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HIGHLIGHTS

• Flexible sensitive carbon nanotubes/polydimethylsiloxane (CNTs/PDMS) nanocomposite with novel double-side rough porous structure 
was proposed by simple manufacturing methods.

• Three-dimensional (3D) force tactile electronic skin sensor based on CNTs/PDMS nanocompositions exhibited high sensitivity, good 
consistency and fast response.

• A promising strategy for low-cost multi-functional detection in human body monitoring and intelligent robot grasping applications 
was provided.

ABSTRACT Flexible tactile sensors have broad applications in 
human physiological monitoring, robotic operation and human–
machine interaction. However, the research of wearable and flexible 
tactile sensors with high sensitivity, wide sensing range and ability 
to detect three-dimensional (3D) force is still very challenging. 
Herein, a flexible tactile electronic skin sensor based on carbon 
nanotubes (CNTs)/polydimethylsiloxane (PDMS) nanocomposites 
is presented for 3D contact force detection. The 3D forces were 
acquired from combination of four specially designed cells in a 
sensing element. Contributed from the double-sided rough porous 
structure and specific surface morphology of nanocomposites, 
the piezoresistive sensor possesses high sensitivity of 12.1 kPa−1 
within the range of 600 Pa and 0.68 kPa−1 in the regime exceed-
ing 1 kPa for normal pressure, as well as 59.9 N−1 in the scope 
of < 0.05 N and > 2.3 N−1 in the region of < 0.6 N for tangential force with ultra-low response time of 3.1 ms. In addition, multi-functional 
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detection in human body monitoring was employed with single sensing cell and the sensor array was integrated into a robotic arm for 
objects grasping control, indicating the capacities in intelligent robot applications. 

KEYWORDS Flexible tactile sensors; Electronic skin; Piezoresistive sensors; CNTs/PDMS nanocomposites; 3D force detection

1 Introduction

Over past years, wearable and flexible tactile sensors have 
attracted a great deal of studies due to their great potential 
in various applications including physiological measurement 
[1–3], robotics [4], human–computer interaction [5, 6] and 
wearable devices [7, 8]. Generally speaking, tactile sensors 
imitate human perception of pressure with capability of 
detecting shapes and sliding conditions of the contact objects. 
Compared with silicon-based devices with high hardness and 
effective Young’s modulus, flexible materials are more suit-
able for bionic tactile applications due to the good adherence, 
tensility and flexibility [9–11]. A variety of flexible mate-
rials such as polyethylene (PE) [12], polydimethylsiloxane 
(PDMS) [13, 14], polyurethane (PU) [15] and polyimide (PI) 
[16] have been applied to tactile sensors, and the operational 
principles of tactile sensors mainly include piezoresistive 
[17–19], capacitive [20], piezoelectric [21] and optical [22]. 
Among them, piezoresistive tactile sensors have been widely 
used, benefited from their uncomplicated and reliable fabrica-
tion process, low cost and application prospects in large area.

Currently, large quantities of conductive nanomaterials and 
nanocomposites have been demonstrated with piezoresistance 
such as carbon nanotubes (CNTs) [23, 24], carbon black [25], 
graphene [26–28], nanowires [12, 29] and metallic particles 
[5]. Among them, conductive CNTs/polymer composites can 
realize good piezoresistive effect because the super-high aspect 
ratio as well as good axial conductivity of CNTs can greatly 
reduce the material consumption resulting in little change 
in polymer’s mechanical properties. In addition, CNTs have 
high mechanical strength and can keep stable properties under 
repeated external force [30, 31], which makes CNTs a common 
conductive material in composites [32], microelectronics [33], 
energy storage and biomedical [34–36]. In terms of sensors 
and transducers, CNTs are most commonly used in the form of 
three-dimensional conductive network in both composites and 
structures composed of pure CNTs. What is more, compared 
with the complex and vulnerable manufacturing methods of 
pure CNTs network structure [37], nanocomposites formed 

by combining CNTs with polymers tend to have a simpler, 
more stable and lower cost fabrication process and exhibits 
good stability, conductivity and repeatability at the same time.

Apart from the selection of conducting materials and 
nanocomposites, the structure of piezoresistive sensing 
element is also an important factor determining the perfor-
mance of sensors because different structures possess dif-
ferent moduli of elasticity resulting in different sensitivity 
and other physical characteristics in practical applications. 
At present, many microstructures have been used to realize 
high sensitivity including porous structure [38], pyramid 
structure [39, 40], micro-pillar structure [41], sponge struc-
ture [26], electrospinning structure [12], microdome [42] 
and hollow cylindrical structure [43]. Sensors with these 
above-mentioned structures have either high-cost or com-
plex manufacturing process. Moreover, actual tactile con-
tact forces in daily life are usually three-dimensional (3D) 
with lateral force and sliding, but most present electronic 
skin devices can only detect external force in the form of 
normal pressure without tangential force, which limits per-
ception of contact information. Wang et al. [44] and Park 
et al. [45] have proposed tactile sensors with flexible and 
sensitive detection for electronic skin applications, but the 
devices with complex fabrication process cannot effectively 
detect three-dimensional contact force. Yeo et al. [46] and 
Buscher et al. [47] have reported wearable pressure sen-
sors with ability of large-area application, but the pressure 
resolution and sensitivity of the devices are not high enough 
for tactile sensing. Besides, the proposed 3D force detection 
sensors still have some shortcomings in tactile sensing. Viry 
et al. [48] introduced a flexible capacitive three-axial force 
sensor made with conductive fabric electrodes. The sen-
sor showed sensitive response to pressure but high spatial 
resolution is hard to realize because of the large volume and 
the gap between electrodes is susceptible to interference. 
Lee et al. [49] reported a capacitive tactile sensor array 
using flexible material for normal and shear force detec-
tion. The sensor has good uniformity but small detection 
range and low sensitivity. The stretchable tri-axial tactile 



Nano-Micro Lett. (2019) 11:57 Page 3 of 14 57

1 3

sensor reported by Noda et al. [50] has the same drawbacks 
of insensitivity and large volume. Therefore, a flexible tac-
tile sensor with the capacity of detecting 3D contact forces 
sensitively is necessary and promising for bionic and multi-
scene applications.

This work demonstrates a 4 × 4 flexible tactile elec-
tronic skin sensor based on multi-walled carbon nanotubes 
(CNTs)/PDMS polymer nanocomposite for 3D contact 
force detection. The sensor array has good uniformity, spa-
tial resolution and fast response to tiny contact force. High 
sensitivity in three-axial detection and compatibility with 
curved surfaces are achieved by using nanocomposite with 
double-sided rough porous structure and flexible printed 
circuit (FPC) electrode layers with PI as substrate. The sim-
ple preparation and fabrication process of nanocomposite 
and the device is a great advantage for producing electronic 
skins in large scale and low cost. Systematic experiments 
have been done to test the performance of the sensor in spe-
cific applications. In addition, the piezoresistive nanocom-
posite-based pressure sensor has also be applied to measure 
human wrist pulse, finger bending, limbs movements and 
robotic object grasping in combination with manipulators, 
reflecting its potential in applications of human monitoring 
and robotics.

2  Experimental

2.1  Structure and Layout

The proposed sensor array was constructed in a sandwich-
like structure in which a double-sided rough porous sur-
face structural CNTs/PDMS nanocomposite is sandwiched 
in between flexible upper and lower electrode layers. Fig-
ure 1a schematically depicts the structure of the sensor array 
(4 × 4 cm2) and a single element. The CNTs/PDMS nano-
composites (2 × 2 mm2) are sandwiched between two cop-
per electrodes with the same size, and a transparent PDMS 
intermediate layer with the similar surface morphology and 
thickness (200 μm) as nanocomposites is used to immobilize 
nanocomposites. The PDMS intermediate layer as isolating 
layer is adopted to prop electrode layers up and guarantee 
the same strain occurring as nanocomposites under pressure 
loading. The four nanocomposite cells beneath the bump 
are arranged in middle of four edges of the bump, respec-
tively, and all cells on the same rows and columns in dif-
ferent elements are connected together through the upper 
electrode and lower electrode, respectively, through which 
the row-column scanning configuration simplifies the wiring 
layout of electrode layers and circuit interface. PDMS bumps 

PDMS bump

PI layer

PI layer

Initial state Normal force Tangential force

(b)

(a)

(c) (d) (e)

Copper electrodes

CNTs-PDMS composites

PDMS intermediate layer

Copper electrodes

7 mm

2 mm

200 µm
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60°

Fig. 1  a Dismantling structure schematic diagram of the tactile sensor array and one single element. b–d Cross-sectional diagrams of a tac-
tile sensor element under initial state, normal force state and tangential force state, respectively. e Photograph of the sensor array attached to a 
curved surface
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with 2 mm height and 7 mm bottom side length are used 
to protect the tactile sensor and transmit 3D force to cells. 
Figure 1b–d illustrates cross-sectional diagrams of a sensor 
element under three different loading states which are initial 
state, normal force (z axis) loading state and tangential force 
(x or y axis) loading state, respectively. When the tactile 
sensor is in the initial state without external force loading, 
the piezoresistive nanocomposites keep multi-points contact 
with both electrodes surfaces and the gaps between CNTs in 
nanocomposites remain the maximum. As a normal force is 
applied to the bump, four cells beneath the bump are sub-
jected to the same pressure and the contact areas between 
the surfaces of nanocomposites and the electrodes increase, 
while the gap among CNTs decreases forming a denser con-
ducting network which reduces resistances of piezoresistive 
nanocomposites in four cells to the same magnitude. As a 
tangential force is applied, the tilt and deformation of bump 
will induce the right cell to be subject to undergoing com-
pressive stress while the opposite cell is subjected to tensile 
stress (Fig. 1d). As a result, the resistance of the former cell 
reduces while the latter one’s resistance is not significantly 
changed. The tangential force can be detected by calculating 
the difference between resistances of two cells in the cor-
responding axial direction. The sensor composed of fully 
flexible materials can conform to curved surfaces with the 
curvature radius of 30 mm as shown in Fig. 1e. What is 
more, an array scanning circuit is employed in our work for 
voltage signals acquisition of each piezoresistive cell (Figure 
S1) and the resistance also can be obtained by proportionate 
calculation in real time (Supporting Information).

2.2  Fabrication and Working Principle

Fabrication flow of the tactile sensor array is illustrated in 
Fig. 2a. Abrasive paper (grit degree: P800) with rough and 
uneven surface is utilized in our work as mold for flexible 
materials manufacturing. Firstly, a 1-μm-thick layer of par-
ylene-C is deposited on the rough surface of the abrasive 
paper mold followed by spin coating and curing of PDMS, 
then the cured PDMS film is peeled off from the abrasive 
paper and deposited with 1-μm-thick parylene-C on the 
rough surface. Secondly, the PDMS film with rough surface 
is cut into the pattern of the intermediate layer by position 
stamping. Thirdly, the prepared CNTs/PDMS nanocompos-
ite is knife-coated onto the aforementioned mold and then 

the flexible PDMS film deposited with parylene-C is covered 
on the surface of the nanocomposite with the rough surface 
downward. After heating at 120 °C for 30 min in vacuum, 
the nanocomposite film possesses double-sided rough sur-
face morphology. The peeled off nanocomposite film is cut 
into 4 mm2 (2 mm × 2 mm) squares and filled into the vacant 
positions of the intermediate layer. Finally, the flexible sen-
sor array is assembled by intermediate layer, electrode lay-
ers and bumps. The manufacturing methods and fabrication 
details are described in Supporting Information.

Benefited from the double-sided rough surface structure 
of the nanocomposite, contact areas in both upper and lower 
surfaces of nanocomposite films with electrodes change 
the same and the sensing cell is efficiently deformed under 
external pressure so as to improve the sensitivity of the 
device without losing the sensing range. As thermal field-
emission scanning electron microscopy (SEM) (Hitachi 
S-4800, 15 kV) images show in Fig. 2b–g, the rugged struc-
ture distributes irregularly on the surface of nanocomposites 
and has good consistency on the entire scale of two sides’ 
surfaces (Fig. 2b–d). The measured height distribution data 
of the surface of nanocomposites by laser scanning con-
focal microscopy (LSCM) (LSM700, Carl Zeiss Shanghai 
Co., Ltd) and the obtained probability density distribution 
of heights are shown in Figs. S2, S3. It is indicated that 
the probability density distribution of the height of rough 
surface structure is approximately in accordance with the 
Gauss distribution with the mean value μ of 39.15 μm and 
the standard deviation σ of 5.21 μm. Figure S4 shows the 
piezoresistance of nanocomposites with different surface 
roughness, which indicates high sensitivity of surface mor-
phology with P800 grit degree and the effect of surface 
rough structure on increasing sensitivity of nanocomposites 
in comparison with the planar structure.

A number of micro-caves are formed deeply beneath the 
surface of flexible nanocomposite after the rough surface 
structure transferred from the abrasive paper. As shown in 
Fig. 2e–g, at the surface of micro-caves, CNTs extend out 
of the nanocomposite matrix disorderly which are circled 
out by red dashed lines. This reveals the anfractuous and 
intertwining arrangement of CNTs in the nanocomposite 
resulting in a large number of intricate conductive networks 
in the nanocomposites, and the CNTs on the surface of 
porous structures will contact each other to generate more 
conductive channels and achieve a higher sensitivity under 
compressive stress.
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The resistance of sensing cells in array is composed of 
bulk resistance of nanocomposites and contact resistance 
between nanocomposite surfaces and electrodes. Compared 
with the planar solid structure, the rough and porous surface 
structure makes contact areas between the nanocomposites 

and electrodes decrease and the resistivity increase, so the 
piezoresistive cell has a larger initial resistance. The smaller 
contact area and porous surface structure would largely 
increase the resistance variation range under the same vari-
ation extent of pressure compared to bulk resistor. The area 
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Fig. 2  a Schematic of the fabrication details of flexible tactile sensor array. b, c SEM images in top view of surface structure of nanocomposites 
at different magnifications. d Side view of the nanocomposite film with double-sided rough surface. e, f SEM images of porous structures in the 
nanocomposite at high magnification. g Magnified view of individual CNTs in nanocomposite
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change of contact surfaces between nanocomposites and 
electrodes is the main factor affecting the overall resistance 
value since the cross-area of piezoresistive nanocomposites 
is almost unchanged under external pressure compared to the 
area change of the upper and lower surfaces.

According to the definition of Young’s modulus and the 
theory of percolation [51], the sensitivity of piezoresistive 
cells can be written as Eq. 1:

where E is effective Young’s modulus of the nanocomposite 
cell, l is the length, A is the cross-area, k is the correlation 
coefficient between the content of CNTs and the resistiv-
ity of nanocomposites, ω is the content of CNTs, �

0
 is the 

threshold content of CNTs just forming the conductive net-
work in nanocomposites, α is the factor related to geometri-
cal structure, Am is the maximum contact area between nano-
composites and electrodes, which is a fixed value and f(h) 
is the probability density function of heights. The detailed 
derivation process is shown in Supporting Information.

From the analysis above, the sensitivity of the sensor is 
mainly attributed to the rough and porous surface structure 
and the content of CNTs in the nanocomposite. The rough 
porous surface structure determines the effective Young’s 
modulus of nanocomposite cells, and the content of CNTs 
influences the density of conductive networks inside the 
nanocomposite. Therefore, the sensitivity of the device can 
be modulated effectively by regulating the roughness of sur-
face structure and adjusting the mass fraction of CNTs in the 
piezoresistive nanocomposite. From Eq. 1, as the pressure 
increases, the strain of piezoresistive composites becomes 
larger resulting in a larger effective Young’s modulus. Mean-
while, the number of conductive channels formed by the 
interconnection of CNTs networks increases. The above two 
factors contribute to the decrease in the device sensitivity.

3  Results and Discussion

3.1  Dynamic Characteristics

In order to take full advantage of the excellent mechanical 
properties of nanocomposites with double-sided rough struc-
ture, a single sensor with the same structure and process pro-
cedure as the sensor array was fabricated in parallel. The size 

(1)S =
1

E
⋅
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)

+
k
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� − �
0
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�

of piezoresistive sensing unit in the device is 4 mm × 8 mm, 
and the sensor unit is powered by a 5 V constant voltage 
source and connected in series with a constant resistance 
to form a circuit. The signal of voltage change of the sen-
sor unit is collected and displayed by oscilloscope (Key-
sight DSOX3034T). As illustrated in Fig. 3a, the electrical 
property of the piezoresistive unit under different normal 
pressures has been tested. The measured current–voltage 
curves have good linearity, indicating Ohmic contact char-
acteristic of the device, and the slope of I–V curves increases 
with the applied pressure due to the decrease in resistance 
accordingly.

Figure 3b and Movie 1 (Supporting Information) illus-
trate the capability of the sensor in detecting human wrist 
pulses. Two peaks P and D in each cycle can be clearly 
identified in the pulse waveform, representing percussion 
peak and dicrotic wave peak, respectively. Information in 
wrist pulse waveforms, such as the peak ratio and interval 
of peak P and peak D, can be applied to estimate human 
activities and assists diagnosis of diseases such as pancrea-
titis and duodenal bulb ulcer [52, 53]. Next, the pressure 
sensor unit is applied to another application of monitoring 
various body activities such as finger bending, wrist rotation 
and arm bending, as shown in Fig. 3c, Fig. S5 and Movie 
2. These results imply many potential applications of our 
tactile sensor in biomedical, human monitoring and disease 
diagnosis with convenience, flexibility and non-invasiveness 
ensured. What is more, the single sensor is used to measure 
the motion of the muscle in throat when a person speaks, as 
shown in Fig. 3d–f and the insert shows the location. Com-
paring with finger bending and throat muscle movement in 
Fig. 3c–e, the compression strain of the sensing unit caused 
by wrist pulse beating is much smaller and the amplitude of 
corresponding voltage variation (Fig. 3b) is in the order of 
hundred mVs because the intensity of pulse beating is much 
smaller than that of muscle movement. It is clear that the 
signals measured by sensor show obvious periodicity and 
consistency when the human body speaks different words 
and the signal of coughing is sharp and violent, which can be 
easily identified. Therefore, the device shows good basis for 
monitoring and recognizing human voice utilizing machine 
learning methods. Figure 3g shows the detection limit of 
pressure sensors is 5 mg (≈ 0.5 Pa), and Fig. 3h illustrates 
the response of the sensor unit to continuous airflow pulses, 
indicating high sensitivity of the device.
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3.2  Piezoresistive Properties of the Electronic Skin 
Sensor and Applications

The piezoresistive properties of the tactile sensor array were 
measured by a customized experimental setup, as shown in 
Fig. S6. The responses of the cells under normal pressures, 
tangential forces and analysis of decoupling spatial forces 
are shown in Figs. 4 and S7, S8. Figure 4a demonstrates the 

resistance response of one cell, and two sensitivity stages 
can be observed under a wide range of normal pressure. To 
explain this phenomenon, at first stage, the effective Young’s 
modulus of the piezoresistive cell is relatively small and 
the density of conductive networks in nanocomposites is at 
the minimum condition. According to Eq. 1, lower effective 
Young’s modulus and looser CNTs networks result in greater 
sensor sensitivity because smaller effective Young’s modulus 
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leads to a larger deformation of the composite under the 
unit pressure and a larger deformation causes larger relative 
variation of resistance. The sensitivity of the tactile sensor 
reached 20.8 kPa−1 in the range of < 200 Pa and 12.1 kPa−1 
in the regime of < 600 Pa. As the increase in pressure, the 
contact area between nanocomposites and electrodes and 
compressive strain of nanocomposites become increasingly 
larger. At this stage, the effective Young’s modulus is higher 
and more conductive channels arise in the nanocomposite 
due to the decrease in the distance between CNTs, leading 
to the lower sensitivity of the sensor. The sensitivity of the 
tactile sensor is 0.68 kPa−1 as the pressure > 1 kPa and keeps 
the same within the pressure region of 1–5 kPa. The charac-
teristic of the two stages sensitivity enables our tactile sensor 
to realize high sensitivity under small pressure as well as to 
maintain a large measuring range without saturation under 
high pressure, which is very suitable for multi-occasion 
applications of robots and human–machine interaction.

Figure 4b shows resistance responses and sensitivities 
of four cells beneath the bump in one element, and more 
piezoresistance characterization of cells is shown in Fig. 
S9. The deviation between different cells is less than 12% 
implying good piezoresistive consistency. Consequently, 
the synchronous resistances change of four cells can be 
employed to infer the applied normal force. Figures 4c, d 
and S7 illustrate resistance responses and sensitivity curves 
of the corresponding cells under tangential forces in different 
directions. We can see that under the tangential force along 
x-axis (Figs. 4c and S7), only the resistance of the cell along 
the direction of force decreases owing to compression of the 
cell, whereas the resistances of the other three cells do not 
change significantly. The sensitivity of tangential force can 
reach 59.9 N−1 in the scope of < 0.05 N and be over 2.3 N−1 
as the tangential force increases to 0.6 N. When the direction 

of tangential force rotates to 45° in the XOY plane (Fig. 4d), 
Cell 1 and Cell 4 are subjected to the same compressive 
strains and approximate identical resistance changes, while 
the resistances of Cell 2 and Cell 3 remain nearly unchanged 
without compressive stress. Universally, tangential forces 
(0.2 N and 0.5 N) with directional angle of 0° ≤ θ ≤ 180° in 
the XOY plane (Fig. 4e) are applied on the sensing element. 
At θ = 0°, Cell 4 receives the maximum force and the corre-
sponding resistance reaches minimum. As θ changes from 0° 
to 90°, the roles of Cell 1 and Cell 4 swap and Cell 1 reaches 
its minimum resistance value at θ = 90°. The same phenom-
enon can be observed for Cell 2 and Cell 3 at 90° ≤ θ ≤ 180°.

In addition, experiment is conducted out of the XOY plane 
as well. A 0.1 N force was applied to the bump with different 
angles (− 90° ≤ α ≤ 90°) to z axis in the XOZ plane, and the 
absolute values of resistance difference of corresponding 
cells are displayed in Fig. 4f. The |RC2–RC4| shows a similar 
monotonical increase trend as enlarging the angle to z axis 
due to the continuously increasing compressive strain differ-
ence between Cell 2 and Cell 4. By contrast, |RC1–RC3| is no 
more than 28 kΩ and the approximate axisymmetry of the 
|RC2–RC4| curve on α = 90° reflects the consistency among 
different cells. Therefore, the amplitude and angle of the 
spatial force in XOZ plane can be obtained via the resist-
ance difference using the |RC2–RC4| curve, and vice versa. 
Considering the symmetrical distribution and similar struc-
ture of cells, the same conclusion can be drawn in the YOZ 
plane and XOY plane at 180° ≤ θ ≤ 360°. Table 1 displays the 
comparison of this work with recently reported electronics 
skin sensors, which indicates the outstanding comprehensive 
performance such as response time and sensitivity of the 
proposed 3D tactile sensor.

The as-prepared tactile sensor device was tested under 
repeated pressing and releasing cycles in a wide range of 

Table 1  Performance of relevant e-skin sensors reported recently

Sensing principle Normal pressure 
sensitivity

Normal pressure range Tangential force 
sensitivity

Tangential force 
range

Response time References

Piezoresistive 1.04 kPa−1 20 kPa – – 34 ms [23]
Piezoresistive 1.71 kPa−1 5 kPa 2.5 μA/N 1 N 6 ms [24]
Piezoresistive 35.7 kPa−1 5 N – – 107 ms [7]
Piezoresistive 0.05 kPa−1 4–100 kPa – – ~1 s [40]
Piezoresistive 2.108%/N 5 N 3.2%/N 0.5 N – [54]
Strain gauge 0.676%/N 5 N 0.12%/N 0.5 N < 0.1 s [55]
Piezoresistive 12.1 kPa−1 6 kPa 59.9 N−1 0.6 N 6.8 ms This work
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compressive deformation. The dynamic response of the 
device under three repeated pressures (400 Pa, 1 kPa and 
2 kPa) is illustrated in Fig. 5a where stable voltage response 
of the sensor can be seen and a response time measurement 
was carried out by placing a 0.25 N weight (~ 5 kPa) on the 
sensor element and removing it quickly. Figure 5b quantifies 
the response and recovery time under a 5 kPa pressure as 
3.1 and 6.8 ms, respectively, implying an ultra-fast dynamic 
response in several milliseconds order of the sensor even 
under high pressure.

In order to test the dynamic stability performance of 
the sensor, 4000 continual human finger pressing–releas-
ing cycles with interval of ~ 0.12 s have been applied to the 
cell and continuous force loading–unloading cycles with 
0.02 N (interval of 1.4 s) and 0.05 N (interval of 1.2 s) have 
been applied to one element (4 adjacent cells), respectively. 
Dynamic voltage responses of the sensor are depicted in 
Fig. 5c, d and Figure S10a, respectively. We can see that the 
sensor shows good stability, repeatability and consistency, 
which are important for wearable tactile sensing applica-
tions. Also, three cycles of human finger sliding have been 
applied to the sensor and voltage outputs of different cells 
(Cell 4, Element 1–4) are plotted in Fig. 5e, from which 
successive voltage pulses can be seen when the finger glides 
across the surface of corresponding cells. According to the 
formula of speed (ν = d/t, d is the distance between two cells 
and t is the time interval between two pulses), the speed of 
a sliding can be derived.

On the basis of sensitive detection for contact force and 
recognization of contact shape by sensor array, a computer 
interface is programed to quantify the distribution of pres-
sure applied on the device. Figures 5f–h and S10b–d display 
the pressure distribution mapping under various strategies of 
applying force, and the color represents corresponding out-
put voltage of each cell in the sensor array. The distribution 
of contact forces on the device can be seen intuitively, and 
the magnitude and direction of the contact force, the shape 
and moving direction of the contact object can be obtained 
as well. The corresponding mapping of pressure distribution 
and the magnitude of forces are obtained when the sensor 
array is contacted by double points, one circle, diagonal, sin-
gle point, one row and one column pressing, respectively. It 
demonstrates the capacity of 3D force sensing by combining 
pre-calibrated data. For further application demonstration with 
our tactile sensor, the sensor array is combined with a robotic 
arm (LW4a, SCHUNK Co.) to grasp objects as exhibited in 

Fig. S11a, c. The empty plastic bottle and the bottle contain-
ing 400 mL pigmented water are clamped stably, respectively, 
without obvious deformation, and the color array indicating 
the force distribution on sensor array is shown in Fig. S11b, 
d. Obvious tangential force and normal pressure distribution 
on the sensor array can be seen due to the gravity of water. By 
contrast, for the empty bottle, only slight distributed normal 
pressure can be seen in the contact area because of its small 
mass. In addition, output voltages variation of different cells 
during a grasping process is illustrated in Fig. S12. The real-
time 3D force distribution data can contribute to the robotic 
application of grasping objects without damage by controlling 
the force and angles of the robotic arms through the machine 
learning algorithm.

4  Conclusions

In summary, a 4 × 4 flexible tactile sensor electronic skin 
based on special double-sided rough porous structure of 
CNTs-PDMS piezoresistive nanocomposites is developed 
for 3D contact force detection. The excellent physical and 
electrical properties of CNTs network enable sensor elements 
to maintain stability and good electrical conductivity under 
compressive stress. The double-sided rough microstructure 
dominates the ultra-high sensitivity and detection resolution 
of the sensor. Various experiments have been designed and 
established to quantify the piezoresistive characteristics and 
dynamic properties of the device under several tactile sens-
ing applications. Experimental results show strong relation-
ship between cell resistances and applied forces, and each 
axis force component can be calculated by combining resist-
ances of four cells in one element and the pre-calibrated data. 
The sensitivity of the tactile sensor is 12.1 kPa−1 in the range 
of < 600 Pa and 0.68 kPa−1 in the regime exceeding 1 kPa for 
normal pressure. The sensitivity of tangential force reaches 
59.9 N−1 in the scope of < 0.05 N and is over than 2 N−1 in 
the region of < 0.6 N, which is the highest within the scope of 
our knowledge. With the flexible materials and simple fabri-
cation process, the sensor array is able to manufacture in low 
cost with good repeatability, stability and uniformity and the 
response time of the tactile sensor is down to several millisec-
onds under high pressure. The sliding direction on surface can 
be detected effectively, and the sliding speed is able to derive. 
In addition, the sensitive single sensor has also been success-
fully demonstrated to measure wrist pulses and human limbs 
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Fig. 5  a The dynamic voltage response of the sensor under repeated various pressures. b Response and recovery time with 5 kPa loading and 
unloading. c Dynamic voltage responses of four cells with continuous loading and unloading of 0.02 N. d Good repeatability and durability after 
continuous about 4000 pressing–releasing cycles. e Voltage responses of different cells in the same row under a finger sliding. f–h Pressure dis-
tribution of sensor array with quantitative color under the case of double points pressing, circle pressing and diagonal pressing
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movements, implying potential applications of the tactile sen-
sor in gentle touch measuring, human monitoring, biomedical 
and disease diagnosis. Finally, the sensor array is combined 
with robotic arm to grasp objects with real-time pressure dis-
tribution mapping, implying the capacity of applications in 
integrated robots.
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