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HIGHLIGHTS

• Manganese-zeolitic imidazolate frameworks (Mn-ZIF-90) with both high drug loading and magnetic resonance imaging (MRI) in vitro 
and in vivo were prepared.

• The modification of a newly designed pH-protective and active-targeting  Y1 receptor ligand reduces the drug release during blood 
circulation and specifically targets the tumor sites, improving therapeutic efficacy in vivo.

• The combination of nano-size Mn-ZIF-90 and the highly specific  Y1 receptor ligand promotes the specific drug accumulation in tumor sites.

ABSTRACT Zeolitic imidazolate frameworks (ZIFs) as smart drug delivery systems with 
microenvironment-triggered release have attracted much attention for tumor therapy. However, 
the exploration of ZIFs in biomedicine still encounters many issues, such as inconvenient surface 
modification, fast drug release during blood circulation, undesired damage to major organs, and 
severe in vivo toxicity. To address the above issues, we developed an Mn-ZIF-90 nanosystem 
functionalized with an originally designed active-targeting and pH-responsive magnetic reso-
nance imaging (MRI)  Y1 receptor ligand  [Asn28,  Pro30,  Trp32]-NPY (25–36) for imaging-guided 
tumor therapy. After  Y1 receptor ligand modification, the Mn-ZIF-90 nanosystem exhibited 
high drug loading, better blood circulation stability, and dual breast cancer cell membrane and 
mitochondria targetability, further favoring specific microenvironment-triggered tumor therapy. 
Meanwhile, this nanosystem showed promising  T1-weighted magnetic resonance imaging con-
trast in vivo in the tumor sites. Especially, this nanosystem with fast clean-up had almost no 
obvious toxicity and no damage occurred to the major organs in mice. Therefore, this nanosystem 
shows potential for use in imaging-guided tumor therapy.
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1 Introduction

Microenvironment-triggered release plays an important role 
in controlling the location and concentration of therapeutic 
drugs in tumor therapy [1–5]. It can be induced by either 
tumor internal microenvironment or external forces [6], such 
as pH [7, 8], overexpressed enzyme [9, 10], high concentra-
tion of glutathione, temperature [11], microwave [12], and 
light [13, 14], among others. Among these, the sharp pH gra-
dient between normal tissues and tumorous cellular matrices 
gives an opportunity for a drug delivery system (DDS) to 
induce pH-triggered fast drug release at the expected site 
[10, 15, 16]. In addition, there is an increasing demand for 
the involvement of imaging components in DDS to track 
the drug delivery process and provide visible information 
regarding the change of lesions during therapeutic cycles [7, 
17–20]. Therefore, an ideal DDS for tumor therapy should 
be with high drug loading and itself as an imaging agent 
should be easily modifiable by various targeting moieties 
[19, 21–23].

Zeolitic imidazolate frameworks (ZIFs) are thought to be 
an attractive carrier for both therapeutic drugs and imaging 
agents due to their high surface areas, tunable pore sizes, 
and pH-triggered release [24–28]. For example, many ther-
apeutic drugs (DOX or 5-Fu) and imaging agents (IRDye-
820 or iron oxide nanoparticles) could be either absorbed 
or encapsulated into ZIFs by one-pot synthesis. However, 
many problems still hinder the further application of ZIFs 
as imaging-guided tumor therapeutic platforms, such as 
unexpected drug release during blood circulation, serious 
side effects including death, and low drug loading when 
carrying both drugs and imaging agents [24, 29]. Although 
the exchange of Mn to the structure of ZIF-8 could make 
it suitable for imaging [30, 31], the unexpected toxicity 
generated from ZIF-8 prevents its further bio-application 
in vivo [29]. Recently, our previous work and some litera-
ture have indicated that ZIF-90, a sister of ZIF-8, showed 
much lower cytotoxicity than ZIF-8 both in in vitro and 
in vivo evaluations, and the existence of the aldehyde 
groups in ZIF-90 makes it easier to modify [32–34]. Fur-
thermore, nanoscale ZIF-90 could release loaded cargoes 
in mitochondria under high ATP conditions [35], which 
could improve the therapeutic efficacy of DNA-damaging 

drugs, because mitochondria play a crucial regulatory role 
in the intrinsic pathway of apoptosis [36–38]. However, 
there is still almost no report about the post-synthetic 
modification of ZIF-90 to make it a magnetic resonance 
imaging (MRI) contrast agent for both drug delivery and 
monitoring the expected site in vivo.

Although ZIF nanosystems have been glorified in the 
past, most of them are still less specific to tumors [24–26]. 
Peptide ligand modification has been proved to improve the 
delivery efficiency of DDS with obvious advantages, such as 
targeting tumor sites, improving hydrophilicity, and prolong-
ing blood circulation [39, 40]. Neuropeptide Y  Y1 receptor 
 (Y1R) is highly overexpressed in human breast tumors and 
metastases (above 90%), while the normal breast tissues 
express  Y2R only [41]. Recently, we found that  Y1R ligands, 
such as  [Pro30,  Nle31,  Bpa32,  Leu34]-NPY(28–36) and  [Asn6, 
 Pro34]-NPY, play important roles in tumor-targeted imaging 
and therapy with high selectivity to breast tumors and less 
effect on other organs [39, 42, 43]. Especially, these  Y1R 
ligands can reduce premature drug release during blood cir-
culation due to their different spatial configurations under dif-
ferent pH conditions [39]. Therefore, it is of great interest to 
design novel  Y1R ligands with both active targeting and pH 
responsiveness, which might provide a new strategy to solve 
the problem of the relatively fast drug release of ZIFs during 
blood circulation and improve the targetability to tumor sites, 
thereby generating great biological outputs (Scheme 1).

In this work, ZIF-90 was post-synthetically modified by 
 Mn2+, then conjugated by an originally designed  Y1R ligand 
 [Asn28,  Pro30,  Trp32]-NPY (25–36) (APT) with excellent 
active-targeting and pH-responsive release (Fig. 1a). The 
APT-Mn-ZIF-90 showed promising  T1-weighted imaging 
both in vitro and in vivo. In addition, a high effective DNA 
damage drug 5-fluorouracil (5-Fu) was loaded into APT-Mn-
ZIF-90 with high drug loading. Meanwhile, APT-Mn-ZIF-
90/5-Fu displayed a pH-responsive drug release with low 
 IC50 value in vitro and a high blood-drug concentration with 
effective tumor therapeutic efficiency in vivo. It is more vital 
to note that the APT-Mn-ZIF-90 showed almost no obvi-
ous toxicity and no damage to major organs with fast clean-
up in vivo within the dosage that we applied. Therefore, 
the APT-Mn-ZIF-90/5-Fu with excellent  T1-MRI contrast 
could generate efficient therapeutic efficacy with high drug 
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loading, providing an expectation candidate for imaging-
guided tumor therapy.

2  Experimental

2.1  Preparation of Mn‑ZIF‑90

The synthesis of ZIF-90 was performed according to pervi-
ous reports [24, 35]. Generally, Zn  (CH3COOH)2·2H2O was 
dissolved in 2 mL DMF to 0.2 M and then added to a freshly 
prepared 2 mL transparent DMF solution of 2-ICA (0.2 M) 
under vigorous stirring. The product was purified and col-
lected by centrifugation. The product was then dried at 65 °C 
for 12 h. For the preparation of Mn-ZIF-90, 0.2 mmol ZIF-
90 and 0.6 mmol Mn  (CH3COOH)2 were mixed in 10 mL 
MeOH. Following this, the mixture was transferred to a 
25-mL reaction kettle and reacted at 55 °C for 36 h. After 
the reaction, the product was washed with methanol several 
times. The solid was soaked in methanol for 4 days, and 
20 mL fresh methanol was used to change the solution every 
12 h. The product was then collected and dried in vacuum at 
room temperature overnight and stored at 4 °C.

2.2  Preparation of APT‑Mn‑ZIF‑90 
and APT‑Mn‑ZIF‑90/5‑Fu

For the preparation of APT-Mn-ZIF-90, the sample was first 
immersed in methanol for 24 h and then evacuated under 
vacuum at room temperature for 12 h to remove the sol-
vent of the synthesized Mn-ZIF-90 [30, 44]. 2 mg APT was 
dissolved with 10 mL methanol in a flask, followed by the 
addition of 20 mg activated Mn-ZIF-90 nanoparticles (NPs). 
After another 48 h of stirring at room temperature, the NPs 
were collected by centrifugation and washed with excess 
methanol. The residual APT was removed by exchange with 
methanol before being dried under vacuum.

For the APT-Mn-ZIF-90/5-Fu preparation, 15 mg 5-Fu 
was dissolved in PBS (pH 7.4) with stirring, and then 5 mg 
APT-Mn-ZIF-90 was added. The solution was stirred for 
24 h in the dark. The samples were collected and freeze-
dried. The preparation of Mn-ZIF-90/5-Fu was conducted 
the same way.

Drug loading = the amount of 5-Fu loaded/the amount of 
carrier

2.3  Cell Culture

A human breast cancer (MCF-7) cell line was cultured in 
complete DMEM medium. The medium was supplemented 
with 10% fetal bovine serum (FBS), 100 units mL−1 of peni-
cillin, and 100 mg mL−1 of streptomycin. The cells were 
maintained in a 37 °C incubator with 5%  CO2.

2.4  Toxicity Evaluation of APT‑Mn‑ZIF‑90 In Vivo

To evaluate the toxicity of APT-Mn-ZIF-90 in vivo, four 
groups of Balb/c mice were used (n = 5), and all the mice 
were treated with APT-Mn-ZIF-90 (25, 50, or 100 mg kg−1) 
or PBS via a one-time intravenous injection. The sur-
vival rate and body weight were recorded for 30 days. To 
advance our understanding of the toxicity in vivo, another 
group of treated mice was killed on the 7th day. The col-
lected blood was analyzed by a blood analyzer (Sysmex 
XT-1800i, Japan), and Hitachi 7600 − 110 autoanalyzer 
(Hitachi, Tokyo, Japan), and the major organs were collected 
and stained with Hematoxylin and Eosin (H&E). Further-
more, to investigate the metabolism of APT-Mn-ZIF-90 
in healthy mice, each mouse was injected with 100 μL of 
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Scheme  1  Schematic of bio-application and potential mechanism 
of APT-Mn-ZIF-90/5-Fu for tumor therapy and the binding mode 
of APT with  Y1R. After intravenous injection, the APT-Mn-ZIF-
90/5-Fu reduces drug release during blood circulation and triggers 
fast drug release with low pH and high adenosine triphosphate condi-
tions in the tumor microenvironment for MRI-guided tumor therapy. 
The binding mode of APT with  Y1R is shown on the lower right side; 
 Y1R is shown in cartoon representation. APT (green carbons) and 
receptor residues (pink carbons) involved in the ligand binding are 
shown as sticks. The H-bonds are represented by the yellow dashed 
lines
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Fig. 1  a Schematic of APT-Mn-ZIF-90/5-Fu preparation process; b SEM and c TEM images of Mn-ZIF-90; d dynamic light scattering of APT-Mn-ZIF-90 in 
culture medium at 37 °C; e PXRD results of ZIF-90, Mn-ZIF-90, APT-Mn-ZIF-90/5-Fu and 5-Fu; f XPS pattern of Mn-ZIF-90 and ZIF-90 NPs; g drug-loading 
content of APT-Mn-ZIF-90 for different stirring times. Mean ± SD (n = 3); h STEM elemental mapping of Zn, Mn, C, N, O, and EDS spectrum for Mn-ZIF-90
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APT-Mn-ZIF-90 (50 mg kg−1) and was killed on days 1, 
7, and 14. The main organs were removed, and their Mn 
concentrations were tested with ICP-OES.

2.5  Drug Release In Vitro

In vitro drug release was performed through a previ-
ously reported dynamic dialysis method. For example, 
1 mL of Mn-ZIF-90/5-Fu or APT-Mn-ZIF-90/5-Fu (5-Fu: 
1 mg mL−1) in PBS (pH 7.4) was added to a dialysis bag 
(MWCO: 2 kDa) and incubated with 49 mL of PBS contain-
ing 10% FBS at pH 7.4 or 5.5 in an oscillation incubator at 
37 °C with 100 rpm. At predetermined time intervals, some 
aliquots were removed for analysis and replaced with the 
same volume of release medium. The drug concentration 
was determined by UV–Vis spectroscopy.

2.6  Establishment of MCF‑7 Breast Tumor Xenograft

This was conducted under the approval of the Regional Eth-
ics Committee for Animal Experiments at Ningbo Univer-
sity, China (Permit No. SYXK (Zhe) 2019-0005). All mice 
used in this study were bought from Kawensi Biological 
products sales center (Nanjing, China). Female Balb/c nude 
mice (18–20 g, 4–6 weeks old) were used to establish the 
tumor model by a subcutaneous injection of MCF-7 cells 
(1 × 107 cells).

2.7  MRI In Vivo and Biodistribution of Mn

To investigate the MRI performance in vivo, the tumor-
bearing nude mice were intravenously injected with 
100 μL of Mn-ZIF-90 and APT-Mn-ZIF-90 (50 mg kg−1, 
[Mn] = 2  mg  kg−1); then the  T1-weighted images were 
acquired using a 1.5 T human clinical scanner (Ingenia 
1.5 T, Philips, the Netherlands).

To evaluate the biodistribution of Mn in vivo, four groups 
of tumor nude mice (n = 3) were injected with 100 μL PBS, 
Mn-ZIF-90, and APT-Mn-ZIF-90 (50 mg kg−1). After 1 day, 
all the mice were killed, then the major organs and tumors 
were collected, and the distribution of Mn was determined 
by ICP-OES analysis. For ICP-OES analysis, the organs 
were freeze-dried and weighed. All organs were treated in 
aqua regia for 4 h at 95 °C for dissolution of the tissues.

2.8  Pharmacokinetics

For the pharmacokinetics study, the mice were treated with 
5-Fu, Mn-ZIF-90/5-Fu, and APT-Mn-ZIF-90/5-Fu (5-Fu: 
8 mg kg−1) by intravenous injection, and the blood samples 
(500 μL) were collected at different times. The plasma was 
collected by centrifugation and extracted with chloroform/
methanol (4:1, v/v) containing 1% formic acid. The concen-
trations of 5-Fu in the plasma were tested by HPLC (Agilent, 
1260, USA).

2.9  In Vivo Antitumor Activity 
of APT‑Mn‑ZIF‑90/5‑Fu

When the tumor grew to 40–60 mm3, 24 mice were divided 
into four groups. The tumor-bearing nude mice were treated 
with PBS, 5-Fu, Mn-ZIF-90/5-Fu, and APT-Mn-ZIF-
90/5-Fu (100 μL, 5-Fu: 8 mg kg−1) via a tail vein injection. 
The 5-Fu-loaded NPs were injected on days 0, 2, 4, and 
6. The tumor volumes and body weights were measured at 
2-day intervals. After the treatment, the survival of the mice 
was observed for 60 days. Furthermore, the major organs 
and tumors were stained with H&E.

3  Results and Discussion

3.1  Characterization of APT‑Mn‑ZIF‑90/5‑Fu

As the exchange ratio of  Mn2+ to Mn-ZIF-90 mainly affects 
the efficiency of MRI and injection dose, the limitation con-
centration of  Mn2+ in Mn-ZIF-90 should first be explored. 
To prepare Mn-ZIF-90, various synthetic conditions were 
tested to increase the exchange ratio, such as reaction tem-
perature, time, and molar ratio of  Mn2+ to ZIF-90 (Figs. 
S1–S3 and Table S1). When the reaction temperature was 
increased to over 65 °C, no product could be obtained after 
centrifugation. Under all the tested conditions, the highest 
exchange ratio and product yield was achieved when the 
molar ratio of  Mn2+ to ZIF-90 was 3 at 55 °C for 36 h. In 
the product, the ratio of  Mn2+ to  Zn2+ was 1:7. Figure 1b, c 
shows the SEM and TEM images of Mn-ZIF-90; there were 
no obvious changes in size and shape compared to ZIF-90 
(Fig. S4), and the original crystal shape remained distinct. 
The result of the STEM mapping shows a successful and 
random exchange of Mn to the ZIF-90 structure (Figs. 1h 
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and S5). The Mn-ZIF-90 had a size around 75 nm and shape 
similar to ZIF-90. The size of APT-Mn-ZIF-90 in the cell 
culture medium was around 105 nm, and the zeta-potential 
was − 2.65 mV (Figs. 1d and S6). The PXRD (Fig. 1e) shows 
that the Mn-ZIF-90 remained crystalline and iso-reticular 
to the parent ZIF-90 with SOD topology. The XPS results 
(Figs. 1f and S7) show that the peak of Mn was exchanged 
to the structure, and the peaks of Mn 2p were observed at 
639.8 (Mn  2p3/2) and 652.7 eV (Mn  2p1/2) after reaction, 
which also indicates the exchange of  Mn2+ to  Zn2+. In addi-
tion, FT-IR spectroscopy indicates that the APT was linked 
to the surface of Mn-ZIF-90, according to the new peak at 
1590 cm−1 (C=N) (Fig. S8).

The drug-loading content was highly dependent on both 
the stirring time and the mass ratio of 5-Fu to ZIFs (Figs. 1g, 
S9, and S10). The drug concentrations of Mn-ZIF-90 and 
APT-Mn-ZIF-90 increased with time within 24 h, and there 
was no obvious increase later. The highest drug loading was 
found when the mass ratio of 5-Fu to ZIFs was 1:3 for 24 h. 
Under the same condition, the drug-loading content of APT-
Mn-ZIF-90 was 0.6793 g/g 5-Fu, which was a little lower 
than that for Mn-ZIF-90 (0.6942 g/g), but still higher than 
for ZIF-90 (0.6204 g/g) (Fig. S11) and those of previous 
reports [24, 33, 45]. The high drug-loading content might 
be attributed to the specific adsorption between the 5-Fu 
six-membered ring and imidazolate, or even the electrostatic 
adsorption and increased  N2 absorbance after modification 
(Fig. S12). Further, PXRD showed no characteristic peak 
of 5-Fu in APT-Mn-ZIF-90/5-Fu, indicating that the 5-Fu 
was un-crystallized in APT-Mn-ZIF-90; the un-crystallized 
small molecule drugs would induce cancer cell death more 
effectively [24, 46].

3.2  Cellular Uptake and Active Targetability 
of APT‑Mn‑ZIF‑90/5‑Fu In Vitro

The distribution of nanoparticles in the tumor cells was 
investigated using a laser scanning confocal microscope 
(LSCM). Fluorescent dye rhodamine B (RhB) was encap-
sulated into Mn-ZIF-90 and APT-Mn-ZIF-90 to track their 
cellular uptake. After incubating with human breast cancer 
cell line MCF-7 for 8 h, the RhB showed strong fluorescence 
in the intracellular compartment. Further, the mitochondria 

of the MCF-7 cells were stained with rhodamine 123 [35], 
and the fluorescence of RhB showed a good correspond-
ence with rhodamine 123 (Fig. 2a), indicating the RhB was 
released in the mitochondria. Therefore, once the RhB was 
replaced by 5-Fu, the drugs could also be released in the 
mitochondria, and the DNA-damaging drugs would show 
a better efficacy by damaging the mitochondria DNA that 
is hard to be repaired [38, 47]. To further characterize the 
distribution of elements, X-ray fluorescence microscopy 
(XRFM) was used to locate the distribution of Zn and Mn. 
As shown in Fig. 2c, the intensity of Zn and Mn was basi-
cally the same everywhere, which also indicates that the NPs 
were integrated into the tumor cells and their subcellular 
organelles. Similar results were also observed in the soft 
X-ray fiber microscopy, which showed that the NPs were in 
the edges of the cells (Fig. S13).

To determine the active targetability of APT-Mn-ZIF-90 
(Fig. 2b), the RhB was loaded inside the APT-Mn-ZIF-90 
and analyzed by flow cytometry. The mean fluorescence 
intensity (MFI) of APT-Mn-ZIF-90 (307.4) was approxi-
mately 1.5-fold higher than that of Mn-ZIF-90 (207) after 
8 h of incubation. The same result was also found in the ele-
ment mapping, in which the APT-Mn-ZIF-90 group showed 
stronger intensity. In addition, the MCF-7 cells were incu-
bated with different concentrations of NPs for 24 h, and Mn 
was tested as a marker (Fig. 2d). With the increasing NP 
concentration, the relative endocytosis ratio also increased. 
The APT-Mn-ZIF-90 groups showed a higher ratio at all 
tested concentrations. According to a previous report, simul-
taneously targeting the cell membrane and mitochondria is 
an effective way to increase therapeutic efficacy of DNA-
damaging drugs [38]. The above results show that the mod-
ification of APT could increase the concentration of NPs 
inside tumor cells; therefore, the nanoparticles might further 
release the drugs in the mitochondria, increasing the thera-
peutic efficacy of 5-Fu.

To reveal the active-targeting mechanism of APT, the 
binding mode of APT to  Y1R was investigated. As shown 
in Fig. S16, the interaction between APT and  Y1R was 
dominated by the formation of the H-bonds. Specifically, 
Arg1, Asn5, Arg9, and Gln10 in APT formed intermo-
lecular H-bonds with the backbones of residues Asn186, 
Cys198, Phe282, and Phe286 in the  Y1R, respectively. 
The side chain of Asp31, Tyr100, and Asn283 in the  Y1R 
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formed H-bonds with the residue Arg1, Asn5, and Tyr12 
in the APT. In addition, there was also a π-π interaction 
between the residue Try8 of the APT and the residue 
His306 of the  Y1R. Moreover, a salt bridge interaction 
existed between the residue Arg1 of APT and the residue 
of Asp104 and Asp31 in  Y1R. The main binding inter-
face of APT to  Y1R was similar to that in a previous 
report [48], which was mainly dominated by H-bond, π-π 
stacking, salt bridge, and hydrophobic interactions. APT 
underwent great conformational changes to enable the 
side chains to occupy the binding pocket of  Y1R. In addi-
tion, the binding energy of APT calculated by a molecular 
dynamics simulation was − 1320 kJ mol−1, indicating that 
APT displayed strong interaction with  Y1R, compared to 
our previous report [49].

3.3  Drug Release and Cell Inhibition Effect 
of APT‑Mn‑ZIF‑90/5‑Fu In Vitro

Before testing the cell inhibition effect of the NPs, in vitro 
drug release was first investigated. As shown in Fig. 3a, 
approximately 60% of 5-Fu was released from Mn-ZIF-90 
at pH 5.5 within 2 h; the same trend could also be seen in the 
APT-Mn-ZIF-90 group. The fast drug release from DDS in 
the tumor sites within a short time is a key factor to improve 
the drug concentration in tumor cells and further improve its 
therapeutic efficacy. Meanwhile, the release of Mn-ZIF-90 
and APT-Mn-ZIF-90 was also tested under the condition of 
pH 7.4 with 10% FBS, which was used to simulate the human 
blood environment. It showed that approximately 60% and 
80% of 5-Fu were released from Mn-ZIF-90 at 6 and 24 h, 
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 Mn2+ in MCF-7 cells after incubating with different concentrations of NPs for 24 h. Mean ± SD (n = 3), **p < 0.01
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respectively. However, only approximately 20% of 5-Fu was 
released from APT-Mn-ZIF-90 within 24 h. This result indi-
cates that the modification of APT could decrease the drug 
release at physiological pH level during blood circulation; 
therefore, more of the drug could be accumulated in the 
tumor site [47]. Moreover, the reduced drug release before 
reaching the tumor site could also minimize the side effects 
on major organs caused by an untargeted free drug [11].

Afterward, the cytotoxicity of APT-Mn-ZIF-90 was evalu-
ated. The cell viabilities of the MCF-7 cells were all over 80% 
at the tested concentrations from 5 to 100 μg mL−1 after incu-
bation with APT-Mn-ZIF-90 for 24 h (Fig. 3b), indicating a 
good biocompatibility of APT-Mn-ZIF-90. To determine the 
cell inhibition effect of drug-loaded NPs, different concentra-
tions of 5-Fu, Mn-ZIF-90/5-Fu, and APT-Mn-ZIF-90/5-Fu 
were incubated with the MCF-7 cells for 24 h at an equivalent 
concentration of 5-Fu. As a result of the CCK-8 test, Fig. 3c 
shows that the Mn-ZIF-90/5-Fu demonstrated a higher cell 
inhibition than the free 5-Fu. This increase can be attributed to 
the 5-Fu release from Mn-ZIF-90 in the mitochondria, where 

further DNA damage was induced. A previous report indi-
cates that the DNA in the mitochondria is unable to repair 
itself and the injured mitochondria, resulting in the apoptosis 
of cells more easily. Besides this, the modification of APT 
increased the drug concentration in tumor cells, causing a 
much lower  IC50 value (1.643 μg mL−1) than those of 5-Fu 
(3.07 μg mL−1) and Mn-ZIF-90/5-Fu (4.6 μg mL−1) (Fig. 3d) 
(p < 0.01). Therefore, simultaneous cell membrane and mito-
chondria active targeting can increase the drug concentration 
in tumor cells and damage DNA in mitochondria, causing the 
cell apoptosis more easily [49].

3.4  Biocompatibility and Biodistribution 
of APT‑Mn‑ZIF‑90/5‑Fu In Vivo

Before the bio-application of Mn-ZIF-90 in vivo, its bio-
compatibility was carefully evaluated [50]. To conduct 
the in vivo toxicity evaluation of Mn-ZIF-90 and APT-
Mn-ZIF-90, different concentrations (12.5–100 mg kg−1) 
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Fig. 3  a Cumulative release of 5-Fu from NPs in different environments (pH 7.4 + 10% FBS and pH 5.5) for 24 h in 37 °C in vitro; b cell viabil-
ity of APT-Mn-ZIF-90 incubated with MCF-7 cells for 24 h; c cell inhibition effect and d  IC50 values of 5-Fu, Mn-ZIF-90/5-Fu, and APT-Mn-
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of NPs were injected into the mice via the tail vein. As a 
result, there was no death, abnormal behavior, or obvious 
weight decrease over the 30 days post-injection (Table S2 
and Fig. S17). To further understand the effect of APT-Mn-
ZIF-90 on the blood and major organs, another group of 
mice administered with different concentrations of NPs were 
killed on day 7, and blood was collected for blood routine 
and biochemical analyses (Fig. 4a–c). There was no obvious 
decrease in the white blood cell (WBC) and red blood cell 
(RBC) counts. Although platelet (PLT) count decreased at 
the concentration of 100 mg kg−1 compared to that in the 
PBS group, it was still in the normal range at 50 mg kg−1 
[49]. Furthermore, there was no apparent difference in the 
ratio of AST to ALT between all groups, indicating that no 
extensive damage to the liver occurred. As shown in the 
H&E staining images (Fig. 5), some marked damage can be 
observed to the spleen, lung, and kidney for all the tested 
concentrations of Mn-ZIF-90 after 7 days, but the APT-Mn-
ZIF-90 group showed no obvious damage in all tested major 
organs, even at 100 mg kg−1. These results indicate that the 
modification of APT minimized the damage of Mn-ZIF-90 
to major organs.

To further evaluate the excretion kinetics of the NPs 
in vivo, the Balb/c mice were killed on days 1, 7, and 14 
after the intravenous injection of APT-Mn-ZIF-90, and the 
concentration of  Mn2+ in various organs was analyzed by 
ICP-OES (Fig. 4d).  Mn2+ was approximately 18% and 15% 
ID  g−1 in the liver and kidney, respectively, on day 1, which 
reduced to less than 1% ID  g−1 after 14 days. Compared 
to most of the traditional inorganic NPs,  Mn2+ could be 
cleared within 14 days. Further, the organ coefficient of the 
major organs did not show a significant increase compared 
to that in the PBS group during the 14 days of observa-
tion, which also indicates that APT-Mn-ZIF-90 was cleared 
within 14 days (Fig. S18). The  Mn2+ concentration in the 
urine and feces was also tested by ICP-OES (Fig. 4e). Via 
feces, 20% ID cumulative  Mn2+ was cleared within 1 day. 
In addition, approximately 70% and 15% ID cumulative 
 Mn2+ was detected in the feces and urine, respectively, after 
7 days, indicating that most of the  NPS could be cleared 
within 7 days. Due to the noncovalent coordination inter-
action of ZIFs, APT-Mn-ZIF-90 can be decomposed much 
easier than the other inorganic materials [24], and the metal 
ion and organic ligand can be cleared fast [51]. The above 
results suggest that APT-Mn-ZIF-90 had low toxicity and 
was cleared faster in vivo.

3.5  In Vitro and In Vivo MRI and Biodistribution 
of APT‑Mn‑ZIF‑90/5‑Fu in Tumor‑Bearing Mice

Due to the five unpaired 3d electrons of  Mn2+, Mn-based 
NPs can be used as effective  T1 contrast agents in MRI [52]. 
APT-Mn-ZIF-90 showed a concentration-dependent bright-
ening contrast effect in the  T1-weighted imaging in vitro 
(Fig. 6a). As shown in Figs. 6b and S19, the r1 value of 
APT-Mn-ZIF-90 was 3.160 mM−1/s, and the r2/r1 value was 
1.802, indicating the suitability of the NPs for  T1-weighted 
imaging. After the intravenous injection of APT-Mn-
ZIF-90 and Mn-ZIF-90 into the tumor-bearing mice for 24 h 
(Fig. 6c),  T1-weighted MR signals could be observed from 
the tumor site, compared to the PBS group. The average gray 
value of APT-Mn-ZIF-90 (1881.16) was higher than that of 
Mn-ZIF-90 (1217.63), indicating that more NPs were accu-
mulated in the tumor after the modification of APT (Fig. 6d).

To evaluate the biodistribution of APT-Mn-ZIF-90 
in vivo, the main organs and tumors of the mice were col-
lected 24 h post-injection, and the concentration of  Mn2+ 
was determined by ICP-OES (Fig. 6e). There was no obvious 
accumulation of  Mn2+ in the major organs after the modifi-
cation of APT. The APT-Mn-ZIF-90 (7.142% ID/g) showed 
a much higher tumor accumulation than Mn-ZIF-90 (2.763% 
ID/g), which was consistent with the MRI results. This 
higher accumulation of NPs could be attributed to either the 
modified APT generating a better active targetability in vivo, 
or probably a longer blood circulation time.

3.6  In Vivo Pharmacokinetics and Antitumor Efficacy 
of APT‑Mn‑ZIF‑90/5‑Fu

Encouraged by the good performance of APT-Mn-ZIF-
90/5-Fu in drug release and cell inhibition in vitro, its 
pharmacokinetics and antitumor effects were evaluated 
in vivo. The blood concentration of 5-Fu decreased over 
time for the three tested groups after intravenously inject-
ing an equivalent 5-Fu of 8 mg kg−1 (Fig. 7a). Further-
more, no 5-Fu was observed after 8 h for the free 5-Fu 
group, but 5-Fu in the other two groups remained at a rela-
tively high concentration after 24 h. The blood circulation 
half-lives  (t1/2) were 6.8 and 4.0 h for APT-Mn-ZIF-90 and 
Mn-ZIF-90, respectively, which were 5.1- and 3.0-folds 
higher than that of free 5-Fu. At 24 h, the blood concentra-
tion of APT-Mn-ZIF-90/5-Fu (1.842 μg mL−1) remained 
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two times higher than that of the Mn-ZIF-90/5-Fu group 
(0.9148 μg mL−1). The higher drug concentration and long 
 t1/2 can be attributable to fact that the active-targeting APT 
generated pH-protective release during blood circulation.

The in vivo antitumor efficacy was tested for different 
groups after four administrations. The tumor sizes of the 
treated groups were monitored for 20 days (Fig. 7b). It 
was exciting to observe that the tumor grew slowly dur-
ing the administration process of APT-Mn-ZIF-90/5-Fu, 
and the tumor was eliminated, with no recurrence, within 

20 days (Fig. 7e). Meanwhile, the tumors of the other three 
groups all grew quickly over the observation time. The 
H&E staining images (Fig. 7f) show that there were neuro-
mas of tumor vacuole for the APT-Mn-ZIF-90/5-Fu group 
compared to the other groups. It is worth noting that all the 
mice treated with APT-Mn-ZIF-90/5-Fu showed no obvi-
ous tumor recurrence and survived for more than 60 days, 
while the average life spans with PBS, 5-Fu, and Mn-ZIF-
90/5-Fu were 26, 35, and 44 days, respectively (Fig. 7d). 
The aforementioned excellent therapeutic efficacy and 
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prolonged survival might be due to the following two rea-
sons: first, the longer blood circulation time and higher 
drug blood concentrations led to higher drug concentra-
tion in tumors; second, the simultaneous cell membrane 
and subcellular targeting increased drug concentration in 
tumor cells and induced the cell apoptosis.

Furthermore, there was no obvious body weight 
decrease after the treatment with APT-Mn-ZIF-90/5-Fu 
for 20 days (Fig. 7c). However, the PBS group showed a 
decrease in body weight from day 16. Additionally, tumor 
metastasis was found in the livers of the PBS group from 
the H&E staining images (Fig. 8), which may be attrib-
uted to the decrease in body weight, even causing the 

death. The same tumor metastasis could also be found in 
the 5-Fu and Mn-ZIF-90/5-Fu groups, and not the APT-
Mn-ZIF-90/5-Fu group. In addition, some organ dam-
age was found to the spleen treated with 5-Fu, but could 
not be found in the APT-Mn-ZIF-90/5-Fu group. These 
results indicate that the APT-Mn-ZIF-90 could depress 
tumor metastasis and decrease the side effects of 5-Fu 
on the major organs after therapy. More specifically, 
APT-Mn-ZIF-90/5-Fu showed low toxicity with fast 
clean-up and efficient antitumor efficacy with accompa-
nying excellent MRI performance in vivo, which can be 
expected to be an efficient nanoplatform in tumor preci-
sion medicine.
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4  Conclusions

In this work, we developed a novel  Y1Rs ligand APT-mod-
ified Mn-ZIF-90 nanosystem with both active-targeting and 
pH-responsive release to achieve excellent MRI contrast and 
chemotherapeutic efficacy of a breast tumor in vivo. The 
APT-Mn-ZIF-90 had higher drug loading than the ZIF-90 
in the previous report. Further, this nanosystem could target 
both the cell membrane and the subcellular mitochondria of 
MCF-7 cells. Therefore, the DNA-damaging drugs loaded 
in this nanosystem could be released in the mitochondria, 
generating better therapeutic efficacy. The drug concentra-
tion of the APT-Mn-ZIF-90/5-Fu group was approximately 
two times higher than that of Mn-ZIF-90/5-Fu at 24 h post-
injection. Especially, all tumors of the nude mice treated 
with APT-Mn-ZIF-90/5-Fu totally disappeared without 
recurrence, and no metastasis could be found in the liver. 
Active-targeting, high drug loading, and pH-responsive 
release were propitious to increase the drug concentration in 
the blood and more NP accumulation in the tumor, and fast 

drug release for killing tumor cells. Especially, this nanosys-
tem itself could generate high resolution  T1-weighted MR 
signals in the tumor site, which could be used to track the 
drug position in vivo. In addition, this nanosystem could 
be cleared out of the system within 14 days and showed 
no obvious toxicity and no damage to the mice. Thus, we 
believe this nanosystem could become a smart DDS in the 
future for more accurate and personalized imaging-guided 
therapy for breast cancer.
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