presence of multi-
oriented crystal planes can generate a large number of point 
defects, thereby enhancing dipole polarization and interfa-
cial polarization. Clear Moiré fringes can also be observed 
in Fig. 2j, which are caused by the (311) and (111) crystal 
planes of  Co3O4.

Figure 3a–c shows the thermogravimetric curves of the 
ZIF precursors under argon and air conditions, Co@NC 
under air conditions, respectively. At low temperature, the 
mass of all samples shows a slow downward trend, caused by 
the evaporation of water vapor adsorbed on the surface and 
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the thermal decomposition of surface groups. As expected, 
around 450 °C, ZIF precursors begin to decompose on a 
large scale, and the pyrolysis rate reaches a constant state 
at 610 °C. The obtained Co@NC is pyrolyzed at 800 °C, 
and testing is conducted within the temperature range of 
30–400 °C. As the temperature increasing to around 270 °C, 
the amorphous/graphite carbon derived from the material 
begins to oxidize and evaporate as  CO2, resulting in a sharp 
decrease in sample mass. At around 320 °C, the ZIF precur-
sors begins to oxidize, and the organic framework in the 

material is oxidized and destroyed, promoting the com-
plete conversion from  Co2+ to  Co3O4. XRD patterns of the 
obtained Co@NC, Co/Co3O4@NC, and  Co3O4@NC are 
presented in Fig. 3d. Among them, the three strong diffrac-
tion peaks at 44.2°, 51.5°, and 75.9° correspond to the (111), 
(200), and (220) crystal planes of Co (PDF#15–0806) [37], 
respectively. The three diffraction peaks of 19.0°, 31.2°, 
and 36.8° correspond to the (111), (220), and (311) crystal 
planes of  Co3O4 (PDF#43–1003) [38], respectively. Sur-
prisingly, the diffraction peaks of the products match well 

Fig. 1  a Schematic illustration of the synthetic processes, SEM images of b–d Co@NC, e–g Co/Co3O4@NC, h–j  Co3O4@NC
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with the standard card and corresponded to lattice fringes 
of different sizes in HRTEM. Specifically, due to the cata-
lytic effect of magnetic Co particles, the diffraction peak at 
26.3° is attributed to the formation of graphite [39, 40]. Due 
to the low temperature, the degree of graphitization can-
not observe in  Co3O4@NC, resulting in the disappearance 
of the 26.3° diffraction peak. Figure 3e shows the degree 

of graphitization of the carbon skeleton using Raman spec-
troscopy. Compared with Co@NC and Co/Co3O4@NC, the 
disappearance of D and G peaks in  Co3O4@NC further con-
firms the absence of graphite carbon and amorphous carbon. 
The ID/IG value of Co@NC is 0.95, indicating that the graph-
ite carbon catalyzed by the pure Co phase leads to a higher 
degree of graphitization (Fig. 3f). In addition, C atoms 

Fig. 2  TEM and HRTEM images of a–c Co@NC, d–g Co/Co3O4@NC, h–j  Co3O4@NC
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Fig. 3  a–c Thermogravimetric curve, d XRD pattern, e Raman full spectrum, f amplified D and G peaks, g Raman peaks of spinel  Co3O4, h 
phase transition, XPS pattern of Co 2p of i Co@NC, j Co/Co3O4@NC, k  Co3O4@NC
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undergo structural damage during pyrolysis under air condi-
tions, thus the degree of defects in Co/Co3O4@NC increases, 
leading to an increase of ID/IG value. The magnified Raman 
peak of  Co3O4 is shown in Fig. 3g. Clearly, the peaks at 
184, 458, 503, and 652  cm−1 correspond to the  F2g,  Eg,  F2g, 
and  A1g vibration modes of  Co3O4, respectively. The  F2g 
vibration mode has the lowest symmetry and involves more 
complex atomic vibrations in the crystal.  A1g is a highly 
symmetric vibration mode, while  Eg involves the relative 
motion of adjacent atoms in the crystal. These three classic 
vibration modes demonstrate the precise synthesis of  Co3O4. 
Compared with  Co3O4@NC, owing to the epitaxial growth 
of  Co3O4 along the surface of Co particles, the classical 
spinel structure is doped. As shown in Fig. 3g, the shift of 
the vibration peak proves this point [5, 41–44]. As shown in 
Fig. S7, the XPS spectra display strong signals of C 1s, N 1s, 
O 1s, and Co 2p elements, which are highly consistent with 
the previous characterization results. Notably, the signal of 
N 1s in  Co3O4@NC was not displayed, which is attributed 
to the disappearance of a large amount of the carbon layer 
due to the oxidation (Fig. S8). Figure 3i–k shows the fine 
spectra of Co in the Co@NC, Co/Co3O4@NC, and  Co3O4@
NC. Co 2p can be split into Co 2p3/2 and Co 2p1/2. The shift 
of characteristic peaks is attributed to the different ways in 
which Co elements exist within their systems. As expected, 
Co@NC only contains a portion of  Co3+ (782.1 eV) and 
 Co2+ (784.2 eV), which is attributed to the oxidation of Co 
elemental exposed to air. Compared with Co@NC, the  Co3+ 
(782.4 eV) and  Co2+ (785.2 eV) content of Co/Co3O4@NC 
significantly increased, indicating the successful growth of 
 Co3O4. There is no peak of Co elemental in  Co3O4@NC, 
which only display the peaks of  Co3+ (780.2 eV) and  Co2+ 
(782.6 eV), perfectly corresponding to the different valence 
states of Co ions in the surface and inner layers of the spinel 
structure, indicating that a pure  Co3O4 phase is obtained.

The reflection loss (RL) of Co@NC, Co/Co3O4@NC, 
 Co3O4@NC is characterized by transmission line theory 
and the results with a loading ratio of 25 wt% are shown 
in Fig. 4. Obviously, Co@NC (Fig. 4a, d) and  Co3O4@NC 
(Fig. 4c, f) exhibits poor RL values and unsatisfied effective 
absorption bandwidth. As expected, multiphase hybridiza-
tion engineering effectively provides plenty of heterogene-
ous interfaces and defects, leading to significant EM wave 
attenuation. Specifically, the minimum RL value of Co/
Co3O4@NC (Fig. 4b, e) is up to − 53.5 dB at 3.0 mm, and 
the effective absorption bandwidth below − 10 dB reaches 

5.36 GHz. This conclusion indicates that designing mul-
tiphase structures is an effective strategy for improving EM 
wave absorption [45]. The mechanism of enhancing EM 
wave absorption performance can be explained by imped-
ance matching [46]. Generally speaking, the area of |Zin/Z0| 
should be close to 1, representing the best impedance match-
ing. It can be observed that the stripe area of Co/Co3O4@
NC is larger than that of Co@NC and  Co3O4@NC (Fig. 
S9), representing a good matching of impedance character-
istics. Furthermore, the impedance area of the Co/Co3O4@
NC stripe close to 1 overlap with the area of RL ≤ − 10 dB. 
This not only means that impedance matching is optimal 
but also indicates that Co/Co3O4@NC has the strongest EM 
wave absorption performance. To assist in proving imped-
ance matching,  Zin is decomposed according to  Zin = Z’- jZ’’ 
to obtain Z’ and Z’’. In theory, when Z’ = 1 and Z’’ = 0, 
it represents the best impedance matching. From Fig. S10, 
it can be seen that Co/Co3O4@NC at the frequency corre-
sponds to its minimum RL value point, the above theory is 
satisfied. At a filler ratio of 25 wt%, the impedance matching 
of Co/Co3O4@NC is the best, and the EM wave absorption 
performance is the strongest [47].

To further demonstrate the performance of EM wave 
absorbing materials in the real far-field domain, pure 
aluminum plates (PEC layers) are simulated using 
HFSS [48–50]. Here, an aluminum plate with a size of 
180 × 180 × 5  mm3 is used as the substrate, and three mate-
rials with a mass ratio of 25 wt% are coated on the surface of 
the PEC layer. The external layer is set to X and Y is a per-
fect matching layer of 200 mm. The composite materials of 
Co@NC, Co/Co3O4@NC, and  Co3O4@NC are set to 28.9, 
28.0, and 29.0 mm, respectively. As shown in Fig. 4g–i, the 
simulation result of radar cross section (RCS) is Co/Co3O4@
NC < Co@NC <  Co3O4@NC, which is consistent with the 
test results. In addition, compared with the RCS values of 
aluminum plates within the range of − 90° < θ < 90°, the 
RCS values of three composite materials are significantly 
reduced, compared with pure aluminum plates. Specifically, 
Co/Co3O4@NC and the Al plate reached 19.8 dB  m2 at 0°. 
In the final analysis, the low RL value, high matching degree, 
and low RCS value exhibited by Co/Co3O4@NC composite 
materials mean they can act as the promising candidates for 
EM wave absorbing materials.

It is well known that the EM wave absorption perfor-
mance depends on the complex permittivity and complex 
permeability. The ε’ and ε” values represent the storage and 
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loss of dielectric energy, respectively. The overall dielec-
tric loss capacity is determined by the dielectric loss tan-
gent (tanδε = ε”/ε’). Figure 5a shows the ε’ and ε” values 
of Co@NC, Co/Co3O4@NC and  Co3O4@NC. Obviously, 
the ε’ values of all samples decrease with increase in the 
frequency. Owing to the increase in high-frequency polariza-
tion hysteresis, multiple resonance peaks appear in the range 
of 2–18 GHz for ε”, indicating the generation of a frequency 
dispersion effect. Figure S10 shows the dielectric loss tan-
gent values. It is clear that the tanδε values of Co@NC and 
Co/Co3O4@NC are all higher than that of  Co3O4@NC. This 
phenomenon can be explained by the higher conductivity of 
graphite compared to  Co3O4 semiconductor phase [51, 52].

Magnetic loss is identified as a critical factor in deter-
mining the EM wave absorption performance. Figure 5b, 
c shows the μ’ and μ’’ values of Co@NC, Co/Co3O4@
NC, and  Co3O4@NC. It is widely acknowledged that the 

variation of μ’’ is closely related to the composition of mag-
netic nanoparticles. Nevertheless, μ’ is less affected by its 
composition. Apparently, the μ’’ value of Co@NC is higher 
than Co/Co3O4@NC and  Co3O4@NC, which is attributed 
to the aggregation of large-sized Co particles, resulting in 
strong magnetic loss. The magnetic properties are analyzed 
using vibrating sample magnetometer (VSM), as shown 
in Fig. S11. Owing to the presence of semiconductors, 
the saturation magnetization intensity (MS) values of Co/
Co3O4@NC and  Co3O4@NC are only 18.92 and 0.61 emu 
 g−1, which are lower than Co@NC (50.95 emu  g−1). The 
magnetic coercivity (HC) values of Co@NC, Co/Co3O4@
NC, and  Co3O4@NC are 371.26, 541.33, and 41.62 Oe, 
respectively. The decrease in hysteresis loss (Fig. S12) is 
attributed to the introduction of the semiconductor  Co3O4, 
which also confirm that Co@NC and  Co3O4@NC possess 
the maximum and minimum magnetic loss tangent angles, 

Fig. 4  RL values, 2D colormap and radar cross section of a, d, g Co@NC, b, e, h Co/Co3O4@NC and c, f, i  Co3O4@NC
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respectively. For Co@NC and Co/Co3O4@NC, considering 
eddy current losses is another critical factor in determin-
ing magnetic losses. As depicted in Fig. S13, the μ’’(μ’)−2f 

−1 values for both Co@NC and Co/Co3O4@NC fluctuate 
within the range of 2–18 GHz, indicating that ferromagnetic 
resonance and eddy current loss simultaneously contribute 

Fig. 5  a–c Electromagnetic parameters, d attenuation constant, TEM, electronic holography, and magnetic coupling diagrams of f, i, l Co@NC, 
g, j, m Co/Co3O4@NC and h, k, n  Co3O4@NC, the phase hybridization diagram of e Co/Co3O4@NC
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to magnetic loss. Figure 5e shows the relationship between 
temperature and spinel semiconductors, the incorporation 
of the spinel semiconductor has led to a decrease in both 
electrical conductivity and magnetic permeability, while 
also eliminating high-frequency eddy currents, resulting 
in a pronounced absorption peak at high frequencies for 
Co/Co3O4@NC. Consequently, this elucidates why Co@
NC exhibits the highest attenuation constant (α), thus its 

absorption performance is inferior to that of Co/Co3O4@
NC, which has a lower α value (Fig. 5d).

The results indicate that the EM wave absorption per-
formance can be modulated by the phase evolution and 
magnetic heterointerfaces engineering. Magnetic nanopar-
ticles exceeding the critical size not only generate magnetic 
resonance and magnetic coupling, but also cause long-range 
magnetic diffraction in adjacent magnetic domains [53]. As 
shown in Fig. 5f–n, the stray magnetic flux lines indicate 

Fig. 6  a–c Structural modes and d–f holograms of Co@NC, Co/Co3O4@NC and  Co3O4@NC, g the possible electromagnetic wave absorption 
mechanism
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that magnetic loss is related to the aggregation of Co nano-
particles. Each microscale magnetic domain represents a 
sole domain and acts as high-density magnetic activation 
antennas to radiate out stray diffraction flux lines to interact 
with other magnetic domains by means of magnetic coupling 
and long-range magnetic diffraction. Therefore, magnetic 
coupling and long-range magnetic diffraction simultane-
ously establish a connected magnetic network to interfere 
with incident EM wave, dissipating the loss of incidence 
EM wave. However, the introduction of  Co3O4 nanoparticles 
could weak the aggregation of Co nanoparticles, thus the 
decreased size of Co nanoparticles leads to short-range mag-
netic exchange interactions. The coexistence of multiple loss 
mechanism also contributes to the improvement of EM wave 
absorption performance. Figure 5n clearly shows that there 
are fewer magnetic flux lines in  Co3O4@NC. Due to the 
weak magnetism of  Co3O4, its loss mode is weaker than that 
of the other absorbents. The possible loss structural modes 
of Co@NC, Co/Co3O4@NC, and  Co3O4@NC are proposed 
in Fig. 6a–c. It is distinct that multiple polarization loss and 
matched impedance provided by the nanosheets are key to 
the final EM wave performance [54, 55]. To support this 
conclusion, the holograms of Co@NC, Co/Co3O4@NC, and 
 Co3O4@NC are shown in Fig. 6d–f. The rich variety of crys-
tal phases and abundant heterogeneous interfaces, defects, 
and vacancies suggest that Co/Co3O4@NC provides excel-
lent EM wave absorption performance compared with that of 
Co@NC and  Co3O4@NC (Fig. 6g). The simplification of the 
preparation method makes mass production possible, provid-
ing an excellent candidate for future industrial applications 
of EM wave absorption materials.

4  Conclusion

In conclusion, accordion-shaped Co/Co3O4@NC nanosheets 
with gradient magnetic heterointerfaces have been success-
fully synthesized via the cooperative high-temperature 
carbonization and low-temperature oxidation process. The 
results indicate that the generation of  Co3O4 domains on 
local Co nanoparticles can adjust the magnetic-heteroatomic 
components, which are beneficial for the enhancement of 
interfacial polarization and EM synergy. Ultimately, the Co/
Co3O4@NC nanosheets achieve a minimum reflection loss 

value of − 53.5 dB and an effective absorption bandwidth 
of 5.36 GHz. This simple preparation method provides a 
valuable insight for the efficient mass production of absorb-
ing agents and stimulates us an inspiration in adjusting EM 
wave absorption.
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