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HIGHLIGHTS

• The developmental history of high-entropy materials and the conceptual origin of “high entropy” is comprehensively reviewed.

• The preparation methods of various high-entropy electrode materials are comprehensively reviewed.

• The application properties of various high-entropy electrode materials in electrocatalysis and energy storage are comprehensively 
reviewed, with a prospective outlook on the future development of such materials.

ABSTRACT High-entropy materials represent a new category of high-performance 
materials, first proposed in 2004 and extensively investigated by researchers over 
the past two decades. The definition of high-entropy materials has continuously 
evolved. In the last ten years, the discovery of an increasing number of high-entropy 
materials has led to significant advancements in their utilization in energy storage, 
electrocatalysis, and related domains, accompanied by a rise in techniques for fabri-
cating high-entropy electrode materials. Recently, the research emphasis has shifted 
from solely improving the performance of high-entropy materials toward exploring 
their reaction mechanisms and adopting cleaner preparation approaches. However, 
the current definition of high-entropy materials remains relatively vague, and the 
preparation method of high-entropy materials is based on the preparation method 
of single metal/low- or medium-entropy materials. It should be noted that not all 
methods applicable to single metal/low- or medium-entropy materials can be directly 
applied to high-entropy materials. In this review, the definition and development of 
high-entropy materials are briefly reviewed. Subsequently, the classification of high-entropy electrode materials is presented, followed 
by a discussion of their applications in energy storage and catalysis from the perspective of synthesis methods. Finally, an evaluation of 
the advantages and disadvantages of various synthesis methods in the production process of different high-entropy materials is provided, 
along with a proposal for potential future development directions for high-entropy materials.
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1 Introduction

The breakthrough of advanced materials has always been 
a key factor in changing human society. Materials are 
closely linked with human development and are essential 
for the advancement of science and technology. From a 
historical perspective, in primitive society, the explora-
tion of stone materials marked a fundamental distinction 
between humans and animals. The use of bronze and iron 
significantly improved human production capacity, leading 
to the transition from primitive society to feudal society. 
In modern times, the Industrial Revolution increased the 
demand for strong materials. The development of alloy 
materials such as iron and steel revolutionized large-scale 
machine production. Additionally, the need for rubber 
led to the discovery of polymer materials [1]. Alexander 
Parkes created the first artificial plastic by mixing chlo-
roform and castor oil, resulting in significant changes in 
people’s lifestyles. In the twentieth century, humanity 
entered an era of continuous exploration into advanced 
materials. The discovery and application of radioactive 
elements propelled advancements in nuclear industry 
development [2]. Organic material developments greatly 
expanded structural and functional material types [3]. Fur-
thermore, research into superconducting and conductive 
materials profoundly impacted progress within electronics 
and energy storage industries [4].

As a new material, high-entropy material (HEM) not 
only expands the composition space of structural and func-
tional materials, but also introduces new ideas and methods 
for material design due to its unique entropy effect. This 
is highly likely to once again revolutionize the way people 
live in the future [5–7].

Today, with the advancement of human society and 
advancements in science and technology, there has been 
extensive exploitation of traditional fossil fuels (coal, oil, 
natural gas). This not only leads to an energy crisis but 
also significantly impacts people’s lives and health through 
global warming and pollutant emissions. To address these 
issues, scientists are dedicated to exploring environmentally 
friendly renewable clean energy sources [8]. Research has 
shown that the abundant presence of  H2O,  CO2, and  N2 in 
the environment can be utilized to produce high-value prod-
ucts such as  H2, alcohols, and ammonia through electro-
chemical methods. These materials not only provide direct 

energy for society but can also be utilized in fuel cells to 
convert chemical energy into electrical energy for power 
supply.

Catalytic electrode materials play a crucial role in vari-
ous electrochemical processes including nitrogen reduction 
reaction (NRR), carbon dioxide reduction reaction  (CO2RR), 
oxygen reduction reaction (ORR), oxygen evolution reac-
tion (OER), hydrogen evolution reaction (HER), and alcohol 
oxidation reaction (AOR). Among them, alcohol oxidation 
reactions, redox reactions, and oxygen evolution reactions 
serve as two-and-a-half reactions for fuel cells and metal-
air batteries. Carbon dioxide reduction reactions and NRR 
help alleviate  CO2and nitrogen pollution generated during 
industrial and agricultural production. HERs are essential 
steps not only in water electrolysis for hydrogen production 
but also in photoelectrochemical batteries [9, 10], metal-air 
batteries [11–15], hydrogen fuel cells [16, 17], and hydroly-
sis batteries [18].

Furthermore, in the utilization of green renewable clean 
energy sources such as wind power, hydropower, or solar 
energy, the fluctuating and unstable nature of their power 
supply necessitates the deployment of increasingly efficient 
energy storage devices. These include lithium-ion batter-
ies (LIBs), sodium-ion batteries (SIBs), zinc-ion batteries 
(ZIBs), mixed ion capacitors, and lithium-sulfur batteries 
among others. Consequently, there is a growing demand for 
novel potential energy storage electrode materials [19–22].

In recent years, researchers have directed their attention 
toward electrode materials for energy storage and conver-
sion. Initially, they focused on simple single-metal elec-
trodes and graphite, gradually progressing to alloys, com-
plex carbon materials [23–27], metal–organic frameworks 
(MOFs) [28–31], organic materials [32], metal oxides [33, 
34], sulfides [35, 36], selenides [37], and halides [38–43]. 
While each of these materials possesses distinct properties 
individually, their performance alone is no longer sufficient 
to meet the demands for advanced electrode materials. Con-
sequently, there has been an emergence in the utilization of 
doping techniques [44–49] as well as composite formation 
[50–56] and defect design [35, 57–60] for material modi-
fication purposes. High-entropy materials incorporating 
multiple different metal elements can effectively increase 
entropy by leveraging synergistic effects among metal atoms 
to alter the crystal lattice structure dynamics and thermody-
namics of the material. This alteration ultimately enhances 
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the performance of electrode materials while exhibiting sig-
nificant potential in advancing electrocatalysis and energy 
storage technologies [61–65].

However, there are numerous types of high-entropy elec-
trode materials and various preparation methods. Different 
synthesis methods have distinct effects on material proper-
ties. Not all methods can synthesize a variety of elements 
into a single solid solution phase, and complex preparation 
methods often limit research on high-entropy electrode 
materials. Therefore, this paper briefly outlines the devel-
opment process of high-entropy materials and summarizes 
the preparation methods and applications of various high-
entropy electrode materials, including high-entropy metal 
(HEM), high-entropy oxide (HEO), high-entropy selenides/
sulfide, high-entropy carbides/nitrides, and high-entropy 
MOF.

2  Definition of High‑Entropy

"Entropy" is a thermodynamic concept used to measure the 
regularity of random processes and reveal their uncertainty. 
The definition of "high-entropy" originally stemmed from 
the development of high-entropy alloys. In the past, alloys 
were typically based on a primary component and improved 
alloy performance by incorporating small amounts of other 
components. In 1995, the Yeh’s team broke with traditional 
beliefs by proposing an alloy structure dominated by multi-
ple metallic elements, and in 2004, they first introduced the 
concept of high-entropy alloys (HEA) [66]. Subsequently, 
research on high-entropy alloys has experienced explosive 
growth. High-entropy alloys are a type of super solid solu-
tion alloy where solute and solvent elements cannot be dis-
tinguished, resulting in the absence of complex structures 
of intermetallic compounds. They generally consist of five 
or more metallic or nonmetallic elements in approximately 
equimolar ratios, with each element composing between 
5% to 35% [67]. The ability to form a stable structure is 
closely related to the Gibbs free energy, as we all know the 
Gibbs–Helmholtz equation is:

According to the Hume-Rothery rules, the incorpora-
tion of solute atoms into a multicomponent solid solution 
will not disturb the crystal structure of the parent phase. 
Therefore, it is believed by some that the mixing enthalpy 

(1)ΔG
mix

= ΔH
mix

− TΔS
mix

of high-entropy alloys, in addition to the atomic size dif-
ference and mixing entropy, will also have an impact on 
the formation of high-entropy alloys. After statistically 
analyzing the data of mixing enthalpy ΔHmix and atomic 
size difference δ of a large number of high-entropy alloys 
[68], the following conclusion is drawn: for disordered 
solid solutions, − 15 < ΔHmix < 5 kJ  mol−1, δ < 5%. Further 
research indicates that analyzing TΔSmix/ΔHmix is more 
meaningful compared to quantitative analysis of high-
entropy alloy formation. thus define:

where Tm represents the average melting point of the ele-
ments in the alloying group.

High-entropy alloys with simple structures can also be 
formed without the need for the number of alloying group 
elements ≥ 5 when Ω > 1 is satisfied.

The concept of "high entropy" can also be defined 
according to the size of the mixed entropy value, the mixed 
entropy value ΔSmix is greater than 1.5R is called high 
entropy, according to Boltzmann’s formula as well as the 
additivity of entropy can be obtained by the mixed entropy 
value of the solid solution alloy [68].

where R represents the ideal gas constant, and ci denotes the 
number of moles of component i.

In 2015, the concept of high entropy was initially 
applied to multicomponent oxides. Rost et al. conducted 
rigorous experiments and developed simple thermody-
namic models to demonstrate the significance of entropy 
in thermodynamics. They also formulated a five-compo-
nent oxide, further emphasizing the importance of their 
findings [69]. By increasing the number of components, 
the system’s mixing entropy can be effectively enhanced, 
leading to the high-entropy effect and the development of 
high-entropy materials with synergistic effects [70]. As 
research on high-entropy materials progresses, the defini-
tion of high entropy is constantly evolving and improving 
(Fig. 1). Nowadays, high-entropy materials are mainly 
categorized into high-entropy alloys, high-entropy oxides, 
high-entropy sulfides, high-entropy carbides, high-entropy 
selenides, and high-entropy nitrides etc., all exhibiting a 
variety of interesting structures and properties.
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3  High‑Entropy Materials

3.1  High‑Entropy Alloy

The crystal structure of high-entropy alloys is typically 
categorized as simple face-centered cubic (FCC), body-
centered cubic (BCC), and close-packed hexagonal (HCP) 
structures. Different atoms randomly occupy lattice sites 
within the structure, forming a single-phase solid solution 
structure. Ma et al. suggested that predicting the stability 
of HEA systems must equally consider the contributions 
of vibration, electron, and magnetic entropy based on 
calculations of CoCrFeMnNi high-entropy alloys [110]. 
Gao et al. investigated the HCP structure of HEA through 
phase diagram examination, CALPHAD modeling, and 
molecular dynamics simulations, revealing the significant 
development potential of single-phase HCP structure HEA 
containing transition metals and rare earth elements [110]. 
In high-entropy alloys, no single element exceeds 50% in 
content to serve as the primary element, thus the charac-
teristics of high-entropy alloys are collectively influenced 

by all elements. The appropriate elemental composition 
can be found through Bayesian optimization [111].

Based on the high degree of structural disorder, complex-
ity of elemental composition, and tunability of functionali-
ties in high-entropy materials, Yeh et al. summarized the 
four major effects of high-entropy alloys from the perspec-
tives of thermodynamics, kinetics, structure, and properties. 
These effects encompass the thermodynamic high-entropy 
effect, lattice distortion effect in structure, sluggish diffu-
sion effect in kinetics, and the "cocktail" effect in properties 
[112]. It is important to note that these four effects serve as 
a comprehensive summary of the impact that high-entropy 
materials have in various fields. Furthermore, they are 
interconnected and interdependent, necessitating a holistic 
approach.

Since 2004, there has been a growing interest in the 
remarkable wear resistance, hardness, and corrosion resist-
ance of high-entropy alloys. Consequently, during the first 
decade following the classification of high-entropy alloys, 
research predominantly concentrated on understanding the 
mechanical implications of compositional variations in these 

Fig. 1  Development of high-entropy electrode materials. Reprinted with permission from Refs. [66, 69, 71–75].  Copyright WILEY‐VCH Ver-
lag GmbH & Co. KGaA, 2015, The Author(s). Published by Springer Nature, 2021, Wiley‐VCH GmbH, 2019, Wiley‐VCH Verlag GmbH & Co. 
KGaA, 2020, American Chemical Society, 2021, American Chemical Society



Nano-Micro Lett.           (2025) 17:22  Page 5 of 35    22 

alloys and continually enhanced the techniques for their 
synthesis. The synthesis approaches for high-entropy alloys 
primarily rely on conventional methods like arc melting and 
casting. This involves melting various elements using a 500 
A current to create a high-entropy alloy, which is then solidi-
fied into ingots under 0.01 atm, with homogeneity achiev-
able through repeated cycles [113, 114]. Investigations 
across different systems have highlighted that the inclusion 
of Al, V, Ti, Nb, and Mo significantly impacts the hardness 

and wear resistance of the alloy [115–119]. The effects of 
varied elemental additions on hardness and wear resist-
ance are often mediated through modifications in the crys-
tal structure. Tong et al. observed that in  AlxCoCrCuFeNi 
alloys (x = 0–3), a low Al content leads to a simple fcc solid 
solution structure [115]. As the Al content approaches 
x = 0.8, a bcc structure emerges, followed by the formation 
of a mixture of fcc and bcc eutectic phases. An Al con-
tent exceeding x = 1 results in the generation of modulated 

Fig. 2  a Strategies for validating model hypotheses through computational modeling combined with experimentation. Reprinted with permis-
sion from Ref. [133]. Copyright 2021, Angewandte Chemie International Edition published by Wiley–VCH GmbH. b Schematic diagram of 
nanoporous materials constructed by dealloying method. Reprinted with permission from Ref. [82]. Copyright 2022, Advanced Science pub-
lished by Wiley‐VCH GmbH. c High-angle dark field-STEM image of high-entropy alloy with 14 elements by dealloying method. Reprinted 
with permission from Ref. [78]. Copyright 2021, The Royal Society of Chemistry. d Catalytic schematic of high-entropy alloys with 12 ele-
ments. Reprinted with permission from Ref. [134]. Copyright 2022, American Chemical Society. e Schematic diagram of synthesis of con-
vex cubic high-entropy alloy nanoparticles by low-temperature oil-phase synthesis. Reprinted with permission from Ref. [87]. Copyright 2022, 
Wiley‐VCH GmbH. f TEM image of homogeneous high-entropy alloy synthesized by low-temperature oil-phase method. Reprinted with per-
mission from Ref. [83]. Copyright 2020, The Author(s). Published by Springer Nature. g Schematic illustration for the fabrication of high-
entropy alloy nanocomposites and their application in seawater splitting and the SEM–EDS of the high-entropy alloy nanocomposites. Reprinted 
with permission from Ref. [91]. Copyright 2021, Elsevier Inc. h Sample preparation and the temporal evolution of temperature during the 55-ms 
thermal shock. Reprinted with permission from Ref. [93]. Copyright 2018, The American Association for the Advancement of Science
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plate structures and an organized bcc structure at x > 2.8. 
The alloy’s hardness escalates from HV133 to 655 with the 
increasing Al content, reaching maximum plasticity and 
hardness at x = 0.5. Chenl et al. observed that adding a min-
ute quantity of Ti to  Al0.5CoCrCuFeNiTix (x = 0–2) alloys 
generates an fcc solid solution phase. At x = 0.8–1.2, a phase 
resembling CoCr is formed, and at x = 1, a  Ti2Ni-like phase 
emerges. The wear resistance exhibits a linear relation with 
x at x = 0.6–1, peaks at x = 1, and subsequently decreases 
inversely with x. Incorporating Cu, Al, B, and Mo typically 
influences the corrosion resistance of the alloy [120–123]. 
The elements’ impact on corrosion resistance is usually 
attributed to their influence on the alloy’s passivation abil-
ity, thereby affecting its corrosion resistance. Notably, Mo 
addition often diminishes the metal’s corrosion resistance 
but tends to induce uniform corrosion rather than pitting 
corrosion, which may impact the internal structure [123]. 
The addition of Co typically reduces the alloy’s compressive 
strength [124], while Ni addition is linked to crystallization 
growth resistance and thermal stability [125]. The increasing 
use of high-entropy alloys has led to a surge in demand for 
high-entropy alloy thin films. The prevalent technique for 
fabricating high-entropy alloy thin films is radio frequency 
sputtering deposition [113, 115, 126, 127], where high-
entropy alloys are melted and cast into 5-mm-thick foils as 
targets, subjected to high-energy particles via a radio fre-
quency sputtering system, followed by depositing sputtered 
atoms onto a silicon wafer to obtain high-entropy metal thin 
films. Huang et al. utilized a radio frequency sputtering sys-
tem to deposit an  AlCoCrCu0.5NiFe high-entropy alloy oxide 
film on a silicon wafer. Subsequently, the film was annealed 
at 500, 700, or 900 °C to obtain an  AlCoCrCu0.5NiFe high-
entropy alloy thin film. When no oxygen was present in the 
working gas, the film remained amorphous. The introduction 
of oxygen at levels ranging from 10% to 50% resulted in the 
formation of an HCP structured oxide film with lattice con-
stants of a = 0.3583 nm and c = 0.4950 nm. This indicates 
that varying oxygen content had a significant impact on the 
structure and properties of the resulting film [126]. During 
annealing, grain size tended to increase, and intergranular 
micropores expanded. An et al. performed the preparation of 
CrCoCuFeNi alloy via a radio frequency magnetron sputter-
ing deposition method, attributing the formation of the solid 
solution phase to rapid cooling during the sputtering process 
[127]. Furthermore, other common methods for thin film 

preparation encompass laser cladding [119], pulsed laser 
deposition [128], constant potential deposition [129, 130], 
and detonation spray coating techniques [131]. The study 
of high-entropy metal thin film preparation methods has 
significantly advanced the practical developments of high-
entropy alloys.

As the exceptional physicochemical properties of high-
entropy alloys continue to be investigated, their applications 
are gradually expanding from structural materials to func-
tional materials.

The development of high-entropy alloy nanomateri-
als is primarily driven by research in the field of electro-
catalysis. Since Batchelor et al. in 2019 that high-entropy 
alloys exhibit nearly continuous adsorption energy distri-
bution and significant catalytic effects on ORR, research 
on high-entropy alloys in the realm of electrocatalysis has 
experienced explosive growth [132]. Subsequently, in 2021, 
Batchelor ’s team proposed a novel approach to optimize 
the model of high-entropy alloys using a method for char-
acterizing high-throughput datasets, thereby determining 
an unprecedented optimal ratio for solid solution forma-
tion during electrocatalytic reactions (Fig. 2a) [133]. The 
catalytic process typically occurs at the material’s surface; 
thus, a large specific surface area facilitates reactant adsorp-
tion. Consequently, the preparation method significantly 
influences specific surface area and plays a pivotal role in 
enhancing the electrocatalytic performance of high-entropy 
alloy nanomaterials (Table 1). Usually, the techniques for 
producing nanoporous high-entropy alloys primarily encom-
pass the dealloying method [76, 78–80, 82, 134, 135], low-
temperature liquid-phase method (also known as solvent 
thermal method) [84–87], constraint-assisted spark plasma 
sintering (APS) method [91], and carbon thermal shock 
method, etc. [94, 136].  

3.1.1  Dealloying Method

The dealloying method falls within the realm of corrosion 
engineering. It is a top-down synthesis approach for pro-
ducing nanoporous high-entropy alloy materials by chemi-
cally dissolving specific elements within the synthesized 
high-entropy alloys (Fig. 2b) [82]. This method is widely 
utilized due to its simplicity; however, the preparation of 
high-entropy metal precursors still relies on conventional, 
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Table 1  Summary of high-entropy alloys applied to catalysis

HEAs Synthetic method Catalytic reaction Performance References

AlNiCuPtPdAu-NPs Dealloying CO conversion/HER/ORR Complete conversion at 130 °C 
/ ~ 6.9 A  mg−1

Pt / ∼2.24 A 
 mg−1

Pt

[76]

AlFeCoNiCr Dealloying ORR/OER ORR half-wave potential is 
∼0.71 V / η10 ∼240 mV (at 
∼1.47 V) to reach a current 
density of 10 mA  cm−2

[77]

Al87Ag1Au1Co1Cu1Fe1Ir-
1Mo1Ni1Pd1Pt1Rh1Ru1Ti1

Dealloying HER/OER 2.44 A  mg−1
Pt / 274 mV, 

121.1 mV  dec−1 at 
10 mA  cm−2

[78]

Al88Ag1Au1Co1Cu1Fe1Ir-
1Mo1Ni1Pd1Pt1Rh1Ru1

Dealloying HER/OER 1.70 A  mg−1
Pt / 294 mV, 

116.3 mV  dec−1 at 
10 mA  cm−2

[78]

Al89Ag1Au1Co1Cu1Fe1Ir1Ni1P-
d1Pt1Rh1Ru1

Dealloying HER/OER 1.32 A  mg−1
Pt / 258 mV, 

84.2 mV  dec−1 at 10 mA  cm−2
[78]

Fe50Mn30Co10Cr10 Dealloying OER Overpotentials 247, 313 and 
362 mV to achieve 10, 50 and 
100 mA  cm−2

[79]

PtPdRhIrNi-NWs Dealloying HER 55 mV to drive the current den-
sity of 10 mA  cm−2

[80]

PtPdIrRuAuAg-SNRs Dealloying ORR E1/2 = 0.93 V 4.28 A mg Pt
−1 at 

0.9 V
[81]

FeCoNiCu Dealloying HER 42.2 mV, 31.7 mV  dec−1 at 
10 mA  cm−2

[82]

Pt18Ni26Fe15Co14Cu27 Low-temperature oil-phase 
strategy

HER/MOR 10.96 A  mg−1
Pt at− 0.07 V vs. 

RHE / 15.04 A  mg−1
Pt

[83]

PtRuRhCoNi-NWs Low-temperature oil-phase 
strategy

EOR/MOR/HER 9.50 A  mg−1
Pt / 8.20 A  mg−1

Pt / 
14.86 A  mg−1

Pt at − 0.05  VRHE

[84]

PdFeCoNiCu Low-temperature oil-phase 
strategy

HER 6.51 A  mg−1
Pd at − 0.07  VRHE [85]

PtPdRhRuCu MMN Low-temperature oil-phase 
strategy

HER 2.7 A  mg−1
Pt+Pd+Rh+Ru at − 0.05 

 VRHE

[86]

Pt34Fe5Ni20Cu31Mo9 Low-temperature oil-phase 
strategy

HER/OER/ORR 11.4 A  mg−1
Pt / η10 = 259 mV 

/  E1/2 = 0.87 V,  jmax = 5.6 
mA  cm−2 Tafel 
slope = 69 mV  dec−1

[87]

PtRhBiSnSb Low-temperature oil-phase 
strategy

MOR/EOR/GOR 19.529 A  mg−1
Pt+Rh / 15.558 

A  mg−1 / 7.535 A  mg−1
Pt+Rh

[88]

NiCoFePtRh Low-temperature oil-phase 
strategy

HER 22.65 mA  cm−2 at − 0.05  VRHE [89]

PtPdRhRuCu MMN Low-temperature oil-phase 
strategy

HER 2.7 A  mg−1
Pt+Pd+Rh+Ru at − 0.05 

 VRHE

[86]

PdPtCuPbBi UNRs Low-temperature oil-phase 
strategy

EOR 1.94 A  mg−1
Pd+Pt at 0.45  VRHE [90]

TiNbTaCrMo-NPs APS HER 96.33 mV  dec−1 at 50 mA  cm−2 [91]
Ru-Rh-Pd-Ir-Pt APS HER/ORR/OER − 0.1, 0.2, and 1.47 V RHE [92]
PtPdRhRuCe Carbothermal shock NOx conversion  ~ 100% conversion of  NH3 

and > 99% selectivity toward 
 NOx at 700 °C

[93]

Co0.2Ru0.7Pt0.1/PNC NSs Carbothermal shock HOR 1.84 A  mg−1
PGM (Pt/C 0.16 A 

 mg−1
PGM)

[94]
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energy-intensive methods like melting casting. Qiu et al. 
employed a method that combines rapid solidification and 
dealloying to fabricate a multicomponent nanostructured 
alloy, AlNiCuPtPdAu, termed as nanoporous high-entropy 
alloy (np-HEA), which exhibits notable high-temperature 
stability and CO oxidation activity [76]. Fang et al. iden-
tified a dual-functional AlFeCoNiCr oxygen electrocata-
lyst by adjusting the composition of nanostructured HEA/
HEO, delivering an open circuit potential of 1.55 V and 
a high specific capacity of 800 mAh  g−1 when employed 
in zinc-air batteries [77]. Cai et al. created a nanoporous 
ultra-high-entropy alloy consisting of 14 elements through 
the dealloying method (Fig. 2c) and utilized it in the HER 
and OER, which also provides a great opportunity for the 
selection of elements for the synthesis of more catalysts [78]. 
Yu et al. similarly generated a 12 component nanoporous 
high-entropy alloy using the dealloying approach (Fig. 2d), 
demonstrating superior catalytic effects for HER, redox 
reactions, and OER compared to commercial catalysts and 
use the np-12 as the cathode of zinc-air battery to verify its 
excellent performance and stability [134]. Zhou et al. pro-
duced a  Fe50Mn30Co10Cr10 OER electrocatalyst block with 
excellent catalytic performance using the dealloying tech-
nique [79]. Wang et al. synthesized PtPdRhIrNi nanoporous 
nanowires (NPNWs) by combining rapid solidification and 
dealloying, introducing a novel family of high-entropy alloys 
[80]. Li et al. proposed the synthesis of self-supported hier-
archical porous high-entropy alloy FeCoNiCu HEA using 
a physical metallurgy and dealloying strategy, opening the 
path for developing high-performance porous electrocata-
lysts by leveraging the chemical and microstructural proper-
ties of HEAs [82]. Tao et al. amalgamated multiple metal 
elements into a single-phase sub-nanometer ribbon, fabricat-
ing PtPdIrRuAuAg-SNRs with outstanding electrocatalytic 
performance, and offering a versatile approach to precisely 
control the components and concentrations in HEA SNRs 
[81].

3.1.2  Low‑Temperature Liquid‑Phase Method

The low-temperature liquid-phase reaction method, also 
known as the one-pot wet chemistry method, involves 
incorporating pore-forming agents and reducers with the 
metal precursor into a solvent, followed by stirring and 
reacting at reduced temperatures to yield high-entropy 

alloys (Fig. 2e) [87]. For high-entropy alloys, this tech-
nique offers the advantage of operating under gentler con-
ditions while enabling precise modulation of individual 
component concentrations. Li et al. synthesized uniform 
 Pt18Ni26Fe15Co14Cu27 high-entropy alloy nanoparti-
cles using a straightforward low-temperature oil-phase 
approach (Fig. 2f) [83]. Their study revealed outstand-
ing electrocatalytic performance of this material for the 
HER and methanol oxidation reaction (MOR). Addition-
ally, they innovatively developed ultra-thin PtRuRhCoNi 
high-entropy alloy nanowires (HEA-NWs) with remarkable 
selectivity for ethanol oxidation reaction (78%), exhibiting 
superior activity, turnover frequency, and stability for the 
HER process with PtRuRhCoNi NWs/C [84]. Zhang et al. 
[85] engineered high-entropy alloy RuFeCoNiCu nanopar-
ticles via a similar low-temperature oil-phase technique, 
demonstrating its substantial enhancement in the electro-
catalytic NRR at lower potentials, resulting in a notable 
 NH3 yield (11.4 µg  h−1  cm−2 at 0.05 V). Subsequently, they 
synthesized PdFeCoNiCu high-entropy alloy, showcasing 
exceptional catalytic efficiency for the electrocatalytic 
HER, with Pd and Co identified as the primary active sites 
for hydrogen generation and water decomposition. Chen 
et al. [87] fabricated a cubic  Pt34Fe5Ni20Cu31Mo9 high-
entropy alloy catalyst using a one-pot method, exhibiting 
remarkable electrocatalytic performance in the ORR, HER, 
and OER. Chen et al. reported a one-pot synthesis of hex-
agonal close-packed (hcp) PtRhBiSnSb high-entropy inter-
metallic compound (HEI) nanosheets, featuring inherently 
segregated Pt, Rh, Bi, Sn, and Sb atoms, achieving unprec-
edented MOR activity under alkaline conditions [88]. Kang 
et al. employed a one-pot wet chemical reduction method 
with a diblock copolymer as a soft template to synthesize 
core–shell-patterned PtPdRhRuCu mesoporous nano-
spheres (PtPdRhRuCu MMN) [86]. PtPdRhRuCu MMN 
showcases distinct reduction and growth kinetics from the 
metal precursor, boasting robust catalytic capability for the 
HER. Guang Feng and collaborators produced ultra-small 
NiCoFePtRh high-entropy alloy (us-HEA) nanoparticles 
with exceptional performance in HER through a versatile 
and efficient chemical coreduction approach, elucidating 
comprehensively the atomic, coordination, and electronic 
structure of us-HEAs [89].
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3.1.3  Confinement‑Assisted Arc and Plasma Shock 
Method

The confinement-assisted arc and plasma shock (APS) 
method employs constrained assistive APS to generate a 
high-energy plasma arc for bombarding multimetal pow-
ders, leading to the production of gaseous metal atoms and 
the formation of nanoscale multimetallic alloys during rapid 
cooling (Fig. 2g). Wang et al. [91] synthesized TiNbTaCrMo 
HEA-NPs using this approach and identified its potential 
as a viable candidate for the electrocatalytic HER in natu-
ral seawater. Banko et al. [92] combined co-sputtering with 
shadow masking to create multiple microscale composite 
libraries in a deposition process. Additionally, Yoshihiro 
Chida [137] proposed an experimental research platform 
for synthesizing atomically controlled single-crystal high-
entropy alloy surfaces in a vacuum and prepared nanothick 
Pt and equiatomic ratio Cr–Mn–Fe–Co–Co-Ni epitaxial 
layers on a Pt substrate, evaluating their catalytic activity. 
Li et al. [90] introduced a programmable method for manu-
facturing nanoscale HEAs with controllable composition 
and structure, enabling the combination of five or more ele-
ments such as Pd/Pt/Ag/Cu/Fe/Co/Ni/Pb/Bi/Sn/Sb/Ge. They 
successfully produced PdPtCuPbBi UNRs using a two-step 
template-directed synthesis.

3.1.4  Carbon Thermal Shock Method

The carbon thermal shock method is employed to synthe-
size nanoparticles with desired chemical compositions, 
sizes, and phases by loading a mixture of precursor metal 
salts onto a carbon carrier and subjecting it to continuous 
thermal shocks at approximately 2000 K. Yao et al. [93] 
have pioneered the development of a carbon thermal shock 
platform suitable for high-entropy alloying (Fig. 2h), ena-
bling the preparation of high-entropy alloying nanoparticles 
containing eight different metal elements. Furthermore, the 
synthesis of high-entropy alloying nanoparticles using the 
carbon thermal shock method is not limited to mixtures of 
metal salts alone. Additionally, Qiu et al. [94] have suc-
cessfully synthesized  Co0.2Ru0.7Pt0.1/PNC NSs through a 
general 2D MOF-assisted pyrolysis-replacement-alloying 
route, suggesting this as an appealing synthetic approach 
for constructing high-performance multimetal nanomateri-
als. Notably, Cha et al. [94] in recent years, reported a rapid 

flash thermal shock method for synthesizing high-entropy 
nanoparticles on carbon nanofiber carriers with significantly 
enhanced synthesis rates.

In conclusion, high-entropy alloy materials form the foun-
dation of high-entropy material research and serve as the 
defining elements of high-entropy materials. High-entropy 
alloy bulk materials, thin film materials (including high-
entropy ceramics and glass), are widely applied as structural 
materials. Researchers have conducted extensive studies on 
the impact of different metal elements and element ratios 
on their structure. In terms of electrocatalysis, high-entropy 
alloy nanomaterials (such as nanoparticles and nanowires) 
play a crucial role. The precursors for dealloying process 
need to be synthesized using traditional alloy synthesis 
methods, leading to drawbacks such as high energy demand, 
stringent equipment requirements, and a two-step synthesis 
process to obtain the material. The carbon thermal shock 
method is capable of easily synthesizing high-entropy alloy 
nanomaterials with multiple metal elements. However, due 
to the high temperature required, it has significant energy 
and equipment requirements, making it uneconomical for 
synthesis and limiting the final product shape and size. Nev-
ertheless, its rapid synthesis and simple steps give it poten-
tial for large-scale preparation. The confinement-assisted arc 
and plasma shock (APS) method show great potential in 
research due to their high precision in controlling the incor-
poration of metal elements at the atomic level. However, 
they have the highest equipment requirements and costs 
and do not have potential for large-scale preparation. On 
the other hand, the low-temperature liquid-phase synthesis 
method offers mild conditions and lower economic costs. It 
allows for easy adjustment of metal crystal structure and can 
synthesize microstructures more suitable for electrocatalysis. 
Nonetheless, this method faces a higher synthesis energy 
barrier for high-entropy alloys compared to medium–low 
entropy alloys due to its limited energy provision. Addition-
ally, it requires thorough mixing of components and has a 
limited diffusion rate in the liquid phase, making it unsuit-
able for large-scale synthesis. Therefore, the APS method 
and low-temperature liquid-phase method are expected 
to undergo long-term development in experimental find-
ings. Despite the economic disadvantages of the carbon 
thermal shock method, it remains the preferred choice for 
industrialization.
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3.2  High‑Entropy Oxides

Since the groundbreaking work by Rost et al. in 2015 [69], 
which demonstrated the synthesis of high-entropy solid solu-
tion oxides, the application of these materials has progres-
sively extended beyond structural applications to encom-
pass electrochemical energy storage systems [138]. Xu et al. 
[139] have demonstrated that high entropy can enhance the 
protonation ability of the oxide and facilitate the movement 
of the O-p band center toward the Fermi level. This, in turn, 
leads to an improvement in the performance of the oxide 
as a cathode material for batteries. High-entropy oxides 
are characterized by their incorporation of multiple metal-
lic elements (typically more than five) and exhibit diverse 
crystal structures, including perovskite, rock salt, and spi-
nel structures. During the process of charging and discharg-
ing, the crystal structure of the oxide will undergo changes 
in response to variations in voltage. The key to enhancing 
its cycle stability lies in designing a more reversible high-
entropy oxide material. The choice of crystal structure sig-
nificantly influences the performance and utilization poten-
tial of high-entropy oxides. At the same time, the variation 
in elements also significantly impacts the characteristics of 
high-entropy oxides. When all metal elements are transi-
tion metals, they typically exhibit a substantial dielectric 
constant. Integration of rare earth elements results in high-
entropy rare earth oxides with a narrower band gap [140]. 
Furthermore, when both transition metal and rare earth ele-
ments are integrated, they demonstrate even greater potential 
characteristics (Table 2).

The synthesis methods of high-entropy oxides mainly 
include solvothermal method (Fig. 3a) [95, 108], solid-phase 
reaction method (Fig. 3b) [102], solution combustion syn-
thesis method (Fig. 3c) [141], gel method and other synthe-
sis methods (Fig. 3d) [142].

3.2.1  Solvothermal Method

The solvent thermal method of oxides is to obtain oxides 
by dissolving metal salts in solvents, adding precipitant 
and reacting in a hydrothermal kettle. High-performance 
lithium-ion batteries often utilize high-entropy oxide 
spinel structure materials. Nguyen et  al. synthesized 
(MnFeCoNiCr)3O4 particles through a surfactant-assisted 
hydrothermal method (Fig.  4a). After 200 cycles at a 

charge–discharge rate of 500 mA  g−1, the particles exhib-
ited a capacity retention rate of 90% (1235 mAh  g−1) and 
demonstrated excellent rate performance (500 mAh  g−1 at 
2000 mA  g−1) [95]. Similarly, high-entropy oxide rock salt 
materials with a similar structure to spinel are extensively 
employed in lithium-ion batteries. Cheng et al. investigated 
the lattice distortion of high-entropy oxides under pressure 
by studying the rock salt phase  (Co0.2Cu0.2Mg0.2Ni0.2Zn0.2)
O, revealing its highly adjustable nature [143]. Liu et al. 
[108] using the hydrothermal method (Fig. 4b), introduced 
ions with targeted functions into oxygen vacancies of rock 
salt (MgCoNiCuZn)O, thereby enhancing ion/electron trans-
mission kinetics and achieving stable discharge capacity of 
MO at 549 mAh  g−1 under a current density of 0.1 A  g−1; 
moreover, Li-MO exhibited an increased specific capacity 
up to 714 mAh  g−1, highlighting the potential for structural 
and compositional adjustability as well as promising devel-
opment prospects offered by rock salt oxides. In October 
2022, Biesuz et al. [144] employing manganese instead of 
nickel through hydrothermal synthesis, developed the first 
nickel-free high-entropy rock salt material (Mg, Co, Mn Cu 
Zn)O that improved safety and environmental friendliness 
while maintaining conductivity higher than  10–3 S  cm−1 and 
stability characteristics even at elevated temperature such as 
80 °C. Su et al. [145] elucidated the composition-depend-
ent transformation/alloying reaction kinetics and the spati-
otemporal changes in valence state during lithiumization by 
investigating the diverse reaction kinetics and structural evo-
lution of rock salt HEO throughout cycling, thereby offering 
valuable insights for the design of enhanced lithium stor-
age devices. He et al. [146] synthesized (CoCuFeMnNi)3O4 
using a microwave-assisted solvothermal method, which sig-
nificantly reduces the time required for solvothermal synthe-
sis and allows for precise control at the nanoparticle scale.

3.2.2  Solid‑Phase Reaction Method

The solid-phase preparation method for high-entropy 
oxides involves obtaining the material by calcining the 
precursor in an oxygen atmosphere. Wang et  al. suc-
cessfully synthesized a single-phase spinel structure 
(FeCoNiCrMn)3O4 through high-temperature solid-state 
reaction at 900 °C. This material exhibited a high spe-
cific capacity of 1034/680 mAh  g−1 (discharge/charge) 
and excellent rate performance of 182 mAh   g−1 at 2 
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Table 2  Summary of high-entropy oxides applied to energy storage

HEOs Method Structure Battery Elec-
trode

Performance References

(MnFeCoNiCr)3O4 Surfactant-assisted hydrother-
mal

Spinel LIBs Anode 1235 mAh  g−1 (500 mA  g−1) [95]

(FeCoNiCrMn)3O4 High-temperature solid-state 
reaction

Spinel LIBs Anode Discharge and charge1034/680 
mAh  g−1 (500 mA  g−1 first 
cycle)

[96]

(Al0.2CoCrFeMnNi)0.58O4 High-temperature solid-state 
reaction

Spinel LIBs Anode 554 mAh g −1 (200 mA  g−1 
after 500 cycle)

[97]

(FeCoNiCrMnCuLi)3O4 High-temperature solid-state 
reaction

Spinel LIBs Anode Discharge and 
charge1000.1/626.6 mAh  g−1 
(50 mA  g−1 first cycle)

[98]

(FeCoNiCrMnMgLi)3O4 High-temperature solid-state 
reaction

Spinel LIBs Anode discharge and 
charge1031/592.1mAh  g−1 
(50 mA  g−1 first cycle)

[98]

(FeCoNiCrMnZnLi)3O4 High-temperature solid-state 
reaction

Spinel LIBs Anode Discharge and 
charge1049.9/706 mAh  g−1 
(50 mA  g−1 first cycle)

[98]

(FeNiCrMnMgAl)3O4 Solution combustion synthesis Spinel LIBs Anode 657 mAh  g−1 (200 mA  g−1 
after 200 cycle)

[99]

(CrFeMnNiCo2)3O4 Solution combustion synthesis Spinel LIBs Anode Stable capacity 467.8 mAh  g−1 
(200 mA  g−1)

[100]

(CrFeMnNiCo3)3O4 Solution combustion synthesis Spinel LIBs Anode stable capacity 574.1 mAh  g−1 
(200 mA  g−1)

[100]

(CrFeMnNiCo4)3O4 Solution combustion synthesis Spinel LIBs Anode Stable capacity 506.2 mAh  g−1 
(200 mA  g−1)

[100]

(CrFeMnCoMgLi)3O4 Solution combustion synthesis Spinel LIBs Anode Stable capacity 393.1 mAh 
 g−1(100 mA  g−1)

[101]

(CrFeMnCoMg)3O4 Solution combustion synthesis Spinel LIBs Anode Stable capacity 395.3  mAhg−1 
(100 mA  g−1)

[101]

(CrFeMnCoNiLi)3O4 Solution combustion synthesis Spinel LIBs Anode stable capacity 395 mAh  g−1 
(100 mA  g−1)

[101]

(CrFeMnCoNi)3O4 Solution combustion synthesis Spinel LIBs Anode Stable capacity 407.8 mAh  g−1 
(100 mA  g−1)

[101]

(MgTiZnNiFe)3O4 Solid-state sintering Spinel LIBs Anode Discharge and charge 
166.8/424.7 mAh  g−1 
(100 mA g −1 first cycle)

[102]

(CoTiZnNiFe)3O4 Solid-state sintering Spinel LIBs Anode Discharge and charge 
423.9/674.7mAh g −1 
(100 mA  g−1 first cycle)

[102]

(Cr0.2Mn0.2Fe0.2Co0.2Ni0.2)3O4 Solid-state reaction Spinel LIBs Anode Stable capacity 560 mAh  g−1 
(100 mA  g−1)

[103]

(FeCoNiCrMn)3O4 Solid-state reaction Spinel LIBs Anode 692.8 mAh g −1 (500 mA  g−1 
after 260 cycle)

[104]

[(Bi,Na)1/5(La,Li)1/5(Ce,K)1/

5Ca1/5Sr1/5]TiO3

Solid-state reaction Perovskite LIBs Anode 120.4 mAh g −1 (1000 mA  g−1 
after 300 cycle)

[105]

Na0.7Mn0.4Ni0.3Cu0.1Fe0.1Ti0.1O
1.95F0.1

Solid-state reaction O3/P2-tpye SIBs Cathode 86.7 mAh  g−1 (800 mA  g−1) [106]

NaNi0.12Cu0.12Mg0.12Fe0.15Co
0.15Mn0.1Ti0.1Sn0.1Sb0.04O2

Solid-state reaction O3-type SIBs Cathode Stable capacity 110 mAh  g−1 
(12 mA  g−1)

[107]

(MgCoNiCuZn)O Nebulized spray pyrolysis Rock-salt LIBs Anode Stable capacity 549 mAh  g−1 
(100 mA  g−1)

[108]

(LiMgCoNiCuZn)O Nebulized spray pyrolysis Rock-salt LIBs Anode Stable capacity 714 mAh  g−1 
(100 mA  g−1)

[108]

(Co0.2Cr0.2Fe0.2Mn0.2Ni0.2)3O4 Solgel method Spinel SCs Cathode 75 F  g−1 (1 A  g−1) [109]
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A  g−1. In  situ high-temperature X-ray diffraction was 
employed to investigate the structural evolution with 
increasing calcination temperature [96]. Duan et  al. 
prepared spinel structure oxides of 7 metal elements 
(FeCoNiCrMnXLi)3O4 (X = Cu, Mg, Zn) by solid-state 
reaction, in which the (FeCoNiCrMnZnLi)3O4 nega-
tive electrode exhibited better electrochemical lithium 
storage performance in the three samples with dis-
charge specific capacities of 695, 577, 460, 336, 250, 
and 173 mAh   g−1 at 50, 100, 200, 500, 1000, and 
2000  mA   g−1 respectively. Sun et  al. prepared high-
entropy  (Cr0.2Mn0.2Fe0.2Co0.2Ni0.2)3O4 with Fd3m spi-
nel structure by solid-state reaction, with a high specific 
capacity of 560 mAh  g−1 at 100 mA  g−1 and excellent 
capacity retention of 100% after 5000 cycles [103]. 
High-entropy perovskite oxide crystalline materials have 
been widely studied for their use as cathode materials 
in fuel cells, reversible proton ceramic electrochemical 
batteries, and electrocatalysts in lithium-sulfur batter-
ies. Yan et al. synthesized high-entropy perovskite oxide 
(HEPO) [(Bi, Na)1/5(La, Li)1/5(Ce, K)1/5Ca1/5Sr1/5]TiO3 
as a negative electrode material for lithium-ion batter-
ies by solid-phase reaction method, and obtained 120.4 
mAh  g−1 reversible capacity and nearly 100% capacity 
retention rate at 1 A  g−1 current density after 300 cycles. 
O3-type layered high-entropy oxides can effectively 
inhibit the intermediate phase transition in the electro-
chemical reaction process, inhibit the order of charge and 
sodium vacancy, and thus inhibit the interlayer sliding 
and phase transition defects of layered structure elec-
trodes [105]. Zhou prepared P2/O3 biphasic high-entropy 
oxide  Na0.7Mn0.4Ni0.3Cu0.1Fe0.1Ti0.1O1.95F0.1 (Fig. 4c) by 
solid-phase method and found that it has excellent capac-
ity retention in a wide temperature range (− 40 to 50 °C) 
[106]. ChanQin Duan designed and prepared a new six-
component high-entropy oxide (HEO) layered cathode 
Na(Fe0.2Co0.2Ni0.2Ti0.2Sn0.1Li0.1)O2 by high-temperature 
solid-phase method [98]. Wu et al. conducted the syn-
thesis of high-entropy rock salt oxides, high-entropy 
spinel oxides, and high-entropy perovskite oxides using 
the rapid Joule thermal synthesis method, which involves 
burning nickel foil. They also demonstrated the OER 
activities of these synthesized materials [147].

3.2.3  Solution Combustion Synthesis Method

Solution combustion synthesis (SCS) is essentially an 
intense exothermic process, which is achieved by dissolv-
ing the metal salts in deionized water, heating to about 330 
°C, adding aluminum foil and various fuels (glycine, urea, 
and hexaamine, etc.) and waiting for the system to continue 
exothermic combustion to obtain samples [141]. Xiang et al. 
[97] synthesized spinel-type  (Al0.2CoCrFeMnNi)0.58O4-δ 
HEO nanocrystalline powders with high concentration 
of oxygen vacancies by solution combustion synthesis 
method. Compared with (CoCrFeMnNi)0.6O4-δ, the inactive 
 Al3+-doped  (Al0.2CoCrFeMnNi)0.58O4-δ negative electrode 
provided a reversible specific capacity of 554 mAh  g−1 after 
500 cycles at a specific current of 200 mA  g−1 more than 
twice that of the undoped, accompanied by good rate per-
formance (634 mAh  g−1 even at 3 A  g−1) and cycling per-
formance. Zheng et al. [99] prepared (FeNiCrMnMgAl)3O4 
spinel high-entropy oxides by solution combustion synthe-
sis method and ball milling refining process for lithium-
ion batteries, which had a capacity of 657 mAh  g−1 after 
200 cycles at a current density of 0.2 A  g−1 and also had 
good rate performance (350 mAh  g−1 at 4 A  g−1). Liu et al. 
synthesized three groups of high-entropy spinel oxides 
 (CrFeMnNiCox)3O4 (x = 2,3,4) by solution combustion 
method, with reversible capacities of 467.8, 574.1, and 506.2 
mAh  g−1 at 200 mA  g−1 respectively, and four new spinel 
high-entropy oxides by glycine-nitrate solution combustion 
method [100, 101]. Su et al. prepared (MgTiZnNiFe)3O4 
and (CoTiZnNiFe)3O4 by solid-state combustion method 
and verified the lithium storage mechanism of the materials 
by in situ ED characterization [102]. Wang et al. explained 
that the "cocktail effect" was due to more cations which 
could cause the oxide to self-assemble into micron-scale 
particles (Fig. 4d) without nanoscale pre-modification of 
the metal oxides by analyzing the electrochemical reaction 
of  Mg0.2Co0.2Ni0.2Cu0.2Zn0.2, indicating that element diver-
sity is the key to optimize the cationic electrode materials 
[148]. Xiao et al. successfully prepared (FeCoNiCrMn)3O4 
by oxidizing FeCoNiCrMn alloy powder and proposed that 
high entropy makes the oxide have a stable structure and 
narrow band gap, and spinel structure provides a channel for 
ion transport through the study of (FeCoNiCrMn)3O4 [104].
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3.2.4  Solgel Method

The solgel method, similar to the hydrothermal method, 
involves dissolving a transition metal salt in deionized water 
and adding it to a solution of acrylamide, N–N dimethyl 
diacrylamide, and ammonium persulfate. The mixture is 
vigorously stirred to form a wet gel which is subsequently 
dried, calcined, and ground under mild reaction condi-
tions to obtain high-entropy oxide powder. Li et al. suc-
cessfully synthesized  (Co0.2Cr0.2Fe0.2Mn0.2Ni0.2)3O4 using 
the polyacrylamide gel method and observed its excellent 
electrochemical performance in supercapacitors. Yang et al. 
synthesized porous spinel structure high-entropy oxide 
 (Cr0.2Fe0.2Co0.2Ni0.2Zn0.2)3O4 via the solgel method at low 
temperature, demonstrating a remarkable specific capacity 
of 1022 mAh  g−1 after 1000 cycles at 1 A  g−1 as an anode 
material for lithium-ion batteries. The authors attributed 
this exceptional capacity performance to the nanostructure 
generated through the solgel method, which effectively 
suppressed volume expansion and altered ion spacing due 

to lattice distortion caused by different metal ions in high-
entropy materials, thereby facilitating enhanced ion trans-
port pathways (Fig. 4e) [142].

In conclusion, high-entropy oxides have garnered sig-
nificant attention due to their high electrical conductivity, 
large dielectric constant, narrow bandgap, and ease of creat-
ing vacancies. These characteristics make them promising 
candidates for high-performance battery electrode materi-
als and demonstrate good performance in electrocatalytic 
fields such as OER and HER.The solvothermal method is 
a widely used synthesis method for high-entropy oxides. 
It is simple and mild but typically requires insulation for 
more than 10 h to allow for crystal growth. The provided 
energy is limited, and the insulation temperature needs to be 
adjusted according to the metal elements. Some researchers 
also utilize microwave technology.The solid-phase reaction 
method includes the high-temperature solid-phase method, 
high-energy ball milling method, and joule heating method. 
While the ball milling synthesis method is simple, it can-
not guarantee the uniformity of the formed nanoparticles. 

Fig. 3  a Schematic diagram of the preparation procedure. Reprinted with permission from Ref. [108].  Copyright 2022, Wiley‐VCH GmbH. b 
Schematic diagram illustrating the preparation of high-entropy oxide electrode materials. Reprinted with permission from Ref. [102]. Copyright 
2023, Elsevier Ltd. c Schematic of synthesis (Co, Cr, Fe, Mn, Ni)3O4 HEO through the SCS method. Reprinted with permission from Ref. [141]. 
Copyright 2023, Elsevier Inc. d Schematic illustration of the synthesis process and crystal structure of HEO. Reprinted with permission from 
Ref. [142]. Copyright 2022, American Chemical Society
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The high-temperature solid-phase method and joule heat-
ing method are characterized by high energy consumption. 
Additionally, the process of quenching in air may lead to the 
formation of cracks due to structural transformation, thereby 
posing challenges in achieving a single-phase structure. The 
synthesis conditions of the solgel method are comparatively 
gentler than those of other methods. With the presence of 
organic template molecules, this approach allows for precise 
control over pore size and other nanostructures, resulting in 
a more uniform nanoparticle synthesis. Furthermore, its low 
temperature ensures that the structure remains undamaged, 

which is advantageous for catalysis and energy storage 
performance. However, the limited energy input provided 
during the synthesis process using solgel methods makes it 
challenging to synthesize complex high-entropy materials, 
thereby restricting its application within this field.

3.3  High‑Entropy Sulfides/Selenides

Due to the existence of different growth and reaction rates 
leading to phase separation, M-S bond length mismatch 
and other problems limiting the development of traditional 

Fig. 4  a TEM, HRTEM, SAED data of HEO NPs  prepared  by hydrothermal method and their cycling stability. Reprinted with permission 
from Ref. [95].  Copyright 2020, The Royal Society of Chemistry. b Atomic structure models of Li-HEO and Li-HEO-Vo as well as the charge 
density difference of Li in HEO and Li-HEO-Vo. Reprinted with permission from Ref. [108]. Copyright 2022, Wiley‐VCH GmbH. c Schematic 
crystalline structure of P2 and O3 phase. Reprinted with permission from Ref. [106]. Copyright 2023, Elsevier B.V. d HAADF-STEM image as 
well as the orientation map obtained and typical phase map corresponding by indexing the diffraction patterns of the 4D-STEM data. Reprinted 
with permission from Ref. [148]. Copyright 2023, The Author(s). Published by Springer Nature. e SEM image of HEO powder prepared by gel 
method and the schematic diagram of ion pathways in conventional and high-entropy materials. Reprinted with permission from Ref. [142]. 
Copyright 2022, American Chemical Society
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polymetallic sulfides, people have studied high-entropic 
sulfides later than oxides. In 2018, Liu et al. proposed for 
the first time a method of integrating polymetallic sulfide 
clusters on silver nanowires and preparing multicompo-
nent metal by a simple etch growth sulfide heterostructures 
strategy (Fig. 5a), which provides a new synthetic idea for 
high-entropy metal sulfides in the future. High-entropy 
metal sulfides were firstly used to study thermoelectric 
materials [149, 150] and high-entropy selenides and tellu-
rides, which also belong to the sulfur group of compounds, 
were firstly developed in the field of thermoelectricity 
[151], and only in recent years have there been reports 
in the literature in the field of energy storage. Jiang et al. 
through the study of entropy-driven structurally stabil0 
formation of n-type PbSe-based high-entropy materials, 
introduced different kinds of atoms into PbSe to carry out 
the configurational entropy modulation, it was found that 
the large strain generated by the severely distorted lattice 
in the high-entropy material provides strong scattering of 
heat-carrying phonons, resulting in an ultra-low lattice 
thermal conductivity (κL). High-quality factor (zT) and 
conversion efficiency (η) of high-entropy materials and 
modules are thus achieved (Fig. 5b). The main methods 
for the preparation of high-entropy sulfides are solvother-
mal (Fig. 5c) [152], solid-state reaction synthesis (Fig. 5d) 
[153], cation-exchange (Fig. 5e) [154], and mechanical 
alloying (Fig. 5f) [155, 156].

3.3.1  Solvothermal Method

Solvent thermal method of sulfide is generally by putting 
the synthetic precursor (high-entropy MOF, etc.) and sulfur 
source (thioacetamide, etc.) into a hydrothermal kettle under 
heating and pressure in proportion. This synthetic method 
is simple and the conditions are relatively mild, which is 
favored by the majority of researchers and is one of the com-
monly used means of synthesis of high-entropy sulfides. Li 
et al. [157] prepared high-entropy sulfide (MnFeCoNiCu)S2 
by two-step solvothermal method with MOFs as precursor 
and verified its catalytic activity for OER ect., proposed 7 
HES with Pnma structure (M:S≈1:1) and 3 HES with Pa-3 
structure (M:S = 1:2), and found that the addition of Mo 
can improve the catalytic performance [158]. Nguyen et al. 
[159] prepared sulfate high-entropy sulfide  FeNiCoCrXS2 

(X = Mn, Cu, Zn, or Al) by two-step solvothermal method 
and verified its excellent OER activity. Xu et al. [160] pre-
pared high-entropy sulfide (CdZnCuCoFe)Sx by one-step 
solvothermal method and found that it can selectively pho-
tocatalytically produce CO from biomass polysaccharides 
and peroxides. Cui et al. [161] first synthesized high-entropy 
metal sulfide CrMnFeCoNi)Sx by solvothermal method with 
good OER catalytic activity (Fig. 6b). Liao et al. obtained 
high-entropy metal disulfide nanospheres by solvother-
mal method from high-entropy glycerol spherical sulfura-
tion [152]. Wang et al. [162] used one-step solvothermal 
method to grow HES-FeCoNiCrMnS2 in situ on carbon 
cloth as electrode for assembling mixed acid–base glyc-
erol fuel cell (AA-DGFC), showing excellent stability. For 
high-entropy selenite, current research mainly focuses on its 
application in the field of catalysis. Yao et al. prepared high-
entropy selenite (CoNiCuMnMo)Se by simple hydrothermal 
method and found that it has good catalytic effect (1.20 V 
at 10 mA  cm−2) and stability in glycerol oxidation reaction 
(GOR) [163]. Jiang et al. prepared flower-like high-entropy 
selenite (CoNiFeCuCr)Se (F-HES) by two-step solvother-
mal method and showed excellent OER activity (252 mV at 
100 mA  cm−2) and stability (50 h) [164].

3.3.2  Solid‑State Reaction Method

The solid-state reaction method of sulfides is generally in an 
inert atmosphere, after a variety of metal sulfides and sulfur 
powder are fully mixed by ball milling or grinding, and then 
annealed at high temperatures, usually above 500 °C [153]. 
Deng et al. synthesized high-entropy chromium alloy poly-
crystal ingot with composition of (GeSnPb)1/3 (SSeTe)1/3 
and Bi or Na doped samples by two-step solid-state reaction 
process, and used the disorder of anionic and cationic sub-
lattices to prove the stability of single-phase solid solution 
in rock salt crystal structure [74]. Cavin et al. predicted and 
synthesized two-dimensional high-entropy transition metal 
sulfide (MoWVNbTa)S2 by calcination annealing method 
for the catalytic conversion of  CO2 to CO [168]. Transition 
metal sulfides have excellent performance as sodium storage 
negative electrode materials due to their rich redox sites and 
good electronic conductivity. However, due to the repeated 
sodium/denaturation process, the structure degradation and 
volume expansion effect lead to poor cycling performance 
of the material, limiting the applicability of the material. 



 Nano-Micro Lett.           (2025) 17:22    22  Page 16 of 35

https://doi.org/10.1007/s40820-024-01504-3© The authors

Cheng et al. [165] prepared pressure-stable (FeCoNiCuRu)
S2 by grinding and calcining the raw materials, which has 
long-term stability and maintains 92% retention rate after 
15,000 cycles at 5 A  g−1 (Fig. 6a). Chien et al. [169] pro-
posed the concept of high entropy in bismuth metal phos-
phorus trisulfide (MPS3) as anode material for potassium 
ions, prepared MPS3 by traditional solid-phase reaction and 
found that the high-entropy materials would undergo elec-
trochemical recombination during cycling, resulting in alloy 
precipitation and formation of flaky structure, enhancing 
mechanical stability and reducing mechanical stress dur-
ing K ion insertion/extraction. Chang et al. [170] prepared 
high-entropy rock salt sulfide  AgSnSbSe1.5Te1.5 by one-step 
melting method and proved that various heterogeneous 
interfaces and metal nanoparticles with different functions 
were formed due to the participation of active and inac-
tive metals in the phase transformation reaction, reducing 
the diffusion energy barrier of  K+ and inhibiting potential 
shuttle effect.

3.3.3  Cation Exchange Method

In 2020, Benjamin C. Steimle and his colleagues devel-
oped a method to synthesize scalable nanoparticles by 
modifying various types of nanoparticles through cation 
exchange reactions. In these reactions, the cations in 
sulfides, selenides, and other nanoparticles are substituted 
by the cations present in the solution, resulting in nano-
structures with heterogenous features containing multiple 
material phases [154]. This technique is commonly known 
as cation exchange. The process involves utilizing a model 
system based on metal sulfide, incorporating a solvent, 
stabilizing ligands, and a Lewis base as a driving force. 
Subsequently, multiple sequential exchange solutions 
(comprising other metal salts) are introduced to facilitate 
cation exchange reactions and fabricate heterostructures 
of sulfides with multiple metal components. Even though 
the conditions throughout the entire procedure are mild, 
the selection of suitable model systems is essential. Con-
nor R. McCormick extended the cation exchange approach 
and fabricated  Zn0.25Co0.22Cu0.28In0.16Ga0.11S nanoparti-
cles (Fig. 6c) in colloidal form [166]. Yuanting Lei and 
collaborators adopted a gentle cation exchange method 
to synthesize a novel high-entropy Co–Zn–Cd–Cu–Mn 

sulfide (CoZnCdCuMnS@CF) nanoarray supported on 
carbon fibers, which demonstrated exceptional durability 
in catalyzing both the HER and the OER [171].

3.3.4  Mechanical Alloying Method

The mechanical alloying method of sulfide is a technique for 
obtaining polymetallic sulfides by subjecting various metal 
sulfides and pure sulfur to high-energy ball milling in a ball 
milling tank. This approach eliminates the need for exter-
nal heating, relying solely on the heat generated through 
friction during ball milling to provide energy. Although the 
conditions are relatively mild, the corresponding reaction 
time is longer, typically exceeding 60 h, and it requires prior 
synthesis of single metal sulfide precursors [74, 155, 172]. 
Zhao et al. employed the high-energy ball milling method 
to synthesize  Cu4MnFeSnGeS8 anodes, which enhanced 
both reversible crystal phase transformation and mechani-
cal stability (Fig. 6d), thereby improving cycling stability. 
In the sodium-ion battery, after 200 charge and discharge 
cycles, the reversible capacity of 569.2 mA  h−1 can still be 
maintained, and the capacity retention rate of the battery is 
close to 100% [167]. High-entropy rock salt sulfide (HEMC) 
exhibits promising prospects for development in potassium-
ion batteries (PIB).

In conclusion, the advantages and disadvantages of the 
solid-state reaction method, solid-phase reaction method, 
and mechanical alloying method for high-entropy sulfides 
are similar to those for high-entropy oxides. However, a key 
difference is that the solid-state reaction method for sulfides 
must be conducted in an inert atmosphere to prevent the 
incorporation of oxygen. As a result, the conditions are more 
stringent compared to those for oxides. On the other hand, 
the cation exchange method offers milder synthesis condi-
tions and allows for gradual increases in the types of metal 
elements. Nonetheless, this approach involves complex steps 
and has historically limited choices in metal elements.

3.4  High‑Entropy Carbides/Nitrides

The traditional method for the synthesis of carbides is car-
bothermal reduction with the reaction equation:

(4)MeOX + C → MeC + CO(g)
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Fig. 5  a Schematic diagram of nano silver wire/sulfide heterostructure prepared by simple etching and growth method. Reprinted with permis-
sion from Ref. [71].  Copyright 2018, Wiley‐VCH Verlag GmbH & Co. KGaA. b Change of zT value of high entropy PbSe based material 
with temperature and the maximum conversion efficiency (hmax) of a high-entropy segmented thermoelectric module varies with temperature 
difference (DT). Reprinted with permission from Ref. [150]. Copyright 2021, The American Association for the Advancement of Science. c 
Schematic diagram of synthesis of high-entropy sulfide by solvothermal method. Reprinted with permission from Ref. [152]. Copyright 2023, 
Elsevier B.V. d Preparation of Co doped  Ni3S4 by solid-state reaction method. Reprinted with permission from Ref. [153]. Copyright 2019, Else-
vier B.V. e Schematic diagram of preparation of high-entropy sulfide by cation exchange method. Reprinted with permission from Ref. [154]. 
Copyright 2020, The American Association for the Advancement of Science. f Schematic diagram of the preparation of  Li6PS5I electrolyte using 
UEMA method. Reprinted with permission from Ref. [156]. Copyright 2021, Wiley‐VCH GmbH
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However, this process can only react positively at very 
high temperatures, with high energy consumption, in 
addition to the tendency to produce coarser micron-sized 
particles at high temperatures, which do not satisfy the 
requirements of catalysis and greatly limit the application 
of carbons [173]. In 2000, researchers were dedicated to 
discovering an alternative method to replace the conven-
tional carbothermal reduction process. Numerous molten 
salt-based electrochemical methods have been identified, 
which can dissolve oxide anions and transport them to the 
anode for discharge, effectively reducing the kinetic barrier 
of breaking metal–oxygen bonds. However, these methods 
also suffer from increased side reactions [174, 175]. In 2019, 
Li et al. [176] prepared  V2(AxSn1−x)C (A = Fe, Co, Ni, Mn) 
high-entropy MAX phase carbides by mixing and grinding 
a certain proportion of V, Sn, C, Fe, Co, Ni, Mn powders 
with NaCl and KCl and heating them to 1100 °C in a tubu-
lar furnace, and controlled their magnetism by adjusting 
the combination of A. Sure et al. [177] first synthesized the 
ultra-high-temperature high-entropy carbides (TiNbTaZrHf)
C (Fig. 7a) by a simple electrochemical method, and found 
that it has good cycling performance in supercapacitors 
(87% capacity retention after 2000 complete cycles). Yang 
et al. [178] prepared (VNbTaZrHf)C high-entropy carbides 
nanoparticles by electrochemical method, and found that it 
achieved 50 F  g−1 specific capacitance in 1 M KOH at a 
scanning rate of 10–100 mV  s−1 in supercapacitors, with a 
capacity retention rate of 89% after 2500 complete cycles, 
showing excellent capacitance performance. Zhang et al. 
synthesized porous carbide powders (FeCoCrMnNi)C by a 
solgel method and found that the best capacitance perfor-
mance was achieved when the carbon source (glucose) was 
added at 5 g during the synthesis process (specific capacity 
reached 169.7 F  g−1 with a current density of 0.5 A  g−1).

The diverse physicochemical properties of carbides in 
morphology, composition, and microstructure contribute 
significantly to their applications in catalysis and energy 
storage. Harrington et al. investigated the phase formation 
of twelve different five-metal high-entropy carbides and 
observed that the addition of tungsten and molybdenum to 
the IVB or VB transition metal system decreased the likeli-
hood of single-phase formation; however, they were able 
to synthesize a system with Mo and W single phases. The 
stability of these phases is determined by a trade-off between 

enthalpy and entropy [182]. Niu et al. [179] obtained defec-
tive 10-nm high-entropy (MoWVNbTa)C nanoparticles 
through centrifugation of waste liquid from wire-cut elec-
trical discharge machining of high-entropy carbides, which 
exhibited excellent catalytic activity and stability for the 
HER reaction (Fig. 7b).

3.4.1  Two‑Dimensional Transition Metal Carbon 
(Nitrogen) Compounds

High-entropy two-dimensional transition metal carbamates 
(MXenes) are typically obtained through chemical etching to 
eliminate the A layer from high-entropy three-dimensional 
layered carbamates (MAX). The synthesis of MAX precur-
sors can be achieved via carbothermal reduction or molten 
salt electrochemistry, and the resulting MXene powders 
are collected by stirring followed by washing in hydrofluo-
ric acid. Ma et al. successfully synthesized high-entropy 
carbamate  Ti2V0.9Cr0.1C2Tx MXenes (Fig. 7c) using this 
method and observed excellent capacitance performance 
(553.27 F  g−1 at 2 mV  s−1) [180]. Nemani et al., on the 
other hand, synthesized two high-entropy MAX compounds, 
 TiVNbMoAlC3 and  TiVCrMoAlC3, which were subse-
quently converted into high-entropy  TiVNbMoC3Tx and 
 TiVCrMoC3Tx MXenes with equal molar ratios (Fig. 7d); 
their findings confirmed the feasibility of synthesizing addi-
tional high-entropy MXenes through experimental and com-
putational approaches [75]. Zhou et al., meanwhile, obtained 
 Ti1.1V0.7CrxNb1.0Ta0.6C3Tz MXene monoliths via etching of 
 (Ti0.8V0.8Cr0.8Nb0.8Ta0.8)AlC3 MAX precursor material, 
demonstrating a remarkable volume capacitance of up to 
1688 F  cm−3 (490 F  g−1 at 2 mV  s−1) [183].

MXenes compositions have also been utilized in 
lithium-ion batteries owing to their unique two-dimen-
sional structure and the synergistic effect between poly-
metallic ions. Etman et al. synthesized a high-entropy 
MXene,  Ti1.1V0.7CrxNb1.0Ta0.6C3Tz  (Tz = –F, –O, –OH), 
through solid-phase reaction as the negative electrode 
material for lithium-ion batteries, exhibiting a capacity 
of 126 mAh  g−1 at 0.01 A  g−1 [184]. Wu et al., on the 
other hand, employed MXenes in lithium-sulfur batter-
ies and summarized the catalytic functions of MXene 
and MXene-based heterostructures in sulfur cathodes 
and lithium anodes respectively [185]. Du et al. [186] 
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obtained a high-entropy carbon nitride MAX phase 
 Ti1/3V1/6Zr1/6Nb1/6Ta1/6)2AlCxN(1-x) by metallization of 
medium entropy nitride MAX  (Zr1/3Nb1/3Ta1/3)2AlC, 
 Ti4AlN3 and  V2AlC; they discovered that incorporating 
medium entropy MAX phase with configuration entropy 

of 1.1R during synthesis process prevented phase separa-
tion of high-entropy nitrides successfully. After etching 
 Ti1/3V1/6Zr1/6Nb1/6Ta1/6)2AlCxN(1-x), they observed excel-
lent electrochemical performance of high-entropy nitride 

Fig. 6  a CV curve of high-entropy sulfide (FeCoNiCuRu)S2 and (FeCoNiCuRu)S in a lithium-ion half battery and the comparison of diffusion 
coefficients of lithium and cyclic stability. Reprinted with permission from Ref. [165].  Copyright 2023, Wiley‐VCH GmbH. b Structure dia-
gram of high-entropy nanoparticle (CrMnFeCoNi)Sx and schematic diagram of its OER catalysis. Reprinted with permission from Ref. [161]. 
Copyright 2020, Wiley‐VCH GmbH. c Synthesis diagram of high-entropy molten zinc metal sulfide  (Zn0.25Co0.22Cu0.28In0.16Ga0.11)S. Reprinted 
with permission from Ref. [166]. Copyright 2021, American Chemical Society. d SEM image of the CSS electrode and HE-CMFSGCS elec-
trode, as well as their cross-sections after 20 cycles and TEM-HAADF images of the pole plates of the CSS electrode and HE-CMFSGCS elec-
trode after 20 cycles. Reprinted with permission from Ref. [167]. Copyright 2022, Wiley‐VCH GmbH
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MXenes in lithium-sulfur batteries (863 mAh  g−1 at 0.5C 
after 50 cycles).

In addition to the conventional etching methods of 
MXenes, such as molten salt electrochemical method and 
hydrothermal method, further research has explored their 
application in MAX phase etching to obtain MXenes. 
These methods introduce surface groups like –Cl, –O, and 
–OH into MXenes (Fig. 7e), which subsequently influ-
ence the performance of MXene materials [187]. How-
ever, subjecting MXenes to high-temperature treatment 
in a hydrogen environment effectively eliminates most of 
these surface functional groups, resulting in the formation 
of pristine MXene (MX). Distinguished from its parent 
compounds, MX exhibits a novel electronic structure and a 
unique set of catalytic activity centers that offer significant 
advantages over traditional precious metals in terms of 
catalytic efficiency, selectivity, and activity [181].

3.5  High‑Entropy Metal–Organic Frameworks

The metal–organic framework (MOF) is a porous coor-
dination polymer with controllable morphology, high 
specific surface area, rich pore structure, and multifunc-
tionality. Since its initial proposal by Yaghi et al. [188] in 
the late 1990s, MOF materials have garnered significant 
interest among researchers. The solvent heating method 
stands as the primary synthetic approach for MOFs due 
to its simplicity, rapid reaction kinetics, and mild con-
ditions; thus holding promising prospects for further 
development in MOF synthesis. In addition, the synthetic 
methods of MOF include electrodeposition [189], micro-
wave synthesis [190], mechanochemical synthesis [191], 
and spray drying synthesis [192], but the stable entropy-
driven mechanism of high-entropy MOFs, their practical 
operation often leads to decomposition and generation of 
various derivatives; hence they find applications primar-
ily in hydrogen evolution [193], oxygen evolution [194], 
and  N2 fixation processes [195]. Xinhui Zhao [193] first 
proposed the concept of high-entropy MOF in 2019, syn-
thesized HE-MOF containing Mn, Fe, Co, Ni, Cu using 
solvothermal method, and verified its electrocatalytic 
activity for OER. Currently, the prevailing synthetic 
methods for high-entropy MOF include solvent thermal 
method [196], mechanical chemical synthesis method 

[197], and electrodeposition method [189]. however, there 
is a scarcity of relevant literature. In general, the develop-
ment of synthetic strategies for high-entropy MOF is still 
in its nascent stage. Moreover, different characteristics 
can be achieved in high-entropy MOFs through coordina-
tion with diverse metals within the organic framework. 
Furthermore, within the field of electrochemical energy 
storage systems, high-entropy MOFs exhibit great poten-
tial as negative electrode materials for batteries owing 
to their highly adjustable ligand frameworks and coordi-
nated effects between metals.

3.5.1  Solvothermal Method

Solvothermal method is one of the most widely used meth-
ods for the synthesis of MOF. It is a reaction by dissolving 
organic ligand and metal salt solution together and adding 
initiator in a hydrothermal kettle under the control of tem-
perature and pressure (Fig. 8a). In the synthesis of high-
entropy MOFs, the synergistic effect of the presence of 
multiple metals will lead to interesting phenomena when 
metals and ligands are coordinated [198]. Xu et al. pre-
pared NiCoFeZnMo high-entropy two-dimensional MOF 
with 2,6-naphthalenedicarboxylic acid tetrahydrate as the 
organic ligand by solvent-thermal method and found that it 
has excellent activity in the OER (overpotential of 254 mV 
at a current density of 50 mA  cm−2) [196]. Jing Hu prepared 
MnFeCoNiCuZn porous hollow high-entropy MOF-74 with 
2,5-dihydroxypentyl diacetic acid as the organic ligand by 
hydrothermal method and obtained high-entropy MOF-74 
derivatives as electrocatalysts for ORR by annealing them 
at high temperatures [199]. NiCoFeZnV-based HE-MOFs 
and their derivatives (HE-MOF-H and HE-MOF-OH) were 
synthesized via solvothermal method by Sun et al. These 
materials were utilized as electrolytes in BPM flow batter-
ies, where they exhibited catalytic activity toward NRR at 
the negative electrode and OER at the positive electrode 
(Fig. 8b) [195].

3.5.2  Mechanochemical Methods

The mechanical synthesis of MOF involves dissolving metal 
salt and organic ligand in a suitable solvent, followed by the 
addition of an initiator and vigorous stirring to synthesize 
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MOF (Fig. 8c) [197]. This method is simpler and milder 
compared to the solvent thermal method, making it highly 
attractive to researchers. Li et al. successfully incorporated 
6 coordination nickel clusters into the structure of ZIF-8 
through one-pot mechanical synthesis, and also synthesized 
Ni-substituted ZIF-8 single crystals with a similar coordina-
tion environment using the solvent thermal method, which 
exhibited exceptional photocatalytic activity [201].

3.5.3  Electrodeposition

The electrodeposition method of MOF is a highly efficient, 
cost-effective, and scalable approach for synthesizing high-
entropy MOFs. The electrodeposition reaction is governed 
by the mass transfer process of metal cations at significantly 
elevated potentials, thereby eliminating the coordination 
ability effect between different ions. Consequently, this ena-
bles effective coordination between the metal and ligand, 
facilitating the synthesis of high-entropy MOFs. Dong et al. 
successfully deposited high-entropy ZIF on a foamed nickel 

Fig. 7  a A simple electrochemical method for the synthesis of  (TiNbTaZrHf)C. Reprinted with permission from Ref. [177].  Copyright 2020, 
Wiley‐VCH Verlag GmbH & Co. KGaA. b Comparison of η10 between the HECNPs and other nonprecious-metal-based catalysts. Reprinted 
with permission from Ref. [179]. Copyright 2022, Wiley‐VCH GmbH. c Schematic illustration of the fabrication of MXenes. Reprinted with 
permission from Ref. [180]. Copyright 2022, Elsevier Ltd. d SEM micrographs of high-entropy MAX and MXenes. Reprinted with permission 
from Ref. [75]. Copyright 2021, American Chemical Society. e Structure diagram of MAX to MXene and then to MX. Reprinted with permis-
sion from Ref. [181]. Copyright 2023, Wiley‐VCH GmbH
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substrate via electrodeposition (Fig. 8d) and observed its 
remarkable electrocatalytic activity toward the OER [200].

3.5.4  MOF Derivatives

In addition to its excellent electrochemical and energy 
storage potential, high-entropy MOF can also be used as 

a self-sacrificing template to prepare high-entropy alloys 
[202], high-entropy sulfides [203], high-entropy selenite 
[204], etc. Zhao et  al. prepared FeCoNiCuMnZn high-
entropy MOF with terephthalic acid as a ligand by hydro-
thermal method, and prepared FeCoNiCuMn-NPs with this 
precursor by high-temperature annealing, and found that it 
had excellent OER catalytic performance (current density of 

Fig. 8  a Synthetic process of the 2D HE-MOF array. Reprinted with permission from Ref. [196].  Copyright 2022, American Chemical Society. 
b Electrolytic schematic of the BPM-based flow-type cell and  NH3 yield at different pH electrolytes, overpotential at 10 mA  cm−2. Reprinted 
with permission from Ref. [195]. Copyright 2024, Copyright Clearance Center, Inc. c Schematic illustration of N-coordinated UiO-66(Zr) mate-
rial with dopamine prepared via green and fast mechanochemical method. Reprinted with permission from Ref. [197]. Copyright 2017, Elsevier 
B.V. d Schematic illustration of electrode position process of HE-ZIF/NF and Comparison of OER performances of HE-ZIF/NF-400  s with 
other reported electrocatalysts. Reprinted with permission from Ref. [200]. Copyright 2023, Hydrogen Energy Publications LLC. Published by 
Elsevier Ltd. All rights reserved. e SEM images of HE-MOF and its derivatives at different temperatures. Reprinted with permission from Ref. 
[194]. Copyright 1969, Elsevier
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10 mA  cm−2, overpotential of 196 mV) [202]. Li et al. [157] 
synthesized MnFeCoNiCu, CrMnFeNiCu, and FeCoNiCuMo 
high-entropy MOF with terephthalic acid as a ligand by sol-
vothermal method, and prepared high-entropy metal sulfide 
nanoparticles with this template by hydrothermal method, 
which have potential applications as electrocatalysts for 
enhancing OER. Liu et al. [205] prepared MnFeCoNiCu 
high-entropy MOF with terephthalic acid as a ligand by 
hydrothermal method, and obtained high-entropy oxides with 
different morphologies by pyrolysis and annealing at differ-
ent temperatures (Fig. 8e). It was found that the high-entropy 
oxides obtained by pyrolysis at 350 °C in Ar atmosphere and 
annealing at 200 °C in  O2 atmosphere had good OER cata-
lytic activity (current density of 50 mA  cm−2, overpotential 
as low as 266 mV) [194].

3.6  High‑Entropy Composite Materials

The utilization of high-entropy materials has garnered sig-
nificant attention from researchers; however, the inherent 
limitations of simple high-entropy materials necessitate fur-
ther enhancements in order to optimize their performance. 
Consequently, researchers have commenced incorporating 
additional materials into conventional high-entropy materi-
als to address these performance deficiencies.

Wei et al. obtained np-HEA@HEO composites by anneal-
ing and oxidizing high-entropy alloy nanoparticles and veri-
fied their excellent lithium storage capacity in the negative 
electrode of lithium-ion capacitors [206]. Yuan et al. pre-
pared MF/MnO2 composites by doping  FeCrCoMnNiAl0.75 
high-entropy alloy in  MnO2 by cyclic pulse electrodepo-
sition and used them as supercapacitor electrodes, finding 
that they had excellent capacitance performance (961 F  g−1 
at a current density of 5 A  g−1) [207]. Guo et al. prepared 
HEO@G composites by hydrothermal composite of high-
entropy oxides and graphene and used them as negative 
electrode materials of lithium-ion batteries with excellent 
capacity of 950 mAh  g−1 after 100 cycles at 200 mA  g−1 
[208]. Wang et al. prepared CoNiCuMnAl@C shell nan-
oparticles by pyrolysis of MOF precursors (Fig. 9a) and 
found their catalytic activity for alkaline OER (Fig. 9a) 
[209]. Jishnu et al. obtained composites by ultrasonic treat-
ment of TiZrVCrNi high-entropy alloy nanoparticles and 
 MoS2 nanoparticles and found that they could reduce the 
reaction of Au electrode with FLP, thereby improving the 

sensitivity of the response to triethylamine [210]. Fan et al. 
[211] calcined the nanocomposites electrospun from poly-
acrylonitrile and metal salts at 800 °C to obtain the com-
posites HEO/CNFs (Fig. 9b) of high-entropy metal oxide 
 (Cu0.7Ni0.6Fe0.6Sn0.5Mn0.4)O4 and grapevine-shaped carbon 
nanofibers, and found that they could improve the electrode 
dynamics as cathode materials for lithium-sulfur batteries, 
anchor LiPSs at the cathode side, significantly alleviate the 
shuttle effect and improve the cycling stability (Fig. 9b).

3.7  Other High‑Entropy Materials

In addition to the six types of high-entropy materials men-
tioned above, there are numerous other high-entropy mate-
rials, such as high-entropy diboride [212], high-entropy 
silicides [213], high-entropy salts, and various other high-
entropy ceramic materials utilized as structural materials. 
These materials are primarily employed for their structural 
properties and exhibit high hardness, thereby enhancing the 
mechanical strength of electrodes. Furthermore, when rare 
earth elements are present in these high-entropy materials, 
they are referred to as high-entropy rare earth materials (HE-
RE materials). This category includes HE-RE alloys, HE-RE 
transition metal oxides, and HE-RE carbides et al. Due to 
their similar atomic radii and unique electronic structures 
with 4f orbital shielding properties [214], rare earth ele-
ments often contribute superior performance characteristics 
to high-entropy materials. As a result, they hold potential 
advantages in the fields of electrocatalysis and energy stor-
age. However, current research on the application of HE-RE 
materials is primarily focused on structural material appli-
cations. There is a lack of investigations into their electro-
catalytic and energy storage capabilities, which remains 
relatively scarce in the literature. Consequently, it can be 
inferred that high-entropy rare earth materials represent a 
promising class of electrode materials for future develop-
ment opportunities.

High-entropy hydroxides (HEH) are a new type of high-
entropy material that also has considerable potential in 
the field of catalysis [215–217], but due to the instability 
of hydroxides at high temperatures, they easily decom-
pose into oxides at high temperatures, which greatly 
restricts the synthesis of high-entropy hydroxides and can 
only be carried out under relatively mild conditions. The 
commonly used synthesis methods include solvothermal 
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method [218–221], laser pulse method [222], and elec-
trochemical synthesis method [217, 223]. Layered dou-
ble hydroxides (LDH) are hydroxides that are stacked in 
layers, and high-entropy layered double hydroxides (HE-
LDH) have good application effects in glucose oxidation 
reaction (GOR) [221] and supercapacitor positive elec-
trode materials due to their layered structure and many 
active sites [224]. However, high-entropy hydroxides still 
face the limitations of traditional hydroxides, and their 
poor high-temperature stability remains a significant factor 
preventing further application in various fields.

High-entropy intermetallic compounds (HEI) are multi-
metal alloys consisting of more than five metal elements. 
Unlike high-entropy alloys (HEA), where the atoms are 
randomly distributed, the crystal structure of intermetal-
lic compounds originates from binary or multicomponent 
metal precursors. Due to their higher ordered structure 
compared to HEA, HEI can achieve the isolation of spe-
cific atoms and has the potential for structural and scale 
regulation [225]. This makes it highly promising in the 
fields of catalysis and energy storage. The preparation 
methods of HEI are similar to those of alloys [226, 227]. 
However, more advanced synthesis methods are needed to 
further regulate the element composition and structure of 
HEI. For instance, Soliman et al. synthesized HEI colloi-
dal particles using a low-temperature liquid-phase method 
and observed detailed changes in morphology, composi-
tion, and structure during the particle formation process 
[228]. In terms of application, HEI demonstrates excellent 

performance in catalyzing the dehydrogenation of propane 
[229], HER [225, 230], and ORR [231]. It also shows great 
potential in zinc-air battery applications [231].

4  Conclusion and Outlook

This study examines various high-entropy electrode 
materials, encompassing high-entropy alloy nanoparti-
cles, oxides, phosphorus/sulfides, carbon/nitrides, MOFs, 
and composite materials. It elaborates on the synthesis 
techniques for these materials and summarizes their per-
formance and utilization as electrodes in electrocatalysis 
and energy storage applications. Additionally, it presents 
a concise overview of the high-entropy concept and its 
initial evolution, partially tackling the complexities associ-
ated with the diverse preparation methods for high-entropy 
electrode materials.

In terms of preparation methods, the carbon thermal shock 
method has been widely used for synthesizing high-entropy 
alloys and high-entropy carbon/nitrogen compounds due to 
its relatively traditional approach and fast preparation speed. 
However, its drawbacks are also apparent as it requires high 
temperature and equipment demands, which limits further 
development. On the other hand, solid-state reaction is a 
common method for synthesizing high-entropy sulfides, 
selenites, oxides and other compounds with simple synthe-
sis procedures, low equipment requirements and reaction 

Fig. 9  a Schematic diagram of an OER catalyst for carbon-clad core–shell high-entropy alloy (CoNiCuMnAl@C), along with HRTEM image 
and charge density difference of O adsorbed at Ni, as well as a TDOS diagram. Reprinted with permission from Ref. [209].  Copyright 2021, 
Elsevier B.V. b Diagram illustrating the dual-function effect of grapevine HEO/CNFs, along with its TEM image and comparison of binding 
energies and CV curves. Reprinted with permission from Ref. [211]. Copyright 2022, Elsevier B.V. on behalf of KeAi Communications Co, Ltd
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temperatures usually in hundreds of degrees Celsius. Nev-
ertheless, exploring the reaction conditions is crucial since 
different proportions of precursor reactions at varying tem-
peratures may result in nonunique synthetic material phases 
even at the same temperature. Solvent thermal method, low-
temperature liquid-phase method, cation exchange method, 
solution combustion method and electrodeposition method 
are milder alternatives that are easy to operate with green 
and clean features suitable for laboratory environments but 
not ideal for large-scale production due to container size 
limitations. It is worth mentioning that using MOF as a 
precursor has become a hot topic in recent years for pre-
paring high-entropy materials because this approach offers 
great adjustability where microstructure can be controlled 
by changing ligands while providing diverse metal element 
choices with huge potential for development.

In terms of performance application, high-entropy elec-
trode materials are primarily utilized in electrocatalysis and 
energy storage applications. They do not prioritize high 
mechanical strength but instead focus on the morphology, 
phase state, entropy value, and types of transition metals. 
High-entropy alloys typically manifest as nanoparticles and 
nanowires in the field of electrocatalysis, leveraging their 
nanoscale microstructure and diverse metal element charac-
teristics to catalyze hydrogen evolution and oxygen evolu-
tion reactions. However, due to their alloy nature, they expe-
rience numerous side reactions in the electrolyte, resulting 
in a relatively slow adoption for energy storage purposes. 
Nevertheless, they have also been reported as separators 
for lithium-sulfur batteries. High-entropy oxides exhibit 
rich structures and find extensive use in electrocatalysis 
and energy storage owing to the involvement of oxygen ele-
ments. Expanding the range of elements not only increases 
the entropy value but also alters material phase states. Dif-
ferent oxide structures are employed across various fields 
with incomplete phase states; for instance, spinel and rock 
salt oxides are commonly used in lithium-ion batteries as 
well as oxygen evolution/hydrogen evolution catalysis while 
perovskite oxides find application in thermoelectric fields. 
Although less explored than oxides, high-entropy chalco-
genide compounds possess significant potential with excel-
lent performance observed in thermoelectricity generation 
systems or electrocatalytic processes such as lithium-sulfur 
batteries or sodium batteries. High-entropy MXene within 
high-entropy carbonaceous compounds exhibits a unique 
two-dimensional structure along with synergistic effects 

between polymetallic components that make it highly suit-
able for electrode materials used in electrocatalysis and 
energy storage applications; however, research on high-
entropy MXene remains limited despite its promising future 
prospects.

Despite the excellent performance of high-entropy mate-
rials, further development in this field requires concerted 
efforts from all directions.

(1) Due to the complex composition of various elements 
in high-entropy materials, there is immiscibility among 
the components, preventing the formation of a single 
phase. This seriously restricts the synthesis of high-
entropy materials and hinders their ability to exhibit 
all their characteristic properties. Existing synthesis 
methods primarily rely on high temperature and high 
pressure means to address these challenges. Therefore, 
it is crucial to explore low-temperature synthesis meth-
ods for high-entropy materials that can accommodate a 
wide range of elements.

(2) Previous studies have extensively explored the mor-
phology of high-entropy materials, with a focus on 
reducing their scale to the nanometer level and prepar-
ing nanoparticles with regular morphology. However, 
due to the lattice distortion effect of high-entropy mate-
rials, controlling the morphology is not as straightfor-
ward as it is for single-phase materials. Therefore, it is 
crucial to investigate the relationship between composi-
tion and morphology in order to prepare high-entropy 
materials with adjustable morphologies.

(3) The synthesis of high-entropy materials often neces-
sitates the use of a variety of high-purity metal ele-
ments, resulting in high costs and typically high energy 
consumption during large-scale preparation processes. 
Therefore, it is crucial to explore more cost-effective 
methods for preparing high-entropy materials. For 
instance, one approach could involve the adjustment 
and reconstruction of natural mineral materials to 
directly transform them into high-entropy electrode 
materials, thereby significantly reducing costs. Another 
possibility is to modify the elements of recycled waste 
electrode material in order to fully leverage the syner-
gistic effects between the elements of the high-entropy 
material, ultimately achieving performance recovery or 
even surpassing previous levels.

(4) Theoretical calculations can serve as a valuable tool 
for assessing the catalytic and energy storage perfor-
mance of materials, as well as providing guidance for 
the synthesis of high-entropy materials. While previ-
ous studies have explored theoretical calculations for 
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the synthesis of high-entropy alloys, there have been 
limited reports on related theoretical calculations for 
other high-entropy materials, such as high-entropy 
oxides and sulfides. Therefore, further expansion of 
theoretical calculation models and methods for the 
synthesis of high-entropy materials will be a break-
through in advancing the development of high-entropy 
materials.
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