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HIGHLIGHTS

• Developed more efficient boron activation strategies, while establishing various low-melting growth systems.

• The preparation temperature of boron nitride nanotubes has been reduced to 850 °C.

ABSTRACT Lowering the synthesis temperature of boron nitride nano-
tubes (BNNTs) is crucial for their development. The primary reason for 
adopting a high temperature is to enable the effective activation of high-
melting-point solid boron. In this study, we developed a novel approach 
for efficiently activating boron by introducing alkali metal compounds 
into the conventional MgO–B system. This approach can be adopted to 
form various low-melting-point AM–Mg–B–O growth systems. These 
growth systems have improved catalytic capability and reactivity even 
under low-temperature conditions, facilitating the synthesis of BNNTs at 
temperatures as low as 850 °C. In addition, molecular dynamics simula-
tions based on density functional theory theoretically demonstrate that 
the systems maintain a liquid state at low temperatures and interact with 
N atoms to form BN chains. These findings offer novel insights into the 
design of boron activation and are expected to facilitate research on the 
low-temperature synthesis of BNNTs.
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1 Introduction

Boron nitride nanotubes (BNNTs) [1–3] are one-dimen-
sional tubular nanostructures with excellent physical and 
chemical properties. These properties include high mechani-
cal strength [4], low weight [5], high temperature resistance 
[6, 7], strong interfacial bonding [8], and electrical insula-
tion [9]. These properties make BNNTs highly promising for 
various applications, including thermal interface materials, 
high-temperature-resistant materials, radiation shielding 
materials, and deep ultraviolet emitters [10–13].

Nevertheless, the high cost of BNNTs has slowed the pro-
gress of research within the aforementioned fields. Lowering 
the synthesis temperature helps reduce costs because high 
synthesis temperatures (with the current synthesis tempera-
ture being 1100–8000 °C) increase instrument complexity 
and energy consumption [14–31]. To enhance the economic 
feasibility of BNNTs, it is imperative to thoroughly research 
their growth mechanisms, identify the factors that necessi-
tate a high synthesis temperature, and thereby establish ways 
of lowering the synthesis temperature.

The synthesis of BNNTs typically follows the vapor–liq-
uid–solid (VLS) growth mechanism. This process involves 
the dissolution and precipitation of boron and nitrogen 
sources in a liquid catalyst. The utilization of boron sources 
in growth systems has been limited primarily by the high 
toxicity of gaseous boron sources (i.e.,  B2H6,  B10H14,  BCl3) 
and the extremely high melting point (2076 °C) of solid 
boron when compared with the wide use of gaseous nitrogen 
sources  (N2,  NH3). The conversion of solid B into a highly 
activated state demands much energy, which is a major con-
tributing factor to the high growth temperature. Our primary 
task, therefore, is to explore a method of activating boron 
that is not only low energy but also efficient to reduce the 
growth temperature.

Over the years, methods of activating boron have been 
primarily categorized into physical and chemical tech-
niques. Physical techniques include laser ablation [14, 15], 
thermal plasma [16, 17], and arc discharge [18, 19] meth-
ods. These methods use the high temperatures generated by 
lasers, plasma, and arc discharge to break down the boron, 
resulting in highly active boron atoms. These atoms then 
aggregate into boron droplets, which are used in BNNT 
synthesis. Despite their ability to produce high-quality 
BNNTs, physical methods have drawbacks, including the 

requirement for complex and expensive equipment and 
extremely high reaction temperatures (3500–8000  °C) 
(Table S1). An alternative approach that combines physical 
and chemical techniques for boron activation is the adop-
tion of the ball milling and annealing method [20–22]. 
Mechanical ball milling reduces the size of boron such 
that the boron reacts with  NH3 to form activated B–N 
nanoparticles. These nanoparticles subsequently crystal-
lize into nanotubular structures during annealing. Although 
this method lowers the required activation temperature to 
1100–1300 °C, it has limitations, including a relatively low 
efficiency in activating boron and a susceptibility to the 
deactivation of active boron (Table S1).

In comparison, boron oxide chemical vapor deposition 
(BOCVD) [23–31] is a promising method for boron acti-
vation in the field of chemical technology. This method 
involves the reaction of metal oxides  (MeOx) with boron at 
high temperatures, resulting in the formation of  BxOy and 
metal vapor. Once the vapor pressure in the system reaches 
saturation, the  BxOy and metal vapor interact and condense 
into highly activated Me–B–O liquid particles [32–35]. 
These liquid particles undergo supersaturation and precipi-
tation of B–N chains in the presence of  NH3, resulting in 
the formation of BNNTs. The advantages of this method are 
its simple equipment, the controllability of the reaction, the 
high activation efficiency of the boron, and the high quality 
of the prepared BNNTs (Table S1).

However, the current growth temperature range 
(1100–1500 °C) of BOCVD is high due to the activity of 
the Me–B–O growth system formed. An analysis of phase 
diagrams reveals that compounds in the Me–B–O system 
containing highly catalytic metals (Me = Mg, Fe, Al, Ca) 
typically have high melting points, resulting in low cata-
lytic growth activity of the system at lower temperatures 
(Fig. S1). The above analysis indicates the necessity of a 
more thorough investigation of the conventional MgO–B 
growth system (where a schematic diagram of the experi-
ment is shown in Fig. S2) [36]. MgO has exceptional acti-
vation effects on B, effectively constructing the Mg–B–O 
growth system (where detailed experimental explanations 
are presented in Fig. S3). The high-melting-point com-
pound  Mg2B2O5 (1307 °C) [37] generated in this system 
has a strong catalytic capability for BNNT growth at high 
temperatures. However, this compound deviates from the 
VLS growth mechanism in that it does not liquefy at lower 
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temperatures, which hinders BNNT growth. Therefore, it is 
crucial to lower the melting point of the Mg–B–O system 
with high catalytic activity.

As is well known, alkali metals (AMs) such as Li, Na, 
K, Rb, and Cs have extremely high reactivity, which is 
highly beneficial for activating B. Furthermore, compounds 
formed in the AM–B–O system typically have lower melting 
points, which can keep the growth system in a liquid state 
at reduced temperatures (Fig. S4). Therefore, in this work, 
we designed a method of incorporating AM compounds 
into the conventional MgO–B growth system. The designed 
method was used to establish a variety of low-melting-point 
AM–Mg–B–O systems, enabling efficient BNNT synthesis 
at a mild temperature of 950 °C and even facilitating BNNT 
synthesis at temperatures as low as 850 °C. Incidentally, the 
lowest synthesis temperature in this study is already com-
parable to the synthesis temperature of non-growth meth-
ods (e.g., template methods) [38, 39]. In addition, molecular 
dynamics simulations based on density functional theory 
theoretically demonstrated that the systems maintain a liquid 
state at low temperatures and interact with N atoms to form 
BN chains. This paper thus provides an innovative method 
for designing lower-melting-point and high-activity systems 
in low-temperature environments, with noteworthy implica-
tions for future research on low-temperature BNNT synthe-
sis. As an example application, an BNNT/epoxy resin (EP) 
composite film, comprising 5 wt% BNNTs, exhibits remark-
able thermal dissipation capabilities.

2  Experimental Section

2.1  Materials

The horizontal resistance heating furnace (GSL–1500X) 
was provided by Hefei Cogent Materials Technology 
Co., Ltd. Argon and ammonia gases were supplied by 
Nanjing Tezhong Gas Factory Co., Ltd. Boron powder 
(B), magnesium oxide (MgO), and potassium carbonate 
 (K2CO3), lithium carbonate  (Li2CO3), sodium carbonate 
 (Na2CO3), rubidium carbonate  (Rb2CO3), cesium car-
bonate  (Cs2CO3), isopropanol  (C3H8O) and ethyl acetate 
 (C4H8O2) were purchased from Shanghai Aladdin Bio-
chemical Technology Co., Ltd. Epoxy resin (EP) was sup-
plied by Shanghai Yuanye Biotechnology Co., Ltd.

2.2  Preparation of BNNTs

BNNTs were synthesized in a horizontal resistance heat-
ing furnace consisting of an alumina tube with a length of 
60 cm and a diameter of 5 cm. The  SiO2/Si substrates and 
200 mg of MgO,  K2CO3, and B precursors (molar ratio 
1:1:4) were placed on the top and inside of the BN boat, 
respectively. The boat was positioned near the closed–end 
of a 20 cm long, 3 cm diameter alumina tube. This small 
tube was placed inside a horizontal resistance heating fur-
nace, and the closed–end was kept in the center of the 
heating zone (as shown in Fig. S2). The furnace was con-
tinuously supplied with 50 standard cubic centimeters per 
minute (sccm) Ar and heated to the growth temperature at 
a rate of 10 °C  min−1. Subsequently, the Ar was replaced 
with 50 sccm  NH3 and maintained for 2 h to enable the 
growth of BNNTs. The resulting sample was then cooled 
to room temperature under Ar protection.

2.3  Preparation of BNNT/EP Composite Films

A homogeneous solution was formed by mixing 10 mL 
of isopropanol, 10 mL of ethyl acetate, and 2 g of EP at 
60 °C and a stirring rate of 500 r  min−1. Then, 0.1 g of 
BNNTs was added to the EP solution and kept under the 
same stirring and temperature conditions until the solution 
became a viscous and homogeneous mixture. A curing 
agent, diethylenetriamine, was then added to the mixture 
in a quantity of 200 μL. After stirring for 2 min, the mix-
ture was poured into a Teflon Petri dish and cured at 60 °C 
for 2 h to produce the composite film.

3  Results and Discussion

3.1  Growth Results of BNNTs in the K‑Mg‑B‑O System

We initially present the growth outcomes of incorporating 
K, an AM, into MgO–B. Optical photographs and scan-
ning electron microscopy (SEM) images of the growth 
results for MgO,  K2CO3, and B with a molar ratio of 1:1:4 
reveal the deposition of white products, including slender 
BNNTs, on  SiO2/Si substrates at growth temperatures of 
1000 and 1100 °C (Fig. 1a, b). At a growth temperature 
of 900 °C, a minimal quantity of product was acquired 
on the  SiO2/Si substrate (Fig. 1c). Nonetheless, BNNT 
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synthesis was unsuccessful at 800 °C (Fig. 1d). X-ray 
diffraction (XRD) and Raman spectra analyses were con-
ducted for the products on the  SiO2/Si substrates obtained 
at growth temperatures of 900, 1000, and 1100 °C. The 
peaks observed in the XRD patterns correlate with dis-
tinctive signals of h-BN (JCPDS No. 73–2095), signi-
fying that the as-grown samples have h-BN structures 
(Fig. 1e). The Raman spectra have a pronounced absorp-
tion band at 1368  cm–1, corresponding to the  E2g in-plane 
vibration mode of h-BN (Fig. 1f). The XRD patterns sug-
gest that the products within the BN boat encompass BN 
(JCPDS No. 73–2095), MgO (JCPDS No. 87–0652), and 
a minor quantity of  B13C2 (JCPDS No. 71–0108) (result-
ing from the reaction between  CO2 from  K2CO3 decom-
position and B) (Fig. S5). This indicates that the system’s 

precursors undergo efficient transformation into BN even 
at low temperatures.

Furthermore, a more thorough temperature investiga-
tion revealed a temperature of 950 °C to be suitable for 
efficient growth. White material (BNNTs) was observed 
on the precursor material and along the inner walls of the 
BN boat, as illustrated in Fig. S6a. SEM images unveiled 
that these white products comprised an extensive region 
of densely packed filamentous BNNTs, having an esti-
mated length of several micrometers to tens of microm-
eters (Figs. S6b and 1g). In addition, apart from XRD 
and Raman spectra affirming the h-BN structure of the 
samples cultivated at 950 °C (Fig. S6c, d), further char-
acterization was undertaken via Fourier transform infra-
red spectroscopy and transmission electron microscopy 
(TEM) for a more comprehensive analysis. In Fig. 1i, 

Fig. 1  Fundamental characterization of BNNTs. SEM images of products grown on  SiO2/Si substrates at a 1100 °C, b 1000 °C, c 900 °C, d 
800 °C, g 950 °C, and h 850 °C. Inset: photograph of products formed on  SiO2/Si substrates. e XRD patterns and f Raman spectra of products 
formed at 900, 1000, and 1100 °C. i Fourier transform infrared spectrum of products formed at 950 °C. j Low-magnification TEM images of 
the BNNTs. k Diameter distribution of the BNNTs (inset: typical AFM image of BNNTs dispersed on the  SiO2/Si substrates). l Comparison of 
growth temperatures between previous reports and this work
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there are three absorption bands at approximately 1520, 
1365, and 806   cm–1. The absorption peak at 806   cm–1 
corresponds to a B–N–B bending vibration parallel to 
the c-axis whereas the absorption peak at 1365  cm–1 cor-
responds to a B–N stretching vibration perpendicular to 
the c-axis. Both of these peaks are characteristic of BN. 
The absorption peak at 1520  cm–1 is associated with the 
vibration of the BN skeleton along the tangential direc-
tion of the nanotubes, which is a distinct characteristic 
of BNNTs. The TEM images reveal that the samples 
have elongated and straight hollow tubular structures, 
with diameters ranging from 15 to 25 nm (Fig. 1j). The 
interplanar spacing of the wall, which is characteristic 
of a d(002) spacing of h-BN, is approximately 0.34 nm 
(Fig. S6e). The BNNTs were then dispersed onto  SiO2/
Si substrates to obtain diameter statistics. SEM images 
(Fig. S6f) and atomic force microscopy (AFM) images 
(Fig. 1k inset) depict the relatively isolated and well-
dispersed nature of the BNNTs on a  SiO2/Si substrate. 
The primary diameter distribution of the BNNTs, span-
ning from 10 to 35 nm and averaging 24 nm, is illus-
trated in Fig. 1k. All of the above results substantiate the 
effective synthesis of high-quality BNNTs at a modest 
temperature of 950 °C. Finally, and most surprisingly, the 
system accomplished BNNT synthesis at a minimum tem-
perature of 850 °C (Fig. 1h). A comparison of the lowest 
growth temperature (850 °C) in this study with previously 
reported temperatures (Fig. 1l) reveals the achievement 
of this study (refer to Table S2 for detailed information).

3.2  Analysis of the Reasons for Low‑Temperature 
Synthesis in the K‑Mg‑B‑O System

Subsequently, the growth mechanism of the system was 
investigated. The initial stage comprised annealing MgO, 
 K2CO3, and B under Ar at 850 °C to investigate the authentic 
active constituents of the precursors during the growth pro-
cess. The XRD pattern indicates that the product that formed 
after annealing the precursors was  KMgBO3 (ICSD No. 
174336) (Fig. S10a) (Fig. 2a) [40, 41]. The melting point 
of this compound was then investigated adopting differen-
tial scanning calorimetry (DSC). Figure 2b shows a clear 
endothermic peak at 825 °C, corresponding to the melting 
point of  KMgBO3. We consider that this compound has a 
reduced melting point, rendering it a pivotal determinant for 

BNNT growth at reduced temperatures. For theoretical sup-
port, density-functional-theory-based molecular dynamics 
(DFT-MD) simulations were conducted to study the melt-
ing of  KMgBO3 and the mechanism of BNNT growth from 
liquid  KMgBO3 via a VLS mechanism at low temperature. 
The root mean square deviation (RMSD) can be used as 
an indicator of the dissolution of alloys [42–44] and clus-
ters [45, 46]. We first ran DFT-MD simulations to test the 
states of a  KMgBO3 slab at different temperatures and cal-
culated the RMSD (Fig. 2c). Snapshots of MD simulations 
taken at 10 ps (Fig. S7) clearly show that the  KMgBO3 slab 
melted at ~ 1100 K, which is in good agreement with the 
DSC data and the lowest temperature for BNNT growth, 
namely ~ 850 °C. To further simulate the growth of BNNT 
catalyzed by  KMgBO3, MD simulations were performed at 
1100 K for a total duration of 20 ps, with a time step of 1 fs. 
By adding N atoms to the surface of liquid  KMgBO3, we 
found that N atoms were intercalated into the B–O bonds 
of  BO3

3–. Snapshots of the MD trajectory are presented in 
Fig. 2d and Movie S1. The intercalation of N atoms led to 
the formation of N–B pairs (red circles in Fig. 2d), N–B–N 
trimers (black circles), and N–B–N–N–B (green circles) 
short chains at 1100 K, suggesting that liquified  KMgBO3 
promoted the formation of h-BN on its surface. Remark-
ably, these B–N chains remained intact throughout the 
dynamics simulation (Movie S1), indicating that the B–N 
bonds were more favorable than the B–O bonds. Although 
we could not simulate the formation of a BNNT due to the 
huge computational costs of the DFT-MD simulations, these 
results clearly show that the nucleation of BN chains on the 
 KMgBO3 surface is preferred and that the speculated VLS 
mechanism [47] of BNNT growth is thus reasonable. This 
finding has been confirmed by other studies [48–50]. To 
acquire conclusive proof of the catalytic role of  KMgBO3 
in BNNT growth, TEM characterization was performed for 
the BNNT tips. Figure 2e, f clearly shows that the catalytic 
particle resides at the tip’s central point, encircled by layers 
of BN. This indicates that the BNNT grows from the cata-
lyst particles, which is consistent with the VLS mechanism. 
Energy-dispersive X-ray spectroscopy (EDX) was adopted 
to investigate the BNNT tips. Elemental maps disclose the 
uniform distribution of B and N across the tip, with O and 
Mg being concentrated at the catalyst (Fig. 2g). In addition, 
the presence of K elements at the tip confirms that K has 
dissolved into the MgO–B system.
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3.3  Growth Results of the K‑B‑O System 
and the AM‑B‑Mg‑O System

To investigate whether the K–B–O system catalyzes the 
formation of nanotubes, we studied the activation effect of 
 K2CO3 on B at different temperatures and the growth results 
of  K2CO3 and B (with a molar ratio of 1:2 for  K2CO3 and 
B). The results reveal that a considerable quantity of white 
product formed on the  SiO2/Si substrate at growth tempera-
tures of 900, 1000, and 1100 °C. SEM images show that 

the products obtained at all three temperatures had a flake-
like structure inherent to BN (Fig. S8a–c). Furthermore, the 
XRD pattern of the products within the BN boat demon-
strated a precursor reaction with  NH3, yielding h-BN and a 
minor portion of  B13C2 (JCPDS No. 71–0108) (Fig. S8d). 
Subsequently,  K2CO3 and B were subjected to annealing at 
950 °C to investigate their growth mechanism. The XRD 
pattern in Fig. S8e indicates the precursor’s conversion into 
 K2B4O7 (JCPDS No. 70–1494), having a melting point of 
780 °C [51]. We propose that in this growth process, the 

Fig. 2  Experimental and theoretical analysis of the growth mechanism. a XRD patterns of products formed from MgO–K2CO3–B under Ar at 
850 °C. b DSC curves of  KMgBO3. c RMSD of the atoms of  KMgBO3 in MD simulations at different temperatures. d Formation of h-BN on the 
surface of  KMgBO3 observed in the MD simulation at 1100 K. Yellow: Mg, Purple: K, Light blue: O, Pink: B, Dark blue: N. e Low- and f high-
magnification and g energy-dispersive X-ray spectroscopy mapping of the tip of the as-grown BNNTs
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elevated oxygen transfer propensity of  K2O (as per the 
Ellingham diagram) [52] enhances B activation, resulting 
in the creation of low-melting-point  K2B4O7. However, the 
pronounced reactivity of K renders it incapable of stable 
existence within the system, precluding its role in nucleation 
catalysis. This leads to a direct reaction between  BxOy within 
 K2B4O7 and  NH3, yielding BN nanosheets [35].

To investigate the effects of other AMs on the system, 
experiments were conducted by adding  Li2CO3,  Na2CO3, 
 Rb2CO3, and  Cs2CO3 separately to the MgO–B system 
(MgO:AM2CO3:B with a molar ratio of 1:1:4). SEM 
images show that all systems with Li, Na, Rb, and Cs 
grew extensive BNNTs at 950 °C (Fig. S9), and all four 
systems grew BNNT at a lower temperature of 850 °C 
(Fig. 3a–d). Subsequently, we annealed the four precur-
sors in an Ar environment. XRD patterns revealed that, 
following annealing at 850 °C, the four precursors pro-
duced  LiMgBO3 (JCPDS No. 79–1996) (Fig.  S10b) 
[53],  NaMgBO3 (ICSD No. 249567) (Fig. S10c) [54], 
 RbMgBO3 (Fig. S10d) [55], and  CsMgBO3 (Fig. S10e) 
[55] (Fig. 3e). We conducted DSC tests on these four prod-
ucts. Figure 3f shows that the melting points of  LiMgBO3, 
 NaMgBO3,  RbMgBO3, and  CsMgBO3 are 785, 761, 860, 

and 774 °C, respectively. These results clearly indicate that 
AM readily dissolves into MgO–B, creating low-melting-
point and highly catalytic AM–Mg–B–O systems and thus 
facilitating the low-temperature synthesis of BNNTs.

3.4  Exploration of BNNT Properties and Applications

We next explored the characteristics of the synthesized 
BNNTs. Thermogravimetric analysis indicates that carbon 
nanotubes (CNTs, Shanghai Aladdin Bio-Chem Technol-
ogy Co., Ltd.) underwent oxidation at 500 °C, whereas the 
weight of BNNTs varied minimally within the temperature 
range of 25 to 1000 °C, signifying thermal stability supe-
rior to that of CNTs (Fig. S11a). We adopted the drop-
casting method to measure the water contact angle (CA) 
of the BNNTs grown on the  SiO2/Si substrate. As is well-
known, the CA is defined as the angle between the tangent 
to the gas–liquid interface at the triple point of gas, liquid, 
and solid phases and the solid–liquid boundary line on 
the liquid side. The size of the CA represents the degree 
of wettability. When the CA is 0°, it indicates complete 
wetting. When the CA is less than 90°, it indicates partial 
wetting or wetting. When the CA is greater than 90°, it 

Fig. 3  Various AMs used to grow BNNTs. SEM images of BNNTs grown on  SiO2/Si substrates from a MgO–Li2CO3–B, b MgO–Na2CO3–B, 
c MgO–Rb2CO3–B, and d MgO–Cs2CO3–B at 850 °C. e XRD patterns of products formed from MgO–Li2CO3–B, MgO–Na2CO3–B, MgO–
Rb2CO3–B, and MgO–Cs2CO3–B under Ar at 850 °C. f DSC curves of  LiMgBO3,  NaMgBO3,  RbMgBO3, and  CsMgBO3
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indicates non-wetting. After a water droplet made contact 
with the  SiO2/Si substrate, CA measurements were col-
lected every 1 s for 10 s. The average CA was calculated as 
approximately 142.74°, indicating the stable hydrophobic 
nature of the BNNTs (Fig. 4a). Moreover, the BNNTs had 
consistent hydrophobic characteristics across a broad pH 
range spanning from 2 to 14 (Fig. S11b). These findings 
imply that the non-wettability of BNNTs remains imper-
vious to potent acidic and alkaline conditions, making 
BNNTs highly promising for water-resistant coatings. An 
ultraviolet test was conducted on a suspension of BNNTs 
in ethanol. Figure 4b shows an absorption peak at approxi-
mately 5.9 eV (~ 210 nm), which is associated with the 
optical band gap of BNNTs and implies potential utility 
in ultraviolet-range photovoltaic devices. To examine 
the electrical traits of the samples, a single-BNNT-based 
device, featuring Cr (10 nm)/Au (80 nm) electrodes, was 
fabricated adopting electron beam lithography (Fig. 4c). A 
typical drain–source current versus drain–source voltage 
(IDS–VDS) curve of a single BNNT showed a current of 
7 ×  10–12 A and a resistance of 1.4 ×  1011 Ω at VDS = 1 V, 

demonstrating the BNNT’s good insulating property at 
room temperature due to the wide energy band gap of the 
nanomaterials (Fig. 4d).

The unique combination of high thermal conductivity and 
aspect ratio makes the BNNT an excellent filler for ther-
mally conductive composites. A colorless and transparent 
pure EP film and white BNNT/EP composite film containing 
5 wt% BNNT were separately fabricated using a solution 
method (Fig. 4e inset). SEM was conducted to characterize 
the fracture surface morphology of the composite materials. 
Figure S12 shows the uniform dispersion of interconnecting 
BNNTs throughout the composite. The XRD pattern of the 
pure EP film had wide diffraction peak dispersion between 
15 and 23° [56], whereas the BNNT/EP composite film had 
a sharp peak at 26.8° corresponding to the (002) plane of 
h-BN (JCPDS No. 73–2095) in addition to the characteris-
tic peaks of pure EP film (Fig. S13). The thermal conduc-
tivity of the sample was determined using the laser flash 
method. Figure 4e shows that the thermal conductivity of 
the 5 wt% BNNT/EP composite film increased to nearly 
1.87 W  m−1  K−1 (in plane) and 0.231 W  m−1  K−1 (out of 

Fig. 4  Properties and Applications of BNNTs. a Photographs of a CA measurement and b ultraviolet–visible absorption spectrum of as-grown 
BNNT-coated  SiO2/Si. c SEM image and d typical  IDS–VDS curve of a single BNNT-based device. e In-plane and out-of-plane thermal con-
ductivity. Inset: photograph of pure EP film and BNNT/EP composite film. f Surface temperature evolution over time of the pure EP film and 
BNNT/EP composite film
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plane), approximately 12.2 times and 1.5 times higher than 
the values for the pure EP film, respectively. The BNNT/EP 
composite film was used as a thermal interface material for 
light-emitting diode (LED) chip heat dissipation, and the 
surface temperature changes of the LED chip were directly 
observed using an infrared thermal imager. Figures 4f and 
S14, respectively, show the variation of the core tempera-
ture of the LED chip with the running time and an infrared 
thermal image. During the 60 s that the LED chip was turned 
on, the center temperature of the BNNT/EP composite film 
was consistently 10–15 °C lower than that of the pure EP 
film. After turning off the LED chip, the core temperature 
of the BNNT/EP composite film dropped to 47.7 °C within 
20 s, demonstrating the excellent heat dissipation ability of 
the BNNT/EP composite film. These findings demonstrate 
the application potential of BNNTs in thermal management.

4  Conclusions

In summary, we developed an effective strategy for activat-
ing boron by introducing AM compounds into the tradi-
tional MgO–B system. We thus formed several innovative 
AM–Mg–B–O systems with low melting points and strong 
catalytic capabilities. All of the AM systems synthesized 
BNNTs at a low temperature of 850 °C. MD simulations 
indicated that the representative compound  KMgBO3 can 
liquefy at ~ 1100 K and react with N to produce BN chains. 
This outcome theoretically demonstrates the practicality of 
the systems for the synthesis of BNNTs at low tempera-
tures. We believe that this work has implications for future 
research on the low-temperature synthesis of BNNTs. In 
addition, we prepared BNNT/EP composite films having a 
thermal conductivity 12.2 times that of pure EP films and 
excellent heat dissipation performance.
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