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HIGHLIGHTS

• S-doped porous carbons (SCs) derived from conjugated microporous polymers were synthesized for Na-ion batteries.

• The SCs exhibited a high capacity of 440 mAh g−1 at 50 mA g−1 and excellent cycling performance.

• Ex situ X-ray photoelectron spectroscopy was used to investigate the electrochemical reaction mechanism of the SCs.

ABSTRACT Na-ion batteries (NIBs) have attracted considerable 
attention in recent years owing to the high abundance and low cost 
of Na. It is well known that S doping can improve the electrochemi-
cal performance of carbon materials for NIBs. However, the current 
methods for S doping in carbons normally involve toxic precur-
sors or rigorous conditions. In this work, we report a creative and 
facile strategy for preparing S-doped porous carbons (SCs) via the 
pyrolysis of conjugated microporous polymers (CMPs). Briefly, 
thiophene-based CMPs served as the precursors and doping sources 
simultaneously. Simple direct carbonization of CMPs produced 
S-doped carbon materials with highly porous structures. When used 
as an anode for NIBs, the SCs exhibited a high reversible capac-
ity of 440 mAh g−1 at 50 mA g−1 after 100 cycles, superior rate 
capability, and excellent cycling stability (297 mAh g−1 after 1000 
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cycles at 500 mA g−1), outperforming most S-doped carbon materials reported thus far. The excellent performance of the SCs is attributed 
to the expanded lattice distance after S doping. Furthermore, we employed ex situ X-ray photoelectron spectroscopy to investigate the 
electrochemical reaction mechanism of the SCs during sodiation–desodiation, which can highlight the role of doped S for Na-ion storage.

KEYWORDS Conjugated microporous polymer; S-doped porous carbons; Na-ion batteries; Reaction mechanism

1 Introduction

Recently, Li-ion batteries (LIBs) have seen tremendous 
progress owing to the significant development of electrical 
devices and electric vehicles [1–4]. However, the emerg-
ing demand for LIBs has resulted in a latent shortage of 
Li. Therefore, Na-ion batteries (NIBs), as one of the poten-
tial alternatives to LIBs, have attracted increasing research 
attention owing to the low cost and eco-friendliness of Na 
[5–8]. However, the radius of the Na ion is larger than that 
of the Li ion; therefore, the diffusion of Na ions is hindered 
in the NIB system. Hence, it remains a challenge to find a 
suitable accommodator to realize reversible and fast inser-
tion–extraction of Na ions [9–11].

Carbonaceous materials are candidates for the anode of 
NIBs, owing to their abundance, superior conductivity, and 
outstanding stability [12, 13]. In numerous studies, carbo-
naceous materials have exhibited excellent cycling stability 
as the anode for NIBs [14–16]. However, owing to the low 
diffusion coefficient of Na, carbonaceous materials deliver 
a poor reversible capability [17, 18]. It is well known that 
introducing heteroatoms, such as S, can modify the structure 
and enhance the electrical conductivity of carbon materi-
als [17, 19–21]. Additionally, S doping has been shown to 
improve the Na-ion storage capability of carbon materi-
als by producing defects and pores [22] and increasing the 
interlayer distance [10, 23]. For example, by conducting 
pyrolysis of 1,4,5,8-naphthalenetetracarboxylic dianhydride 
in S steam, Li et al. [9] obtained S-doped disordered car-
bon with a high initial reversible capacity of 516 mAh g−1 
at 20 mA g−1 for NIBs. Yang et al. [24] prepared S-doped 
N-rich carbon via thermolysis of N-rich carbon in an  H2S/
Ar atmosphere, which delivered excellent reversibility for 
Na-ion storage (350 mAh g−1 at 50 mA g−1). Hong et al. 
[25] obtained S-doped hard carbon through the molten salts 
method using S and  Na2S2O3 powders as S sources, which 
exhibited a capacity of 200 mAh g−1 at 1000 mA g−1. These 
studies indicate that S exhibits high activity with a reversible 
electrochemical reaction for Na-ion storage when it is doped 

in carbonaceous materials. However, the methods used in 
previous studies for S doping suffer from several shortcom-
ings, including toxic precursors, complex processes, and 
strict conditions. Additionally, the Na-ion storage capacity 
of the reported S-doped carbon must be improved for practi-
cal applications. Therefore, developing a facile approach for 
the preparation of high-performance S-doped carbon materi-
als remains highly challenging [26].

As organic porous polymers, conjugated microporous 
polymers (CMPs), which are composed of lightweight ele-
ments and connected by inherent π conjugation and strong 
covalent linkage, are attracting attention [27, 28]. CMPs 
have a wide range of potential applications, including gas 
adsorption, catalysis [29], sensors [30], and energy storage 
[31–34], owing to their tunable and flexible structures [35, 
36]. In particular, CMPs with a suitable porosity and heter-
oatom doping level can be obtained by tuning their porous 
architectures and functional groups, respectively, which are 
the ideal precursors for in situ heteroatom-doped carbons 
[37–39]. For example, Zhuang et al. [40] obtained B, N-co-
doped porous carbons derived from CMPs and found that 
the rich B, N-doped porous carbons exhibited high catalytic 
performance for the oxygen reduction reaction (ORR). Hao 
et al. [41] prepared N-doped carbon materials derived from 
CMPs with a specific capacitance of 151 F g−1 at 0.1 A g−1 
for a supercapacitor. Recently, Su et al. [42] synthesized 
N, S-co-doped carbon nanosheets through the activation 
of S-doped CMPs at different temperatures in an ammonia 
atmosphere, which exhibited high catalytic performance for 
the ORR. These aforementioned works offer a facile strategy 
for the in situ preparation of S-doped porous carbons (SCs) 
from CMPs and indicate the possibility of applying the SCs 
to the anodes of NIBs owing to their superior structure and 
electrochemical behaviors. However, relevant exploration 
has not been performed.

In this work, a S-containing thiophene-based CMP 
(SCMP) was prepared through a conventional solution phase 
reaction method and used as the precursor as well as the 
doping source for in situ preparation of SCs. Owing to the 



Nano-Micro Lett. (2019) 11:60 Page 3 of 13 60

1 3

abundance and regular distribution of S atoms in the SCMP 
precursor, the S element was successfully doped into the 
carbon skeletons. The as-prepared SCs exhibited excellent 
Na-ion storage performance, indicating their potential for 
high-performance NIBs.

2  Experimental

2.1  Synthesis

In a typical procedure, 6.0 g of 1,2,4,5-benzenetetracarbox-
ylic anhydride (PDA) and 20.0 g of phosphorus pentasulfide 
were dissolved in a xylene solution (150 mL). Then, the 
mixture was vigorously stirred at 120 °C for 7 days under 
a reflow process. After the reaction, the black powder was 
collected via filtration, and then the powder was further 
extracted using tetrahydrofuran in a Soxhlet apparatus for 
3 days and dried at 80 °C for 12 h. The obtained SCMP 
was carbonized at different temperatures for 4 h with a heat-
ing rate of 5 °C min−1 in a  N2 atmosphere. Subsequently, 
the samples were immersed in water at 70 °C overnight, 
followed by washing. The obtained products were dried at 
60 °C for 6 h. To evaluate the economy of our SCs, the 
yield of polymerization and the quality after pyrolysis were 
examined. More than 3.7 g of SCMP was obtained after the 
polymerization of 6.0 g of PDA and purification through 
Soxhlet extraction. Finally, approximately 1.2 g of the sam-
ple was obtained after carbonization. PDA is a low-cost 
CMP precursor (~ $60 per kg); most organic units for pre-
paring microporous polymers are more expensive. Addition-
ally, most S-doped carbon materials used for SIBs employ 
powdered S and  H2S as doping sources. During the pyrolysis 
of powdered S and  H2S, a significantly larger amount of S is 
wasted in the tail gas compared with our pyrolysis process, 
which is environmentally unfriendly for large-scale produc-
tion. Our approach is an economical and scalable method to 
obtain S-doped carbon for SIB applications.

2.2  Materials Characterization

To study the bond structure of SCMP, the as-prepared 
polymer was characterized via Fourier transform infra-
red (FTIR) spectroscopy and 13C nuclear magnetic 
resonance (NMR) spectroscopy (Bruker AVANCE III 

300 Spectrometer). Powder X-ray diffraction (XRD, 
Bruker) patterns were obtained using Cu Kα radiation 
(λ = 1.5406 Å). The morphologies and structures of the 
samples were observed via scanning electron microscopy 
(SEM, S-4800, Hitachi) and transmission electron micros-
copy (TEM, JEM-2010, JEOL). A multifunctional X-ray 
photoelectron spectrometer (XPS, ESCALAB 250XI, 
Thermo Scientific) was employed to analyze the chemical 
states and compositions of the samples. Raman spectra 
were obtained using a Raman spectrometer (RM-1000, 
Renishaw) with a laser having a wavelength of 632.8 nm. 
The carbon conversion rate of the SCMP was character-
ized via thermogravimetric analysis (TGA, TGA/DSC 
1/1600HT, Metter), under heating from room temperature 
to 1000 °C with a heating rate of 10 °C min−1 in a  N2 
atmosphere. The  N2 adsorption–desorption isotherms were 
obtained at 77 K using an Autosorb iQ2 system (Quan-
tachrome Instruments), and the specific surface area and 
pore-size distribution were calculated from the adsorption 
data using the Brunauer–Emmett–Teller (BET) model.

2.3  Electrochemical Testing

In a typical procedure, active materials,  carbon black 
and carboxymethyl cellulose were mixed in water with 
a weight ratio of 8:1:1 for homogenous sizing. Then, the 
solution was coated onto Cu foil and dried at 120 °C for 
24 h. The mass of the active materials for each electrode 
was approximately 1  mg  cm−2. Electrochemical tests 
were conducted at atmospheric temperature in coin cells 
(C2032-type), which were assembled in an MBraun glove-
box filled with Ar. In the coin cells, the counter electrode 
was Na metal foil, the separator was a glass fiber filter 
(Whatman), and the electrolyte was ethylene carbonate 
and propylene carbonate (1:1, w/w) with 1 M  NaClO4. 
The cycling performance and galvanostatic charge/dis-
charge curves of the electrodes were evaluated using a 
LAND 2001A battery test system in the voltage range of 
0.005–3.0 V. Unless otherwise noted, cyclic voltammetry 
(CV) was performed using an Autolab electrochemical 
workstation (PGSTAT 204) at a sweep rate of 0.2 mV s−1. 
Electrochemical impedance spectroscopy (EIS) was per-
formed using the same electrochemical workstation after 
100 cycles in the frequency range of 0.1 Hz to 100 kHz.
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3  Results and Discussion

3.1  Structural Characterizations

The typical fabrication method for the SCMP is illustrated 
in Fig. S1. The SCMP was polymerized by a PDA mono-
mer with phosphorus pentasulfide in xylene for 7 days. Dur-
ing the process, phosphorus pentasulfide, which is a com-
monly used thionating reagent, caused the PDA to undergo 
a sequence of thionation, isomerization, and polymerization 
reactions [42]. To prove that the SCMP was polymerized, 
the solid-state 13C NMR spectra of the SCMP were obtained, 
as shown in Fig. S2. 13C peaks for the SCMP at 138.5, 129.7, 
and 123.7 ppm were detected, which are attributed to the 
C–S,  CC–S–C–CC–H, and C–H bonds, respectively, indicat-
ing that the polymerization occurred as expected. Addition-
ally, there was a peak near 175 ppm, which is attributed 
to the unreacted anhydride C  (CC=O) from the PDA mono-
mer. The FTIR spectra were also obtained, to confirm the 
polymerization. In Fig. S3, the FTIR absorption bands at 
1771 and 1858 cm−1 are attributed to C=O vibration in the 

PDA monomer. After the polymerization, these absorption 
bands disappeared, and new absorption bands at 1612 and 
1438 cm−1 emerged, which are assigned to the newly formed 
C=C bond [42]. To measure the carbon content, the TGA 
curve of the SCMP in  N2 was obtained, as shown in Fig. S4. 
Considering the relatively low thermostability of the thio-
phene and sulfonate group compared with the carbon skel-
eton, the large weight loss during carbonization is ascribed 
to the decomposition of these functional groups. Finally, the 
SCs were obtained via the pyrolysis of the SCMP at different 
temperatures in  N2. Samples carbonized at 600, 700, 800, 
and 900 °C are denoted as SC-600, SC-700, SC-800, and 
SC-900, respectively.

Figure 1a–d shows SEM images of SC-600, SC-700, 
SC-800, and SC-900. All the SCs exhibited similar struc-
tures, indicating the stability of the SCMP-converted car-
bon matrix. To analyze the distribution of S in the SCs, 
energy-dispersive X-ray spectroscopy (EDS) elemental 
mapping was performed, as shown in Fig. 1e. We clearly 
observed that S was homogeneously distributed in SC-800, 
indicating that S was doped in the SCs. Figure 1f presents 

Fig. 1  SEM images of a SC-600, b SC-700, c SC-800, and d SC-900. The insets show the corresponding magnified SEM images. e EDS ele-
mental mapping of SC-800. f HRTEM image of SC-800. The inset shows the average interlayer distance at the electronic scale
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a high-resolution TEM (HRTEM) image of SC-800. As 
shown, a disorder interlayer distance was detected. After 
the disposition of the micro-region (inset in Fig. 1f), the 
average interlayer distance was 0.40 nm, which is larger than 
that for graphite. HRTEM images of SCs carbonized at other 
temperatures are displayed in Fig. S5, which all exhibited 
an expanded average interlayer distance of approximately 
0.4 nm. The expanded interlayer distance of the SCs was 
expected to facilitate the insertion of Na ions into the layers 
[43].

Owing to the larger covalent diameter of S compared with 
C, the substitution of C by S in the carbonaceous material 

increased the spacing between adjacent sheets, as indicated 
by HRTEM [9, 44]. To confirm this, the XRD patterns of 
the SCs were obtained, as shown in Fig. 2a. All the samples 
exhibited two broad peaks around 23.5° and 43.2°, corre-
sponding to the (002) and (100) crystal faces of graphite, 
respectively [44, 45]. Using Bragg’s equation, the interlayer 
spacing (d002) of the samples was calculated as ~ 0.4 nm, 
which is consistent with the HRTEM results. This large 
interlayer spacing accelerated the diffusion of Na ions in 
the battery system, enhancing the electrochemical utiliza-
tion. Figure 2b shows the Raman spectra of the SCs. Two 
bands centered at 1350 and 1590 cm−1 are observed, which 
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are the D-band and G-band of C, respectively [46, 47]. Gen-
erally, the D-band represents the disorder carbon, and the 
G-band is related to the graphitic carbon. Hence, the inten-
sity ratio of the D-band to the G-band (ID/IG) indicates the 
degree of disorder for carbon materials. ID/IG was calculated 
as 0.83, 0.90, 0.93, and 1.00 for SC-600, SC-700, SC-800, 
and SC-900, respectively. These values indicate that more 
defects were generated at a higher temperature, providing 
more active sites for Na-ion accommodation [48].

To investigate the compositions of the SCs, XPS was per-
formed. The S contents in SC-600, SC-700, SC-800, and 
SC-900 were 9.79, 8.69, 6.25, and 4.89 at%, respectively, 
indicating a declining trend with an increase in the carboni-
zation temperature. Figure 2c shows the high-resolution C 1s 
spectrum of SC-800, which can be deconvoluted into three 
peaks. Among them, the spectrum is principally constituted 
by the C–C bond, indicating that the SCMP was carbonized 
after the pyrolysis. The other two peaks are attributed to 
the C–S and C–O bonds, indicating that the S atoms were 
linked tightly to the SCs. Figure 2d shows the high-resolu-
tion S 2p spectra of SC-600, SC-700, SC-800, and SC-900. 
After fitting, all the spectra could be deconvoluted into three 
peaks. Among them, the two peaks at 163.7 and 164.8 eV 
are attributed to S  2p3/2 and S  2p1/2, respectively, for the 
–C–S–C– covalent bond of thiophene S. The other peak at 
168.4 eV corresponds to the C–SOx–C (x = 2–4) group, con-
firming that S was successfully incorporated into the carbon 
skeletons [9, 49, 50]. Notably, O was also present in the 
doped samples (as shown in Fig. S6), which should come 
from the unreacted anhydride C (as shown in Fig. S2). The 
doped O mainly bonded with S, forming a sulfonate group, 
as confirmed by the C–SOx–C (x = 2–4) group observed in 
Fig. 2d. This group may have increased the interlayer dis-
tance of the SCs owing to its relatively large size. The O 
contents in SC-600, SC-700, SC-800, and SC-900 were 14.2, 
11.64, 9.19, and 8.20 at%, respectively, indicating a declin-
ing with the increasing carbonization temperature, similar 
to that of the S content.

Figure 2e, f shows the  N2 sorption isotherms and pore-size 
distributions of the samples. According to the International 
Union of Pure and Applied Chemistry (IUPAC) classifica-
tion, the isotherms of SCs (Fig. 2e) exhibit typical type IV 
curves with a hysteresis loop located in the relative pressure 
range of 0.1–0.9, indicating that all SCs have a mesoporous 
structure. Calculations using the BET model indicated that 
the specific surface areas of SC-600, SC-700, SC-800, and 

SC-900 were 446.1, 388.6, 331.4, and 320.5 m2 g−1, respec-
tively. The BET specific surface area of the SCs decreased 
with the increasing pyrolysis temperature. This phenom-
enon was due to the reduction in the S doping content with 
the increasing pyrolysis temperature, which resulted in the 
decrease in structural defects in the SCs [51]. The pore-size 
distributions of the PCSs were analyzed via nonlocal den-
sity functional theory calculations, as shown in Fig. 2f. As 
expected, the pores of the SCs were mainly distributed in the 
mesoporous range, from 2 to 10 nm. Owing to the similar 
mesoporous structures of the SCs, a larger specific surface 
area of SCs provided a larger contact interface area between 
the electrode and the electrolyte [52, 53].

3.2  Electrochemical Performance

To evaluate the electrochemical performance, the initial 
three CV curves of SC-800 were obtained, as shown in 
Fig. 3a. In the first cycle, a large irreversible cathodic peak 
was observed at approximately 0.8 V, which was due to 
the formation of a solid–electrolyte interphase (SEI) layer 
[9]. Additionally, a redox couple located at 1.1/1.8 V was 
observed, which is ascribed to the redox reaction of doped 
S in SC-800. This phenomenon is similar to those observed 
in previously reported Na-S batteries [54, 55]. Owing to the 
electrochemical activity of the covalently bonded S, our SCs 
could accommodate more Na ions, improving the reversible 
capacity [56]. Figure 3b displays the galvanostatic charge/
discharge profiles of the SC-800 electrode at a current den-
sity of 50 mA g−1. Visible plateaus around 1.1/1.8 V are 
observed, corresponding to the redox reaction. After the 
initial three cycles, the specific capacity of SC-800 changed 
little.

Figure 3c shows the EIS spectra of the SCs electrodes, 
which were obtained after 100 cycles at 50 mA g−1. The 
Nyquist plots of the SCs electrodes were composed of an 
indistinct semicircle, a large semicircle, and a sloping line 
in the high-, medium-, and low-frequency regions, respec-
tively. Among them, the indistinct small semicircle was 
related to the resistance of the SEI layer and the constant-
phase element (CPE1). The large semicircle is attributed to 
the charge-transfer resistance (Rct) and  CPE2. The sloping 
line corresponds to the Warburg impedance (Zw) stemming 
from the diffusion of Na ions. (The corresponding equiva-
lent circuit of the EIS spectra is shown in Fig. 3d.) The Rct 
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values were 411.8, 255.9, 183.1, and 222.5 Ω for SC-600, 
SC-700, SC-800, and SC-900, respectively, which were 
obtained from the fitting results based on the equivalent 
circuit model shown in Fig. 3c. SC-800 had the lowest Rct, 
which facilitated the charge transfer and was thus beneficial 
to the Na-ion storage performance.

Figure 3d, e shows the cycling performance and corre-
sponding Coulombic efficiencies of the SCs. All the SCs 
exhibited capacity fading in the initial several cycles, which 
is ascribed to the formation of the SEI layer and reactions 
between Na ions and surface functional groups or adsorbed 
molecules [57]. After the initial several cycles, the Cou-
lombic efficiencies of all the electrodes improved to nearly 
99%, indicating that the SCs electrodes had excellent 
reversibility for Na-ion storage. Among all the samples, 
the SC-800 electrode exhibited the highest stable reversible 
capacity of 440 mAh g−1 at 100 mA g−1 after 100 cycles, 
while the reversible capacities of SC-600, SC-700, and 
SC-900 electrodes were 97, 224, and 384 mAh g−1, respec-
tively. Although the S content in the SCs decreased with an 
increase in the temperature (as indicated by XPS), leading to 
the reduction in the reversible capacity [48], the high ID/IG 
ratio and low Rct of SC-800 indicated that the disordered 

structure with rich active sites offered insertion/deinsertion 
of Na ions and enhanced the electron-transfer ability [58, 
59]. Therefore, SC-800 exhibited a superior Na-ion storage 
capability.

To further evaluate the electrochemical performance 
of the SCs, the rate performance was examined, as shown 
in Fig. 3f. The results indicated that the SC-800 electrode 
delivered reversible capacities of 570, 426, 389, 344, and 
304 mAh g−1 at 25, 50, 100, 250, and 500 mA g−1, respec-
tively. Thus, SC-800 exhibited superior rate performance to 
the other samples. When the current density recovered to 
25 mA g−1, the capacity returned to 534 mAh g−1, indicating 
the excellent recoverability of the electrode. The excellent 
rate capability and recoverability of SC-800 were mainly 
attributed to the S doping, which increased the electrical 
conductivity and facilitated Na-ion transport by increas-
ing the interlayer spacing [22]. The long-term cycling per-
formance of the SCs was evaluated at a current density of 
500 mA g−1, as shown in Fig. 4a. The reversible capacity of 
SC-800 reached 378 mAh g−1 in the first cycle and was sta-
bilized at 297 mAh g−1 after 1000 cycles, which was signifi-
cantly higher than those of SC-600 (76 mAh g−1), SC-700 
(84 mAh  g−1), and SC-900 (212 mAh  g−1). To assess the 
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Na-ion storage performance of our SCs, previously reported 
S-doped carbons were examined for comparison, as shown 
in Fig. 4a, b. Our SCs exhibited excellent rate performance, 
a high reversible capacity, and a stable cycling life, outper-
forming the other S-doped carbon materials.

The SCs exhibited better Na-ion storage performance than 
previously reported carbon materials without S doping [60, 
61]. The reason for this was analyzed as follows. According 
to calculations performed by Yu et al. [61], the lattice dis-
tance of carbon is increased by S doping, which is consistent 
with our TEM results in Fig. 1f. Because of the small lattice 
distance, the adsorption energy between carbon and Na ions 
was 0.365 eV, illustrating that the adsorption of Na ions in 
the interior of carbon was unstable, and the capacity mainly 
came from the edge of carbon [61]. After the doping, the 
lattice distance was increased, and the adsorption energy 
between the S-doped carbon and Na ions was enhanced 
(–0.216 eV), improving the stability of Na-ion adsorption 
[61]. The corresponding schematic is shown in Fig. 5.

To further illustrate the reaction mechanism of the SCs for 
Na-ion storage, ex situ XPS profiles of SC-800 in different 
charge/discharge states for the initial cycle were obtained, 
as shown in Fig. 6. There was a peak in the Na 2p spec-
tra after discharging (Fig. 6b), indicating that Na ions were 
inserted in SC-800. A significant shift was observed after 
discharging, which is attributed to the different states of Na-
ion insertion [62]. After charging to 3 V, the peak returned 
to its original position, indicating the reversibility of our 
SCs for Na-ion storage [62]. The Na 2p peak still existed 
after cycling, owing to the formation of the SEI layer. Fig-
ure 6c shows the XPS C 1s profiles of SC-800 in different 
states. Clearly, the intensity of the peak corresponding to 
the C–C bond was reduced after discharging to 0.005 V and 
then increased after charging to 3 V, indicating that our SCs 
had good reversibility for Na-ion storage. Additionally, a 
peak at 289.6 eV existed after discharging. This peak cor-
responds to the O–C=O bond and is attributed to the forma-
tion of organic matter from the SEI layer [63, 64]. To further 
investigate the capacity contribution from S, the XPS S 2p 
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profiles were obtained, as shown in Fig. 6d. Thiophene S 
was transformed into oxidized S after discharging, indicating 
that the Na ions reacted with the doped S in the SCs, includ-
ing the reversible part  (Na2S) and irreversible part  (Na2SO4). 
For the reversible part, Na ions reacted with C-S bonds, 
forming C-S-Na bonds. For the irreversible part, the reac-
tion was mainly caused by the formation of the SEI layer. To 
further analyze the SEI layer, the Cl 2p XPS profile after the 
initial cycle was obtained, as shown in Fig. S7. Two peaks 
at 199.1 and 200.8 eV were observed, which were due to 
the Na–Cl bond, indicating the presence of NaCl in the SEI 
layer [65].

To analyze the possible storage mechanism of the SCs 
electrodes for NIBs, the electrochemical kinetics for Na-
ion storage were investigated. Figure 7a shows the CV pro-
files of SC-800 at different sweep rates ranging from 0.2 to 
2 mV s−1. With increasing sweep rate, all the CV curves 
exhibited similar shapes, and slight shifts of the cathodic 
and anodic peaks were observed owing to the contribution of 
the capacitive characteristic. To analyze this characteristic, 
the relationship between the current and sweep rate was cal-
culated according to the literatures (Eqs. 1 and 2) [66, 67]:

where i and v represent the current density and sweep rate, 
respectively, and a and b are constants. According to the 
literature, the diffusion-controlled process is dominant if b 
is close to 0.5. Otherwise, the predominant mechanism is 

(1)i = av
b

(2)log i = b log v + log a

the surface-limited capacitive characteristic (b close to 1). 
Using Eq. 2, we calculated the b values from the slope of 
the graph of log i versus log v. The b values of peaks 1 and 2 
were 0.77 and 0.93, respectively, as shown in Fig. 7b. These 
results indicate that the capacity of the SC-800 electrode 
was dominated by the capacitive contribution. To confirm 
the total contribution for the SC-800 electrode, the fractions 
of capacitor-like (k1v) and diffusion-controlled (k2v1/2) cur-
rents were distinguished at a fixed potential (V) according 
to Eq. 3 [68–70]:

where k1 and k2 are constants. Equation 3 can be rewritten 
as Eq. 4:

 
The values of k1 and k2 are easily calculated via plotting 

the fitting lines of i(V)/v1/2 and v1/2, and then the capaci-
tive current ic(V) = k1v can be distinguished from the total 
measured current. For example, the capacitive current was 
compared with the tested current from the CV curves, as 
shown in Fig. 7c. The results indicated that the capacitive 
contribution to the capacity was 69% at a sweep rate of 
1.0 mV s−1. Figure 7d shows the capacitive contribution of 
SC-800 at sweep rates of 0.4, 0.6, 0.8, and 1.0 mV s−1. The 
corresponding capacitive contribution ratios were 58%, 62%, 
66%, and 69%. The capacitive contribution exhibited a ris-
ing trend with the increasing scan rate. The high capacitive 
contribution is ascribed to the short ion-diffusion length and 
rapid electron transfer and was responsible for the high-rate 

(3)i(V) = k1v + k2v
1∕2,

(4)i(V)∕v1∕2 = k1v
1∕2 + k2.
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capability [70]. Because of the capacitive behavior, a large 
number of Na ions could be easily stored on the surface 
or near-surface sites of the electrode, resulting in excellent 
cycling stability [68].

4  Conclusions

We successfully synthesized SCs from CMPs via a con-
venient, economical, and scalable method. Owing to the 
structural features provided by the CMP precursor, such as 
the large interlayer spacing, enhanced charge-transfer abil-
ity, and hierarchical pore distribution, SC-800 exhibited 
a high reversible capacity (440 mAh g−1 at 50 mA g−1), 
excellent rate performance, and superior cycling perfor-
mance (297 mAh g−1 at a current density of 500 mA g−1 
after 1000 cycles) for NIBs. The excellent performance 

of the SCs is attributed to the expanded lattice distance 
after S doping. Furthermore, we employed ex situ XPS to 
investigate the electrochemical reaction mechanism of the 
SCs during sodiation–desodiation, which can highlight the 
role of doped S for Na-ion storage.
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