Nano-Micro Letters

Cite as Nano-Micro Lett. (2025) 17:51

Received: 30 June 2024 Accepted: 23 September 2024 © The Author(s) 2024

Scalable Ir-Doped NiFe₂O₄/TiO₂ Heterojunction Anode for Decentralized Saline Wastewater Treatment and H₂ Production

Sukhwa Hong¹, Jiseon Kim¹, Jaebeom Park¹, Sunmi Im¹, Michael R. Hoffmann², Kangwoo Cho^{1,2,3}

HIGHLIGHTS

- Ir-doped NiFe₂O₄ (NFI) spinel with TiO₂ heterojunction overlayer brought about outstanding chlorine evolution reaction in circumneutral pH.
- Electroanalyses including operando X-ray absorption spectroscopy uncovered the active role of TiO2 for Cl− chemisorption.
- NFI/TiO₂ anode boosted both NH₄⁺-to-N₂ conversion and H₂ generation in wastewater, and the practical applicability was confirmed with scaled-up anodes and real wastewater.

ABSTRACT Wastewater electrolysis cells (WECs) for decentralized wastewater treatment/reuse coupled with H_2 production can reduce the carbon footprint associated with transportation of water, waste, and energy carrier. This study reports Ir-doped NiFe₂O₄ (NFI, \sim 5 at% Ir) spinel layer with $TiO₂$ overlayer (NFI/TiO₂), as a scalable heterojunction anode for direct electrolysis of wastewater with circumneutral pH in a single-compartment cell. In dilute (0.1 M) NaCl solutions, the NFI/TiO₂ marks superior activity and selectivity for chlorine evolution reaction, outperforming the benchmark IrO₂. Robust operation in near-neutral pH was confrmed. Electroanalyses including *operando* X-ray absorption spectroscopy unveiled crucial roles of $TiO₂$

which serves both as the primary site for Cl[−] chemisorption and a protective layer for NFI as an ohmic contact. Galvanostatic electrolysis of NH_4^+ -laden synthetic wastewater demonstrated that NFI/TiO₂ not only achieves quasi-stoichiometric NH₄⁺-to-N₂ conversion, but also enhances H₂ generation efficiency with minimal competing reactions such as reduction of dissolved oxygen and reactive chlorine. The scaled-up WEC with NFI/TiO₂ was demonstrated for electrolysis of toilet wastewater.

KEYWORDS Wastewater electrolysis cell; Ir-doped NiFe₂O₄; Reactive chlorine species; Decentralized H₂ production; On-site wastewater treatment

Published online: 28 October 2024

 \boxtimes Kangwoo Cho, kwcho1982@postech.ac.kr

¹ Division of Environmental Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang 790−784, Korea

 $^2\;$ Linde Laboratory, California Institute of Technology, Pasadena, CA 91125, USA

³ Institute for Convergence Research and Education in Advanced Technology (I-CREATE), Yonsei University International Campus, Incheon 21983, Republic of Korea

Abbreviations

1 Introduction

The current societal pursuit toward carbon neutrality would necessitate self-contained systems, ultimately to be independent on the existing water and energy grid. For example, on-site wastewater treatment and reuse are benefcial for a sustainable water cycle in adaptation to the climate change [[1](#page-15-0)]. In addition, a reduction in water and waste transportation would decrease the carbon footprint [[2\]](#page-15-1) for sanitation and hygiene to meet the Sustainability Development Goals established by the United Nations. To this end, electrochemical oxidation processes (EOPs) have emerged as a promising way of decentralized treatment of toilet wastewater and effluent reuse $[3]$ $[3]$ $[3]$. While achieving adequate effluent level set by the International Organization for Standardization (*e.g*., ISO 30500 [[4](#page-15-3)]), the EOPs could be advantageous with respect to ease of automation and connection with renewable energy sources (*e.g*., using photovoltaic panels) [[5](#page-15-4)]. A long-term operation of a combined anaerobic digester and EOP has been demonstrated for a self-contained public toilet with a nonpotable water reuse (fushing) [[6\]](#page-15-5).

The chlorine evolution reaction (ClER) on electrocatalysts oxidizes chloride ion to reactive chlorine species (RCS), the core mediator to degrade aqueous organic pollutants and ammonium ($NH₄$ ⁺) [\[7](#page-15-6)[–9](#page-15-7)]. In particular, the efficient deammonifcation by the electrolytic RCS has been a subject of significant attention $[10-12]$ $[10-12]$ $[10-12]$, which has been rarely achieved by conventional septic systems or other non-sewered sanitation systems based on biological (de)nitrifcation, stripping, ion exchange, and wet chemical treatments [[10,](#page-15-8) [13\]](#page-15-10). Almost stoichiometric conversion of NH_4^+ to N_2 by the *in situ* generated RCS without a generation of N-containing greenhouse gases (*e.g.*, N_2O , NH_3) should be environmentally sustainable, while alleviating concerns related to NH_4^+ such as eutrophication and odors.

On the other hand, a distributed electrolysis of nontraditional water sources including wastewater (effluent) can be involved within the H_2 economy [[14\]](#page-15-11). A local production of deionized water by reverse osmosis is known to contribute marginally to the overall $H₂$ production cost by electrolysis. However, it can compete with drinking water production in the areas with surplus renewable energy (*e.g*., desert). In this regard, contributions from Hofmann and coworkers [[15](#page-15-12)] advocate wastewater electrolysis cells (WECs) for localized conversion of renewable energy into $H₂$, reducing the costs and $CO₂$ emission for (waste) water treatment and transportation. A usage of separator (*e.g*., proton exchange membrane) in a direct wastewater electrolysis could bring about proliferating ohmic losses and

contamination of the separator in wastewater matrix. In the single-compartment WEC, therefore, oxygen reduction reaction competes with the hydrogen evolution reaction (HER), substantially decreasing the current and energy efficiency [[15](#page-15-12)]. Relatively low-grade H_2 (<60%) in mixture with N_2 (from deammonification) and CO_2 (from mineralization) can be utilized by combustion, in a decent analogy with the existing chloralkali processes that generates H_2 as a byproduct. This approach might be more available and appropriate practice.

Nonetheless, the bottlenecks of WEC include requirements of precious element-based electrocatalysts and unsatisfactory selectivity of ClER. The current anode materials in EOPs exclusively rely on dimensional stable anode (DSA; IrTaO_x and RuTiO_x) [[16,](#page-15-13) [17\]](#page-15-14) and boron-doped diamond (BDD) [[18](#page-15-15)], unaffordable for a decentralized system. In spite of the recent developments on electrocatalysts based on earth-abundant elements (*e.g*., Ni, Fe, Co, Cu, Zn, Mo among others) [[19–](#page-15-16)[23\]](#page-16-0), their instability in near-neutral pH required an alkalifed wastewater, while inferior ClER selectivity with dominant oxygen evolution reaction (OER) ruled out a concurrent pollutants degradation during the electrolysis [[24](#page-16-1)]. To this end, evidences have been presented that TiO₂ outer layers in heterojunction with conductive Ir-based DSA could enhance both the ClER selectivity and durability [\[7](#page-15-6)[–9](#page-15-7)], although the underlying mechanism remains ambiguous. In addition, we recently reported $NiFe₂O₄$ (NF) electrocatalysts with a tiny amount (5 mol%) of Ir doping (NFI) could enable extraordinary OER activity and stability [\[25](#page-16-2)]. A scaling relation between OER and ClER on (mixed) metal oxide electrocatalysts motivated us to further deploy the NFI for CIER in circumneutral pH in combination with the $TiO₂$ heterojunction layer.

Within the aforementioned context, this study reports that $NFI/TiO₂$ heterojunction anode (prepared by a straightforward solution casting) allows ClER activity superior to the benchmark $IrO₂$ and almost absolute ClER selectivity in 0.1 M NaCl solutions. Electrolysis of NH₄⁺-laden synthetic wastewater demonstrated that the admirable ClER metrics simultaneously enhanced the kinetics of pollutants degradation and H₂ generation. Electroanalyses coupled with *operando* X-ray absorption spectroscopy revealed active ClER primarily on $TiO₂$, while the underlying NFI served as an ohmic contact. The practical applicability was validated by a scaled-up WEC with toilet wastewater.

2 Experimental Section

2.1 Preparation of NFI/TiO₂ Anode

Ti foils (Alfa Aesar, 3×1 cm², 0.25 mm thick, 99.5% purity) underwent pretreatments to remove impurities, including SiC sandblasting, degreasing by ultrasonication in a mixed solvent (with equal volumes of ethanol, acetone, and deionized (DI) water (18.2 M Ω , Millipore)) for 0.5 h, and immersion in 10 wt% boiling oxalic acid for 0.5 h. The precursors for mixed Ni–Fe oxides were prepared using nitrate salts $(Ni(NO_3), 6H_2O)$ and $Fe(NO_3), 9H_2O$, both from Alfa Aesar in 99% purity) dissolved in DI water with 0.1 M urea, in variable molar ratios of Ni to Fe ([total $metal$] = 250 mM). In particular, the precursor with Nito-Fe ratio of 1:2 was used for NF. For $IrO₂$ preparation, 250 mM H_2IrCl_6 was dissolved in a mixed solution with equi-volumes of ethanol, isopropanol, and 0.3 M HCl. A calculated amount of the Ir-precursor was added to the NF precursor ($[Ir] = 12$ mM) for the NFI. Ti-glycolate precursor for TiO₂ layer was prepared by a peroxo-method $[7, 26]$ $[7, 26]$ $[7, 26]$ $[7, 26]$. In short, 0.25 M Ti $(C_4H_9O)_4$ was dissolved in 0.4 M glycolic acid solution by addition of concentrated H_2O_2 , and the fnal pH was adjusted to be circumneutral by addition of concentrated $NH₄OH$. All anodes interrogated in this study were fabricated by drop-casting $(1 \mu L \text{ cm}^{-2})$, drying for 15 min (80 $^{\circ}$ C), and annealing for 15 min (425 $^{\circ}$ C for NF, NFI, and TiO₂; 525 °C for IrO₂). This sequence was repeated up to total 6 coats which underwent fnal annealing for 1.5 h (Fig. [1](#page-3-0)a). A commercial BDD electrode as a control was provided by Wesco Electrode.

2.2 Anode Characterization

The surface morphology was observed by high-resolution feld emission scanning electron microscope (FE-SEM, JSM 7800F PRIME). The elemental compositions were estimated by energy-dispersive X-ray spectrometer (EDS, LN2 Free SDD type) with FE-SEM, X-ray fuorescence (ED-XRF, SII Nano technology Inc., SEA1200VX), and glow discharge spectrometry (GDS, LECO GDS850A with Radio Frequency Lamp). The crystalline structure was analyzed by X-ray difraction (XRD, Phillips X'Pert Panalytical difractometer) at 30 mA, 40 kV, and

Fig. 1 Preparation and characterization of NFI/TiO₂ anode. **a** Schematic illustration of the synthesis procedure. **b-c** Horizontal SEM images of NFI and NFI/TiO2. **d** XRD profles of NFI and NFI/TiO2 with references. **e–g** *Ex situ* XANES for Ni K-edge, Fe K-edge, and Ti K-edge of NFI/ TiO₂ in comparison with NFI or Ti/TiO₂

monochromated Cu Kα1 radiation. Raman spectra were collected by Alpha 300R (WITec) with $a \times 50$ objective and wavelength of 488 nm using an $Ar⁺$ excitation source. The composition and oxidation states on surface (up to \sim 10 nm) were investigated by K-ALPHA X-ray photoelectron spectroscopy (XPS, Thermo Fisher Scientific, UK) using a monochromated Al K α (12 kV, 72 W, 1486.6 eV, 400 μm spot size). The bulk electronic structure was interrogated by X-ray absorption spectroscopy at the 10C beamline in Pohang Accelerate Laboratory (PAL), to give X-ray absorption near-edge structure (XANES) spectra. *operando* XANES analysis proceeded with the working electrode attached to the cell window by Kapton tape, under open circuit voltage (OCV), pre-ClER, and ClER condition at a minute interval.

2.3 Electroanalysis

A single-compartment cell (working volume: 35 mL) was used with three-electrode confguration including an anode under investigation (effective geometric area: 2×1) cm²), a Pt coil cathode (BASi), and a reference electrode. Ag/AgCl (BASi) and Hg/HgO (BASi) reference electrodes were used for electrolyte with neutral and alkaline pH, respectively. The spacing between the working and counter electrode was maintained at 0.5 cm. The measured potentials were converted to RHE scale by $E_{\text{RHF}} = E$ $_{\text{Ag/AgCl}} + 0.197 + 0.059 \times pH = E_{\text{Hg/HgO}} + 0.140 + 0.059 \times pH.$ The working electrode potential (E_{we}) was compensated with ohmic (*iR*) drop, based on a current interruption (CI) method at 85% level. The electrochemical activity and stability were

evaluated based on cyclic voltammetry (CV), linear sweep voltammetry (LSV), and chronopotentiometry using a potentiostat (VSP, BioLogic). Double-layer capacitance (C_{DL}) , which represents the electrochemically active surface area (ECSA), was measured by CV in a non-Faradaic potential window at variable scan rates (1 to 100 mV s⁻¹) in 0.1 M NaCl $(j_a-j_c$ at 0.861 V_{RHE}) and 1 M KOH (j_a-j_c) at 1.17 V_{RHE}). The electrochemical impedance spectroscopy (EIS) estimated solution resistance (R_s) , films resistance (R_f) , and charge transfer resistance (R_{ct}) , with fitting by EC – Lab software (VSP, BioLogic). The baseline potential for EIS was 1.3 V Ag/AgCl in 0.1 M NaCl, while the sinus amplitude of 10 mV and frequency scan range of 100 kHz to 100 mHz were used. The potential of zero charge (PZC) was determined based on the potential where the capacitance was minimized [\[27\]](#page-16-4). The changes in capacitance at diferent potentials were tracked using EIS operated through a potentiostat (VSP, BioLogic). These impedance measurements, which varied with the applied potential, were taken in 0.05 M NaCl solutions, using a frequency of 150 mHz and a sinus amplitude of 5 mV. By applying 6th-order polynomial ftting to the spectra, the point where F was at its minimum was established as the PZC [\[27](#page-16-4)]. The Mott–Schottky (M-S) plots were obtained by EIS (sinus amplitude: 10 mV, frequency range: 10 kHz to 10 Hz, and potential range: 0 to 1 V versus reference electrode). The M-S slope from the following equation was used to comparatively evaluate the electrical conductivity [\[28,](#page-16-5) [29](#page-16-6)]:

$$
\frac{1}{C_{sc}^2} = \left(\frac{2}{\varepsilon \varepsilon_0 e A^2 N_d}\right) \left[\left(E_{we} - E_{FB}\right) - \frac{kT}{e} \right] \tag{1}
$$

where C_{SC} is the space charge capacitance (F), ε is the dielectric constant, ε_0 is the permittivity of the vacuum (8.854 × 10⁻¹² F m⁻¹), *e* is the elementary charge $(1.602 \times 10^{-19} \text{ C})$, *N_d* is donor density (m^{-3}) , *A* is active surface area (m^2) , E_{we} is the applied potential to the working electrode (V), E_{FB} is the flat band potential (V), *k* is Boltzmann's constant $(8.62 \times 10^{-5} \text{ eV K}^{-1})$, and *T* is the absolute temperature (K). Prior to all electroanalyses, the cell was rested in open circuit for 15 min.

2.4 RCS Generation by Galvanostatic Bulk Electrolysis

The ClER in aqueous electrolyte generates free chlorine species including HOCl and OCl− by pH-dependent hydrolysis of $Cl₂$ [\[10\]](#page-15-8). The performance of ClER (RCS generation) was evaluated by galvanostatic electrolysis of 0.1 M NaCl solutions

at variable current density (*j*, 10 to 50 mA cm⁻²). The evolution of [RCS] was periodically quantifed with DPD reagents for initial 7 min, where ClO_3^- or ClO_4^- generations were negligible. This study used the following metrics for fair compari-son of anodes [\[7](#page-15-6), [8](#page-15-17)]. The CE_{CIER} , EE_{CIER} , and SR_{CIER} of ClER were estimated by the equations below [\[7](#page-15-6), [8\]](#page-15-17):

$$
CECIER (\%) = \frac{2VFd[RCS]}{jAdt}
$$
 (2)

$$
EE_{CIER} \text{(mmol Wh}^{-1}) = \frac{Vd[RCS]}{E_cjAdt} \times 3.6 \times 10^6 \tag{3}
$$

$$
SR_{CIER} \text{(mmol cm}^{-2} \text{h}^{-1}) = \frac{\text{V d[RCS]}}{\text{A dt}} \times 360 \tag{4}
$$

where *V* represents the volume of the electrolyte (0.035 L), *F* is Faraday constant (96,485.3 C mol⁻¹), d[RCS]/dt is RCS generation rate (M s⁻¹), *j* is current density (A m⁻²), *t* is electrolysis time (s), and E_c is cell voltage (V).

2.5 RCS‑Mediated Wastewater Treatment Coupled with H₂ Generation

Using the aforementioned cell, bulk galvanostatic (30 mA cm−2) electrolysis experiments for RCS-mediated conversion of NH_4^+ to N_2 with simultaneous HER proceeded in synthetic wastewater samples. The [Cl⁻]₀ was fixed at 0.1 M, while $[NH₄⁺]$ ₀ was varied $([NH_4^+]_0:[Cl^-]_0=2:1, 1.5:1, 1:1, 1:1.5, 1:2, 1:3,$ and 1:4 in molar basis) by mixing NH₄Cl, NaCl, and $(NH₄)$ ₂SO₄. The CE of pollutants oxidation as well as CE and EE for HER were estimated by following equations [[15](#page-15-12)]:

$$
CE(pollutants oxidation) = \frac{nVFdC}{jAdt}
$$
 (5)

$$
CE_{HER} = \frac{2 \, F \, Q}{j \, A} \tag{6}
$$

$$
EE_{HER} = \frac{HHVQ}{E_cjA} \tag{7}
$$

where *n* is the number of electron transfer for oxidation of aqueous pollutants (3 for NH_4^+ -to- N_2 conversion), *dC/dt* is decreased pollutants concentration per unit electrolysis time of *t* (M s⁻¹), *Q* is the observed H₂ production rate (mol s⁻¹), and HHV is higher heating value of H₂ (78 Wh mol⁻¹).

To demonstrate practical applicability, a pilot-scale WEC was manufactured in working volume of 10 L (with internal circulation). Scaled-up $NFI/TiO₂$ anodes and commercial stainless steel 304 cathode were prepared in size of 35.8×26.6 cm². Three anodes and cathodes were alternately sandwiched (with inter-electrodes distance of 1 cm) and connected to a power supply (ODA Tech, EX30-60) in monopolar confguration. The geometric surface area of the electrode module exposed to electrolyte was 0.191 m². Toilet wastewater was mimicked by mixing livestock excretion (collected from Gyungju wastewater treatment plant, Korea), seawater (collected in Pohang, Korea), and tap water by volume ratio of 5:20:75. The composition of the toilet wastewater was summarized with 102 mgN L^{-1} of NH₄⁺, 104 mgN L^{-1} of total nitrogen (TN), 580 mgO₂ L⁻¹ of chemical oxygen demand (COD), 120 NTU of turbidity, 121 mM of Cl⁻, 7.9 of pH, and 14.7 mS cm⁻¹ of conductivity. The wastewater sample was subjected to electrolysis at constant current of 52.5 A (corresponding to 27.5 mA cm^{-2}) for 3 h.

Quantification of anions $(e.g., Cl^-, ClO_3^-, NO_2^-)$, and $NO₃⁻$) was carried out by ion chromatography (IC, DX-120). The concentration of free chlorine and total chlorine were measured using DPD (N,N-diethyl-p-phenylenediamine) and DPD/KI reagents, respectively, based on absorbance at 530 nm in UV–Vis spectrometer (DR 3900, HACH). Combined chlorine (e.g., chloramines) was estimated from the diference between free chlorine and total chlorine [[30](#page-16-7)]. TN was quantifed using alkaline per-sulfate digestion [[31](#page-16-8)] based on absorbance of nitrate at 420 nm. NH_3-N was analyzed by salicylate method with commercial kits (NH_3-N TNT kit, HACH) and absorbance at 610 nm [[32](#page-16-9)]. [COD] was measured by dichromate digestion with colorimetric detection at 348 nm [[33](#page-16-10)]. Gaseous H_2 , N_2 , and O_2 in reactor headspace were streamed with carrier Ar gas to pass through a gas fow meter (Ritter MilliGascounter), and the composition was measured by gas chromatography with thermal conductivity detector (GC-TCD, 6890-N, Agilent Technologies). Turbidity of toilet wastewater was measured using turbidity colorimeter (HUMAS, TURBY 1000). The excitation-emission matrix (EEM) with fuorescence spectrometer (FluoroMax-4) was collected to qualitatively investigate the variations in dissolved organic matter (DOM).

3 Results and Discussion

3.1 Characterization of NFI/TiO₂ Heterojunction Anode

The NFI/TiO₂ anodes were fabricated through a straightforward drop-casting method (Fig. [1](#page-3-0)a). The horizontal images of FE-SEM discovered NFI nanoparticles sized in the range of 50–100 nm (Fig. [1](#page-3-0)b) which aggregated during the thermal treatment to bring about tableland and ridge morphology on the Ti substrate, as shown by EDS mapping (Fig. S1). The M-edge signals of Ir and K-edge signals of Ni, Fe, Ti, and O revealed even elemental distributions on the NFI aggregates. The EDS-based molar fraction of Ir was 5.27% for NFI, in decent agreement with 5.15% from ED-XRF analysis (Fig. S2). These values close to the precursor composition (5%) suggested homogeneous Ir doping on NFI. XRD patterns of NF and NFI powders (physically abraded from the Ti substrate) confirmed that the NiFe₂O₄ spinel crystalline lattice (JCPDS No. 10–0325, $2\theta = 36^\circ$, 43°, and 63° corresponding to (311), (400), and (440)) [[25\]](#page-16-2) of NF was retained for NFI despite the Ir dopants (Fig. S3a). Raman spectra for NF and NFI (Fig. S3b) both exhibited congruence with the NiFe₂O₄ spinel structure of space group Fd-3 m, as affirmed with active bands including A_{1g} (symmetric stretch), E_g (symmetric bend), and T_{2g} (asymmetric stretch) for tetrahedral and octahedral sites [[34](#page-16-11)]. This evidence substantiated the uniform doping of Ir into NF nanoparticles without insignificant structural perturbation and segregation into $IrO₂$.

The SEM/EDS analysis on NFI/TiO₂ noticed a stacked film of TiO₂ nanoparticles sized by $10-20$ $10-20$ nm (Fig. 1c), to allow more even deposition of $TiO₂$ outer layer reducing surface tortuosity (Fig. S4). The nanoporous property of the $TiO₂$ layer would allow diffusive penetration of reactants such as H_2O , OH⁻, and Cl⁻ [\[26](#page-16-3)]. The XRD patterns of NFI and NFI/TiO₂ electrodes (Fig. [1](#page-3-0)d) were dominated by signals from the Ti metal substrate (JCPDS No. 44–1294, $2\theta = 35^{\circ}$, 38° , 40° , 52° , 62° , 70° , 76° , and 77°) that largely overlapped with those of spinel NiFe₂O₄ peaks. NFI/TiO₂ showed additional diffraction peaks from anatase $TiO₂$ (JCPDS No. 21–1272, $2\theta = 25^\circ$ and 48° corresponding to (101) and (200), respectively). These evidences characterized the NFI/TiO₂ as Ir-doped NiFe₂O₄ in heterojunction with nanoporous $TiO₂$ layer. A GDS analysis (Fig. S5)

estimated the thickness of TiO₂ and NFI to be \sim 250 nm and~2.75 µm, respectively.

XPS for NF and NFI (Fig. S6) clarifed partial charge transfer from Ni and Fe to the Ir dopants. The fractions of Ni^{3+} and Fe³⁺ from deconvoluted Ni 2 $p_{3/2}$ (854.5 eV for $Ni²⁺$ and 856 eV for Ni³⁺ with two satellite peaks at 861 and 865 eV) [\[35\]](#page-16-12) and Fe $2p_{3/2}$ [[36](#page-16-13)] (710 eV for Fe²⁺and 711.5 eV for Fe^{3+}) photoelectron spectra were elevated in NFI, whereas the binding energy of Ir 4*f* peak was between those of Ir⁴⁺ (61.8 eV) and Ir⁰ (60.9 eV) [[37\]](#page-16-14). The deconvolution of O 1*s* spectra noted escalated fraction of oxygen vacancy upon the Ir doping. These observations were in agreement with the prior report on NFI coated on Ni foam [\[25\]](#page-16-2). On the other hand, the Ti 2*p* photoelectron spectra for $NF/TiO₂$ and $NFI/TiO₂$ both indicated a partial oxidation of Ti (Fig. S7), in comparison with the TiO₂ layers directly coated on the Ti substrate $(Ti/TiO₂)$. However, the concurrent shifts in electronic structure of the underlying layers were intangible due to the limited analytical depth of XPS. To this end, XANES unambiguously informed on the electronic interaction across the heterojunction, based on the edge position of individual metal components at the halfmaximum intensity to represent the oxidation state. The Ti K-edge position of NFI/TiO₂ was positively shifted com-pared to Ti/TiO₂ (Fig. [1](#page-3-0)f), whereas both Ni and Fe K-edge region absorbance spectra for NFI/TiO₂ suggested decreased valency compared to NFI (Fig. [1](#page-3-0)e, f). The *ex situ* XANES thus provides compelling evidence of charge transfer from the outer $TiO₂$ to the underlying NFI across the interface.

3.2 Electrocatalytic Behaviors of NFI/TiO₂ Heterojunction Anode

Given the scaling relation between OER and ClER intermediates for (mixed) metal oxide electrocatalysts [[38\]](#page-16-15), screening electrocatalysts in terms of OER activity could be a precedent step to employ the OER intermediates as ClER center [\[26](#page-16-3)]. Due to a composition-dependent instability of $Ni_xFe_{1-x}O_y$ electrocatalysts in acidic-to-neutral pH, moreover, it was inevitable to evaluate them in alkaline electrolyte where OER would overwhelm ClER. LSV curves in 1 M KOH confirmed extraordinary OER activity of NiFe₂O₄ spinel oxide substantially outperforming the other $Ni_xFe_{1-x}O_y$ compositions $(x=0, 0.2, 0.5, 0.67, 0.8,$ and 1) identically synthesized by dip coating (Fig. S8) [[26](#page-16-3), [39\]](#page-16-16). Mixing Ir

within the NiFe₂O₄ precursor at variable atomic ratio $(0, 1\%$, 3%, 5%, 7%, and 10%) enhanced OER activity up to 5% Ir on the modifed electrocatalysts, judging from overpotential (η) at 10 mA cm⁻² (Fig. S9). Further elevation in Ir contents marginally infuenced the current wave, in compatible with the previous report [\[25](#page-16-2)].

Armed with the supreme OER activity of NFI (5% Irdoped $NiFe₂O₄$), the electrochemical performances of NFI and $NFI/TiO₂$ were assessed in 0.1 M NaCl electrolyte with circumneutral pH, and compared with NF and $IrO₂$ with or without the $TiO₂$ overlayer. It should be noted that ClER and OER would occur in parallel in this experimental condition. The XRD for the control group samples confrmed crystallinity of spinel NiFe₂O₄, rutile IrO₂ (JCPDS No. 15–870), and anatase $TiO₂$. (Fig. S10). The voltammograms (Fig. [2](#page-7-0)a) estimated required potentials at 10 mA cm^{-2} to be 2.00, 2.07, 1.81, 1.83, 1.88, and 1.90 V versus reversible hydrogen electrode (RHE) for NF, NF/TiO₂, NFI, NFI/ TiO₂, IrO₂, and IrO₂/TiO₂, respectively. The NFI exhibited the most facile charge transfer kinetics, even outperforming the benchmarked IrO₂. Although the TiO₂ overlayer moderately lowered the anodic wave, $NFI/TiO₂$ still marked superior activity compared to the $IrO₂$. The C_{DL} was measured by plotting charging current density (j_a-j_c) as linear func-tions of scan rate (Figs. [2b](#page-7-0) and S11). The C_{DL} value, as a surrogate of ECSA, showed analogous trend with the LSV. Nyquist plot from EIS disentangled R_f and R_{ct} [\[40](#page-16-17)], as shown in Fig. S12. The $IrO₂$ exhibited singular semicircle owing to the conductor-like property, whereas the R_f was noted for NF and NFI by additional semicircles in lower frequency ranges. The R_{ct} based on diameter of the higher frequency semicircles agreed with the activity trends, while the $TiO₂$ overlayers substantially increased the R_f for the heterojunction anodes. Therefore, the moderate current reduction by the $TiO₂$ layer was ascribed to resistance to charge migration (due to an inferior electrical conductivity of $TiO₂$) and/or pore difusion through the nanoporous flm that was incompletely compensated by the CI method.

The overall activity trends were maintained in voltammograms obtained in 1 M KOH (Fig. S13), because of the scaling relation between adsorption energy for intermediates of OER (*OOH) and ClER (*OCl) on metal oxide electro-catalysts [[7,](#page-15-6) [8](#page-15-17)]. The OER η of NFI (330 mV) at 10 mA cm⁻² was lower than NF and $IrO₂$. We previously presented evidences that Ir doping on NiFe₂O₄ could shift the active motif from Fe–O–Fe to Ni–O–Fe to concurrently escalate ECSA

Fig. 2 Electrochemical performances. **a** LSV curves (scan rate: 10 mV s⁻¹) with 85% *iR* correction. **b** Capacitive j_a-j_c versus scan rate from CV (potential range: 0–0.5 V vs. Ag/AgCl, scan rate: 10, 20, 50, and 100 mV s⁻¹) for NFI, NFI/TiO₂, NF, NF/TiO, IrO₂, and IrO₂/TiO₂ electrocatalysts in 100 mM NaCl. **c** Chrono-potentiometric profile for long-term stability test of NFI, NFI/TiO₂, NF, NF/TiO₂ in 0.5 M NaClO₄. **d-i** CE_{CIER} and EE_{CIER} during galvanostatic electrolysis of 0.1 M NaCl solutions for NF, NFI IrO₂, NF/TiO₂, NFI/TiO₂, and IrO₂/TiO₂

and intrinsic OER activity of NF $[25]$ $[25]$ $[25]$. If the porous TiO₂ layers were electrochemically inert, on the other hand, the reduction of ECSA by the $TiO₂$ deposition would be independent on the electrolyte while the mass transport resistance through the TiO₂ film could be alleviated in 1 M KOH. However, the TiO₂ layer reduced the C_{DL} value (Fig. S14) of NFI more signifcantly in 1 M KOH compared to those in 0.1 M NaCl. It implicitly elucidated an active electrocatalytic roles of $TiO₂$ for ClER. Mott–Schottky slopes both in 1 M KOH and 0.1 M NaCl (Fig. S15) further revealed substantially elevated donor density and electrical conductivity for NFI, compared to NF. The observed p-type prop-erty of NiFe₂O₄ [\[41\]](#page-16-18) rationalized the electron withdrawing from the TiO₂ (well-known n-type semiconductor) through p-n heterojunction (Fig. S7) [\[42](#page-16-19), [43](#page-16-20)]. The superior conductivity of NFI should be advantageous as an ohmic contact to reduce the energy barrier for charge transfer from $TiO₂$ under a forward bias on the anode.

The anodic bias coupled with the generations of RCS and protons in the anode vicinity would cause dissolutions of Ni and Fe [\[44,](#page-16-21) [45](#page-17-0)], which could be accelerated as bulk pH decreases. The long-term stability tests were performed in 0.5 M NaClO₄ solution (pH~7) under 30 mA cm⁻², where the durability of NFI/TiO₂ (in terms of potential variation over 40 h) clearly outperformed NFI, NF and NF/TiO₂ (Fig. [2](#page-7-0)c). Repetitive CV further demonstrated the superior stability of NFI/TiO₂ with negligible activity loss during 100 cycles, compared to NF/TiO₂ (Fig. S16). Judging from the well-known stability of $TiO₂$ in wide potential and pH windows in Pourbaix diagram [[46](#page-17-1)], the varied durability depending on the underlying layer demonstrated penetration of electrolyte through pores and pinholes of the $TiO₂$ layer. An adsorbate evolution mechanism prevalent on NF and NFI was reported to allow greater service life than other $Ni_xFe_{1-x}O_y$ electrocatalysts based on lattice oxygen mediated mechanism, while the Ir dopants could further increase the required energy for atomic defect formation (dissolution) [25]. In addition, the TiO₂ overlayer could alleviate the diffusion of dissolved components from the buried NF or NFI toward the bulk phase, further reinforcing the stability [\[26](#page-16-3)].

The fgures-of-merit for ClER were comparatively evaluated in 0.1 M NaCl solutions (Fig. [2d](#page-7-0)-i) at various current densities (10 to 50 mA cm^{-2}). The galvanostatic regime has been widely deployed for industrial processes owing to more straightforward scaling-up and process control than potentiostatic one. In this condition, the specifc ClER rate $(SR_{CIFR}, Fig. S17)$ was merely proportional to current efficiency (CE_{CIER}). The CE_{CIER} , the core metric of ClER selectivity, was insignifcantly infuenced by the applied current densities in this experimental range. This is presumably due to a lack of difusion limitation for Cl−, which would allow a fexible operation of EOPs upon a fuctuation of infuent wastewater. The average of CE_{CIER} of NF, NF/TiO₂, NFI, NFI/TiO₂, IrO₂, and IrO₂/TiO₂ was calculated to be 61.9%, 73.1%, 90.2%, 95.0%, 59.3%, and 66.9%, respectively (Fig. S18). The NFI itself marked CE_{CIER} exceeded 90% which was further increased by $TiO₂$. Comparably inferior CIER selectivity of NF and IrO_2 (~60% of CE_{CIER}) was evidently improved by the $TiO₂$ overlayers, in agreement with the previous reports [[7,](#page-15-6) [8](#page-15-17), [26](#page-16-3)]. The exhibited selectivity trend would be associated with surface properties such as O-binding strength [[38](#page-16-15)]. This conjecture was interrogated using PZC, an experimental descriptor for the surface charge density [\[27](#page-16-4)]. Specifically, the greater PZC would correspond to the less propensity to lose electron and the lower bond strength with electrophilic *O [[47](#page-17-2)]. A recent theoretical study claimed a fair correlation between the PZC and binding energy of *OH [[48](#page-17-3)]. Figure S19 portrays a weak positive relation between PZC (raw data for PZC determination in Fig. S20) and CE_{CIER} . The influences of specifc adsorption and space charge capacitance would account for the deviations from an ideal linearity. The Ir doping on NF substantially elevated the PZC of NFI, which conformed to the escalated oxidation states of Ni and Fe in Ni–O–Fe motifs (Fig. S6). In other words, the weakened binding of *OH could facilitate reaction with Cl−, to rationalize the greater CE_{CIER} than NF. The TiO₂ overlayers further increased the PZC of NF and NFI to account for the moderate enhancement in CIER efficiency. Considering the strong electronic interaction across the junction (Fig. S7), in analogy, this fnding also suggested active involvement of TiO₂ for ClER. If the buried NF or NFI served as the primary ClER sites, the charge withdrawing from the $TiO₂$ overlayer could strengthen the *OH binding to bring about a reduced CE_{CIER} .

The energy efficiency (EE_{CIER}) in terms of molar amount of RCS per unit energy input should depend both on activity (cell voltage at the given j) and selectivity (CE_{CIER}) [[7,](#page-15-6) [26](#page-16-3)]. Unlike the CE_{CIER} , EE_{CIER} value justly increased for the smaller *j* (cell voltage). The $TiO₂$ overlayers gave ambivalent effects on EE_{CIER} , by enhancing CE_{CIER} in trade-off by increasing the ohmic loss and cell voltage. Accordingly, beneficial improvements in EE_{CIER} by the outer TiO₂ layer were noted for $NF/TiO₂$ and $IrO₂/TiO₂$, whereas increases in EE_{CIER} for NFI/TiO₂ were limitedly observed only at 20 and 30 mA cm−2 due to high ClER selectivity of NFI itself. Consequently, $NFI/TiO₂$ recorded the supreme CIER performance and stability with respect to all figures-of-merit under the interrogation conditions. The aforementioned electroanalyses collectively demonstrated that a tiny amount of Ir dopants could boost the ECSA, electrical conductivity, and afnity to Cl− chemisorption. They in-turn contributed to the outstanding intrinsic ClER activity of NFI, as a promising candidate to replace the precious $IrO₂$ electrocatalysts. The $NFI/TiO₂$ architecture further enabled more exceptional RCS generation efficacy, while the protective $TiO₂$ heterojunction

layer played a pivotal role to elongate the durability during ClER in near-neutral pH.

3.3 CIER Mechanism of NFI/TiO₂ Heterojunction Anode

Our prior reports have demonstrated selective ClER in dilute (<0.1 M) NaCl on dual-layer anodes which comprised of outer TiO₂ layer in heterojunction with either Ir(Ta)O_x or NiFeO_x [\[7](#page-15-6), [8](#page-15-17), [26,](#page-16-3) [49\]](#page-17-4). Nevertheless, the precise active site for ClER remained equivocal for these anodes. The electroanalyses in this study including the description of CE_{CIER} by PZC suggested active participation of $TiO₂$ overlayers in the ClER. In order to obtain conclusive evidences regarding the Cl− adsorption site for NFI/TiO₂, this study utilized *in situ* XANES analysis that is a powerful tool to monitor changes in the valence state of active elements. The spectra were gained under OCV, pre-ClER at 1 mA cm−2 (capacitive current region), and ClER at 3 mA cm−2. The relatively low *j* could avoid the noise by Cl₂ gas on the anode surface $[25, 50]$ $[25, 50]$ $[25, 50]$ $[25, 50]$. Figure [3](#page-10-0) represents normalized absorbance signals in Ni, Fe, and Ti K-edge collected from NFI and NFI/TiO₂. The Ni and Fe K-edge position for NFI markedly showed blue shifts (Fig. [3b](#page-10-0), c) monotonically along with the elevated bias from OCV to ClER regime, nominating the Ni–O–Fe motif to be the active site [\[26](#page-16-3)]. On the contrary, the valency changes for both Ni and Fe on NFI/TiO₂ were relatively insignifcant upon the transition from pre-ClER to ClER regime (Fig. [3e](#page-10-0), f), whereas a prominent shift of Ti K-edge was clearly observed (Fig. [3](#page-10-0)d). It clearly unraveled that the upper $TiO₂$ would serve as the active ClER sites, while the underlying NFI transformed upon the bias (*e.g*., Ni–Fe oxyhydroxide with elevated electrical conductivity) would function as the ohmic contact for charge migration. The biased hydrated $TiO₂$ could form surface *OH as the predominant intermediate conducive to the chemisorption of Cl⁻. The effective electron withdrawing by NFI across the p–n junction (Fig. S7) would further facilitate the initial discharge of Cl⁻ (the presumed rate determining step of ClER) on the charge-deficient $TiO₂$. In addition, the alleviated oxidation of Ni and Fe could rational-ize the elongated service life for NFI/TiO₂ (Fig. [2c](#page-7-0)).

The roles of NFI and $TiO₂$ in parallel ClER and OER were further elucidated by LSVs performed either in 0.5 M Na₂SO₄ (for exclusive OER) or 0.5 M NaCl (for predominant ClER as indicated by Fig. [3](#page-10-0)) electrolyte in $pH \sim 7$. As shown in Fig. S21, the anodic waves for OER (in $Na₂SO₄$) and ClER (in NaCl) on NFI were comparable up to 100 mA cm⁻². The TiO₂ overcoats diminished the activities in both electrolytes, but the j values on NFI/TiO₂ in 0.5 M NaCl exceeded those in $Na₂SO₄$ electrolyte from the onset to 2.1 V RHE. This noteworthy observation also supported alteration of ClER site from NFI to $TiO₂$ for the heterojunction anode. The superior ClER in relatively low potentials $(< 2.1$ V RHE) could attribute to favorable binding of $Cl⁻$ to TiO₂. Above this potential, however, the ClER on NFI/TiO₂ was more sluggish than the OER due to pronounced difusion limitation for Cl− through the TiO₂ film at the elevated *j*. Figure S22 illustrates the CVs in 1 M KOH + 0.1 M $K_3Fe(CN)_6$ solution. The clearly defined reversible redox peaks of $\text{Fe(CN)}_{6}^{3+/2+}$ on NF and NFI were dramatically attenuated with the presence of $TiO₂$ overlayer, because of a rejected difusion of the molecular anion through the pores. Therefore, the active $TiO₂$ for ClER was speculated to be located in the vicinity of the interface with NFI, presumably in association with the strong interaction with NFI presumably by thermal interdifusion of metallic components across the junction [[7\]](#page-15-6).

3.4 Electrochemical Deammonifcation Coupled with Molecular H₂ Production

The RCS-mediated NH_4^+ degradation experiments by NFI/ $TiO₂$ anode were conducted with varying $[NH₄⁺]₀$ (molar ratio of NH_4^+ to Cl[−] from 0.25 to 2), at fixed [Cl[−]]₀ of 0.1 M and *j* of 30 mA cm−2. As depicted in Fig. [4a](#page-11-0), the NH4 +-N conversion followed apparent zero-order kinetics with superimposable rate constants irrespective of $[NH_4^+]_0$ $(~ 10 \text{ mM h}^{-1}$ on average), in consistent with previous reports [[54](#page-17-6)]. Regardless of the initial ratios, the ammonium removal efficiency (RE) of NH_4^+ was nearly identical to those for TN, indicating that NH_4^+ was predominantly converted to gaseous $N₂$ (Fig. [4b](#page-11-0)). Based on the consistent degradation kinetics, the ratio of $[NH_4^+]_0$ to $[Cl^-]_0$ was fxed at 0.24 for further experiments to monitor the dynamic evolutions of reaction intermediate species during the galvanostatic (30 mA cm−2) deammonifcation for 3 h. The performance of NFI/TiO₂ was compared with $IrO₂/TiO₂$ and BDD, as benchmark anodes for water treatment. Electrophilic attacks of RCS to ammonia produce chloramines that are eventually transformed to N_2 . The mechanism simplified by the following equations is widely known as breakpoint chlorination in water treatment [\[30\]](#page-16-7).

Fig. 3 The *operando* XANES analysis. **a** The schematic illustration of the setup. **b-c** Normalized XANES spectra in Ni K-edge and Fe K-edge for NFI. d-f Normalized XANES spectra in Ti K-edge, Ni K-edge, and Fe K-edge for NFI/TiO₂. The spectra were collected under OCV, pre-ClER at 1 mA cm⁻², and ClER at 3 mA cm⁻² in 100 mM NaCl

 $NH₃ + HOCI \rightarrow NH₂Cl + H₂O$ (8)

 $NH₂Cl + HOCl \rightarrow NHCl₂ + H₂O$ (9)

 NH_2Cl + $NHCl_2 \rightarrow N_2 + 3H^+ + Cl^-$ (10)

As shown in Fig. [4](#page-11-0)c, the NH_4^+ degradation rates were in the order of NFI/TiO₂>BDD>IrO₂/TiO₂, in general agreement with the ClER activity. The metrics for BDD in 100 mM NaCl was quantified with CE_{CIER} of 61.5% and EE_{CIER} of 3.94 mmol Wh⁻¹. Furthermore, NFI/TiO₂ brought about comparable profiles for [TN] and $[NH_4^+]$, whereas the TN decay rates were retarded for the others, more markedly for BDD (Fig. [4](#page-11-0)d) due to formation of nitrite ions $(NO₂⁻)$ measured up to 5 mM (Fig. S23). Formation of nitrate ions $(NO₃⁻)$ was always negligible in this experimental condition for all anodes. Albeit the BDD has been extensively deployed for water treatment owing to effective utilization of bound hydroxyl radical [\[55,](#page-17-7) [56\]](#page-17-8), the mediated TN removal was incomplete due to the hydroxyl radical mediated oxidation to NO_2^- as a byproduct. The profiles of free/combined chlorine concentrations with $NFI/TiO₂$ (Fig. [4e](#page-11-0)) confrmed the breakpoint chlorination mechanism; a buildup of free chlorine initiated at \sim 2 h of electrolysis which extinguished NH_4^+ . The stoichiometric NH_4^+ -to- N_2 conversion by $NFI/TiO₂$ was additionally supported by almost consistent N balance by the sum of measured gaseous N_2 , aqueous TN, and combined chlorine (Fig. [4](#page-11-0)f). In comparison, the [free chlorine] was in quasi-steady states for IrO_2/TiO_2 and BDD up to 3 h (Fig. S24), in compatible with the incomplete conversion of NH_4^+ . The generation of oxynitrogen anions during the breakpoint chlorination could be invigorated by an elevation in relative RCS dosage

Fig. 4 RCS-mediated electrochemical deammonification coupled with H₂ production. a-b Concentration profiles of NH₄⁺ and removal efficiency of TN and NH₄⁺ for NFI/TiO₂ with variable [NH₄⁺]₀ (25–200 mM). **c-d** Concentration profiles of NH₄⁺ and TN for NFI/TiO₂ in comparison with BDD and IrO₂/TiO₂. **e–f** Concentration profiles of free, combined, and total chlorine with N balance calculated by the sum of TN, N₂ gas, and combined chlorine for NFI/TiO₂. **g** Repeated batch degradations of NH₄⁺ with NFI/TiO₂. **h** Schematic illustration for H₂ quantification. **i-j** Metrics in terms of CE_{HER} and EE_{HER} in comparison with theoretical values (solid lines for CE_{HER} of 1, 0.8, and 0.6) and reported values in literature (gray circle) [\[15,](#page-15-12) [51](#page-17-9)[–53\]](#page-17-10). Galvanostatic (30 mA cm⁻²) electrolysis was performed with NH_4^+ -laden synthetic wastewater ($[NH_4^+]_0 = 25$ mM for **c**-**j**, $[Cl^-]_0 = 100$ mM)

[\[57\]](#page-17-11). Thus, intrinsically continuous and distributed feed of RCS in electrochemical chlorination would be beneficial for an ideal NH_4^+ -to- N_2 conversion with minimal byproducts generation. As a confrmation, a batch injection of 100 mM of NaOCl (comparable with the total RCS generated by NFI/ $TiO₂$ for 3 h) to the synthetic wastewater brought about rapid exhaustion of NH_4^+ within 15 min, but the TN decay was markedly retarded to be incomplete after 3 h. (Fig. S25). Consequently, the selective ClER on NFI/TiO₂ effectively led to more facile achievement of breakpoint than the benchmark anodes, while far lower steady-state [RCS] compared to a chemical chlorination prevented oxyanion byproducts $(NO₂⁻$ and $NO₃⁻)$ formation.

For all $[NH_4^+]$ ₀ conditions, the ultimate concentrations of $[NO_2^-]$ and $[NO_3^-]$ in electrolyte were negligible (Fig. S26) to maintain RE for $[TN]/[NH_4^+]$ near unity for NFI/ $TiO₂$ (Fig. [4](#page-11-0)b). These observations suggested that the heterogeneous charge transfer (ClER) would be rate-limiting under our galvanostatic condition [[16,](#page-15-13) [58\]](#page-17-12), i.e., nucleophilic attack of RCS to $NH₃$ (Eq. [8\)](#page-10-1) and chemical reactions among chloramines (Eqs. [9](#page-10-2) and [10\)](#page-10-3) were more facile than the ClER [\[16\]](#page-15-13). Regarding the mass balance of Cl, on the other hand, monotonic declines of [Cl−] was noted with an increasing rate as $[NH_4^+]_0$ decreased (Fig. S26). Since oxychlorine anions (e.g., ClO_3^- and ClO_4^-) were always negligible, likely owing to the low [RCS] before the breakpoint, the reduced [Cl[−]] would be ascribed to a volatilization of Cl₂ gas. The general CE of NH_4^+ -to- N_2 conversion (3e⁻ transfer) at $[NH_4^+] / [Cl^-]$ of 0.25 was 58.6% after 2 h of electrolysis (breakpoint as indicated by Fig. S27), being far lower than the CE_{CIER} measured in 0.1 M NaCl. However, the reduced [Cl−] accounted for CE of 43.8% (assuming 2e− transfer to RCS) to roughly close the charge balance.

In order to confirm the stability of $NFI/TiO₂$ anode during the water treatment, the batch NH_4^+ degradation experiment was repeated up to 20 cycles (Fig. $4g$ $4g$). The efficacy of the RCS-mediated deammonifcation was maintained without a signifcant variation based on the pseudo zeroorder rate constants of NH_4^+ abatement ranging from 11.1 to 12.8 mM h−1.The typical profles of total/free chlorine in breakpoint chlorination were consistently reproduced as well (Fig. S28). The anodic potential moderately increased within a cycle, which was ascribed to the reduced electrical conductivity by deammonifcation since it was recovered at the beginning of the subsequent cycle. After the sequencing batch cycles, the used $NFI/TiO₂$ retained crystalline integrity

of spinel NiFe₂O₄ and anatase TiO₂ structure, as revealed by XRD (Fig. S29). We additionally performed XPS and Raman spectroscopy analyses on the used $NFI/TiO₂$ samples to evaluate the stability of the heterojunction anode. The analytical depth of XPS is typically 5–10 nm to target the surface [[59\]](#page-17-13). As expected, the Ni and Fe 2*p* peaks in NFI/ $TiO₂$ displayed significantly reduced intensities compared to those in NFI, which can be attributed to the limited amount of Ni and Fe that migrated to the surface owing to a thermal difusion during the annealing (Fig. S30). Nevertheless, these peaks were well-preserved after the extended electrolysis (Fig. S31a, b). Furthermore, both photoelectron spectra and Raman spectra of NFI/TiO₂ before and after electrolysis reveals that the signals related to the $TiO₂$ outer layer were consistent after the electrolysis. (Figs. S31c and S32). Consequently, NFI/TiO₂ anode proved a long-term stability during electrolysis of wastewater with near-neutral pH.

Figure [4h](#page-11-0) illustrates the quantification method of H_2 generation from the undivided WEC with $NFI/TiO₂$ anode. Headspace of the gas-sealed reactor was connected to a flow meter, while the composition was measured by GC-TCD. Figure [4](#page-11-0)i presents the observed rate of $H₂$ production during the galvanostatic electrolysis of the synthetic wastewater. The current efficiency for HER is an important figure-of-merit, together with energy efficiency, in the wastewater electrolysis to compare the energy conversion reaction selectivity [[12,](#page-15-9) [15](#page-15-12)]. The CE_{HER} ranged 85%–90% during the course of electrolysis, averaged to 85.8% (Fig. S33). A portion of passed charge unused for the HER could be dissipated by undesired reactions, such as reduction of combined chlorine, and oxyanions $(e.g., NO_x⁻, ClO_x⁻)$ on the Pt cathode, albeit quantification of individual side reaction was infeasible in the undivided cell. Concurrently, the EE_{HFR} (representing the conversion efficiency of electric energy to H_2) was averaged to 35.4% during the operation at 30 mA cm^{-2} . The observed metrics for CE_{HER} and EE_{HER} outweighed prior reports (CE_{HER} < 80%) and EE_{HER} < 23% at *j* > 20 mA cm⁻²) regarding the wastewater electrolysis with $IrO₂$ based anodes and variable compositions of wastewater (Fig. [4j](#page-11-0)) [[15,](#page-15-12) [51–](#page-17-9)[53\]](#page-17-10). The produced gas mixture during the initial 2 h of electrolysis primarily consisted of 2.0 mmol H_2 (83%) and 0.44 mmol N_2 (17%).

The attenuated OER on the NFI/TiO₂ anode could lead to negligible oxygen reduction reaction, in-turn elevating the CE_{HER} . Gaseous $[O_2]$ in the reactor headspace was indeed below the detection limit. In addition, the facile quenching of RCS by NH_4^+ would minimize the chlorine reduction reaction; *i.e*., RCS-mediated oxidation of electron donating pollutants allowed selective HER even in membrane-less confguration. Therefore, the quasi-absolute selectivity for ClER on NFI/TiO₂ could intensify the synergism in bifunctional WEC for water treatment coupled with $H₂$ generation. On the other hand, the CE_{HER} and E_{cell} exclusively determine the EE_{HER} (Fig. [4](#page-11-0)j) [\[15\]](#page-15-12), while the voltage loss would be governed by the anodic *η* and ohmic resistance. Consequently, the admirable electrocatalytic ClER activity of $NFI/TiO₂$ also contributed to the enhanced EE_{HER} . It is worth mentioning that the marked EE_{HER} value in this study can be easily raised by lowering the $E_c(j)$, which reduces the *iR* loss but inevitably retards the ClER and mediated pollutants removal. This apparent trade-off relations between the rate of pollutants removal and energy conversion efficiency have been noted previously $[15]$, highlighting the importance of process engineering. In addition, the EE_{HER} can be escalated with an increasing electrical conductivity of wastewater, by mixing with seawater as an example, which deserves further research.

3.5 Scaled‑Up Application for Toilet Wastewater Treatment

For demonstration of practical applicability, scaled-up NFI/ $TiO₂$ anodes and electrolysis cell (effective volume of 10 L) were fabricated as shown in Fig. [5a](#page-14-0). It should be mentioned that our straightforward dip coating and thermal decomposition methods for NFI/TiO₂ were amenable for the scaling. In order to avoid uneven coating and current distribution, multiple anodes were matched with commercial AISI 304 stainless steel cathodes in a sandwich module with total surface area of 0.286 m² (submerged area: 0.191 m²). The cost-effectiveness and moderately efficient HER property could rationalize the deployment of stainless steel [\[15](#page-15-12)]. Figure [5](#page-14-0)b–e depicts the profles of principal pollutants within a cycle of sequencing batch operation at galvanostatic condition of 52.5 A (27.5 mA cm^{-2}). The pilot WEC exhibited eminent removal efficiency for COD and turbidity, due to well-known reactivity of the electrolytic RCS toward organic compounds in wastewater. The EEM before and after treatment (Fig. S34) additionally showed evident reduction of humic-like substances in the DOM, as represented by the peak centered at $430/360$ nm [\[60](#page-17-14)]. The influent NH_4^+ was completely eliminated within 20 min by the swift reactions with RCS, whereas the concurrent decline of [TN] became

more sluggish after 20 min to demand \sim 2 h for full annihilation of TN. It was presumably because the chlorination of monochloramine to dichloramine (Eq. [9](#page-10-2)) was retarded due to competition for RCS with organic compounds and monochloramine. A formation of organic chloramines from chlorination of organic nitrogen species (e.g., protein) in wastewater could not be ruled out as well. The CE calculated for initial 20 min was 61.3% for COD oxidation and 26.9% for TN conversion, being comparable with CE_{CIER} measured in 0.1 M NaCl (86%). It corroborated that the exceptional ClER on $NFI/TiO₂$ was maintained in the scaled-up process. The total CE for pollutants oxidation in real wastewater exceeded the estimates for the synthetic one with NH_4^+ only, because more abundant organic electron donors minimized the volatilization of unreacted $Cl₂$. Additionally, our wastewater electrolysis cell with $NFI/TiO₂$ anode and toilet wastewater achieved superior energy efficiency for removal of COD, TN, and NH_4^+ -N, compared to previous electrooxidation processes using precious metal-based anodes (Table S1).

The $H₂$ generation constitutes a crucial advantage of WEC for energy storage coupled with wastewater treatment, when powered by renewable energy sources. The importance of decentralized $H₂$ production to reduce carbon footprint has been demonstrated recently by a life cycle analysis, primarily owing to the reduced $CO₂$ generation from transportation [[14\]](#page-15-11). Given ideal charge transfer and homogeneous transformation, degradation of unit mole of $NH₃$ (converting to 1/2 mol of N_2 with 3 e[−] transfer) and Total organic carbon (TOC, converting to 1 mol of $CO₂$ with 8 e[−] transfer) would produce 1.5 and 4 mol of $H₂$, respectively. Assuming a composition of latrine wastewater to be 20 mM TOC and 10 mM NH4 +, the full mineralization and deammonifcation would generate a gas mixture with 79% H₂, 17% CO₂, and 4% N₂. This composition would be suitable for further conversion by ignition in internal combustion engine or boiler which would reduce volatilization of toxic chlorinated organic compounds $(C_xH_vCl_z)$. However, the dependence on the wastewater matrix should be further investigated in a longterm operation study.

4 Conclusions

In summary, the NFI/TiO₂ anode is characterized as Irdoped spinel $NiFe₂O₄$ in heterojunction with nanoporous anatase $TiO₂$ layer, with strong electronic interaction across

Fig. 5 Demonstration of a scaled-up WEC with toilet wastewater. **a** Scaled-up NFI/TiO₂ anode, stainless steel 304 cathode, and WEC (effective volume of 10 L) with a sandwich module. **b-e** Concentration profiles of NH₃-N, TN, COD, and turbidity. The inset in **e** shows photographs of influent (left) and effluent (right)

the junction. The tiny amounts of Ir bring about exceptional intrinsic activity of NFI both for OER (in KOH solutions) and ClER (in NaCl solutions), surpassing the benchmark IrO₂. The TiO₂ overlayer enhances the CIER selectivity and durability of NFI during ClER in near-neutral pH. The variation of ECSA, relation of CE_{CIER} with PZC, and the dynamic valency change during *in situ* XANES analysis demonstrated that the upper $TiO₂$ serves as the active ClER sites, while the underlying conductive NFI works as the ohmic contact. The charge withdrawing by NFI would facilitate the Cl-chemisorption on charge-deficient $TiO₂$. These synergisms allow selective and robust RCS generation on NFI/TiO₂ architecture, which in turn leads to facile degradation of aqueous pollutants as showcased with stoichiometric NH_4^+ -to- N_2 conversion in NH_4^+ -laden synthetic wastewater. In addition, the alleviated concentrations of dissolved oxygen and RCS can enhance the $H₂$ production in single-compartment WEC. The successful operation of scaled-up electrode module for electrolysis of toilet wastewater further substantiated the practical applicability of NFI/TiO₂. Consequently, NFI/TiO₂ would be a promising candidate for WEC as an option for on-site wastewater treatment and reuse, with decentralized H_2 production from nonconventional water sources.

Acknowledgements This work was financially supported by the National Research Foundation of Korea (NRF) grants (2022R1A2C4001228, 2022M3H4A4097524, 2022M3I3A1082499, and 2021M3I3A1084818), and the Technology Innovation Program (20026415) of the Ministry of Trade, Industry & Energy (MOTIE, Korea). The authors also acknowledge the supports from Nanopac for fabrication of scaled-up reactor.

Author Contributions Sukhwa Hong performed writing—original, visualization, methodology, and validation. Jiseon Kim presented formal analysis, investigation, and validation. Jaebeom Park contributed formal analysis and investigation. Sunmi Im conducted formal analysis and investigation. Michael R. Hofmann provided resources and conceptualization. Kangwoo Cho carried out supervision, writing—review & editing, project administration, funding acquisition, and conceptualization.

Declarations

Conflict of Interest The authors declare that they have no known competing fnancial interests of personal relationships that could have appeared to infuence the work reported in this paper.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit <http://creativecommons.org/licenses/by/4.0/>.

Supplementary Information The online version contains supplementary material available at [https://doi.org/10.1007/](https://doi.org/10.1007/s40820-024-01542-x) [s40820-024-01542-x.](https://doi.org/10.1007/s40820-024-01542-x)

References

- 1. L. Sun, H. Dong, Y. Lu, L. Zhang, L. Yang et al., A hydratebased zero liquid discharge method for high-concentration organic wastewater: resource recovery and water reclamation. npj Clean Water **6**, 49 (2023). [https://doi.org/10.1038/](https://doi.org/10.1038/s41545-023-00262-w) [s41545-023-00262-w](https://doi.org/10.1038/s41545-023-00262-w)
- 2. S. Grego, The humble toilet is an opportunity for sustainable water reuse. Nat. Water **1**, 900–901 (2023). [https://doi.org/10.](https://doi.org/10.1038/s44221-023-00154-w) [1038/s44221-023-00154-w](https://doi.org/10.1038/s44221-023-00154-w)
- 3. H. Feng, J. Yu, J. Tang, L. Tang, Y. Liu et al., Enhanced electro-oxidation performance of FeCoLDH to organic pollutants using hydrophilic structure. J. Hazard. Mater. **430**, 128464 (2022). <https://doi.org/10.1016/j.jhazmat.2022.128464>
- 4. C.A. Cid, F. Abiola, M. Starkl, Can international nonsewered sanitation standards help solve the global sanitation crisis? Environ. Sci. Technol. **56**, 699–706 (2022). [https://doi.org/](https://doi.org/10.1021/acs.est.1c03471) [10.1021/acs.est.1c03471](https://doi.org/10.1021/acs.est.1c03471)
- 5. S. Pei, S. You, J. Ma, X. Chen, N. Ren, Electron spin resonance evidence for electro-generated hydroxyl radicals. Environ. Sci. Technol. **54**, 13333–13343 (2020). [https://doi.org/10.](https://doi.org/10.1021/acs.est.0c05287) [1021/acs.est.0c05287](https://doi.org/10.1021/acs.est.0c05287)
- 6. P. Subramani, M. Basil, P. Rosario, D.R. Jalaja, V. Choudhary et al., Water recycling public toilets based on onsite electrochemical wastewater treatment. Environ. Sci.: Water Res. Technol. **10**, 157–167 (2024). [https://doi.org/10.1039/d3ew0](https://doi.org/10.1039/d3ew00454f) [0454f](https://doi.org/10.1039/d3ew00454f)
- 7. K. Cho, M.R. Hoffmann, $Bi_xTi_{1-x}O_z$ functionalized heterojunction anode with an enhanced reactive chlorine generation efficiency in dilute aqueous solutions. Chem. Mater. 27, 2224–2233 (2015). [https://doi.org/10.1021/acs.chemmater.](https://doi.org/10.1021/acs.chemmater.5b00376) [5b00376](https://doi.org/10.1021/acs.chemmater.5b00376)
- 8. S. Hong, T.-K. Lee, M.R. Hofmann, K. Cho, Enhanced chlorine evolution from dimensionally stable anode by heterojunction with Ti and Bi based mixed metal oxide layers prepared

from nanoparticle slurry. J. Catal. **389**, 1–8 (2020). [https://doi.](https://doi.org/10.1016/j.jcat.2020.04.009) [org/10.1016/j.jcat.2020.04.009](https://doi.org/10.1016/j.jcat.2020.04.009)

- 9. K. Cho, Y. Qu, D. Kwon, H. Zhang, C.A. Cid et al., Efects of anodic potential and chloride ion on overall reactivity in electrochemical reactors designed for solar-powered wastewater treatment. Environ. Sci. Technol. **48**, 2377–2384 (2014). <https://doi.org/10.1021/es404137u>
- 10. C. Zhang, D. He, J. Ma, T.D. Waite, Active chlorine mediated ammonia oxidation revisited: reaction mechanism, kinetic modelling and implications. Water Res. **145**, 220–230 (2018). <https://doi.org/10.1016/j.watres.2018.08.025>
- 11. Y. Ji, J. Bai, J. Li, T. Luo, L. Qiao et al., Highly selective transformation of ammonia nitrogen to $N₂$ based on a novel solar-driven photoelectrocatalytic-chlorine radical reactions system. Water Res. **125**, 512–519 (2017). [https://doi.org/10.](https://doi.org/10.1016/j.watres.2017.08.053) [1016/j.watres.2017.08.053](https://doi.org/10.1016/j.watres.2017.08.053)
- 12. S. Hong, G. Choi, N. Thi Yen Phan, H. Shin, J. Lim, Efficient and durable iridium-doped $SnO₂$ anode for reactive chlorine species-mediated urine wastewater treatment. Chem. Eng. J. **493**, 152698 (2024).<https://doi.org/10.1016/j.cej.2024.152698>
- 13. C.E. Adams, Removing nitrogen from waste water. Environ. Sci. Technol. **7**, 696–701 (1973). [https://doi.org/10.1021/](https://doi.org/10.1021/es60080a006) [es60080a006](https://doi.org/10.1021/es60080a006)
- 14. L.R. Winter, N.J. Cooper, B. Lee, S.K. Patel, L. Wang et al., Mining nontraditional water sources for a distributed hydrogen economy. Environ. Sci. Technol. **56**, 10577–10585 (2022). <https://doi.org/10.1021/acs.est.2c02439>
- 15. K. Cho, M.R. Hofmann, Molecular hydrogen production from wastewater electrolysis cell with multi-junction BiO ^{$/$} $TiO₂$ anode and stainless steel cathode: current and energy efficiency. Appl. Catal. B Environ. 202, 671-682 (2017). <https://doi.org/10.1016/j.apcatb.2016.09.067>
- 16. Y. Liu, L. Li, R. Goel, Kinetic study of electrolytic ammonia removal using Ti/IrO₂ as anode under different experimental conditions. J. Hazard. Mater. **167**, 959–965 (2009). [https://doi.](https://doi.org/10.1016/j.jhazmat.2009.01.082) [org/10.1016/j.jhazmat.2009.01.082](https://doi.org/10.1016/j.jhazmat.2009.01.082)
- 17. L. Ding, K. Li, W. Wang, Z. Xie, S. Yu et al., Amorphous iridium oxide-integrated anode electrodes with ultrahigh material utilization for hydrogen production at industrial current densities. Nano-Micro Lett. **16**, 203 (2024). [https://doi.org/](https://doi.org/10.1007/s40820-024-01411-7) [10.1007/s40820-024-01411-7](https://doi.org/10.1007/s40820-024-01411-7)
- 18. E. Lacasa, J. Llanos, P. Cañizares, M.A. Rodrigo, Electrochemical denitrifcacion with chlorides using DSA and BDD anodes. Chem. Eng. J. **184**, 66–71 (2012). [https://doi.org/10.](https://doi.org/10.1016/j.cej.2011.12.090) [1016/j.cej.2011.12.090](https://doi.org/10.1016/j.cej.2011.12.090)
- 19. Y.-Y. Yang, H.-P. Feng, X.-G. Zhang, H. Guo, X.-J. Wen et al., Regulating and protecting of oxygen vacancy endow MoO_{3-x} [@] $Zn_2In_2S_5$ S-scheme core–shell heterojunction with high-efficiency organic pollutant removal and bacterial disinfection: correlation of pollutant active sites to degradation pathways. Chem. Eng. J. **490**, 151309 (2024). [https://doi.org/10.1016/j.](https://doi.org/10.1016/j.cej.2024.151309) [cej.2024.151309](https://doi.org/10.1016/j.cej.2024.151309)
- 20. H. Feng, J. Yu, L. Tang, J. Wang, H. Dong et al., Improved hydrogen evolution activity of layered double hydroxide by optimizing the electronic structure. Appl. Catal. B Environ.

297, 120478 (2021). [https://doi.org/10.1016/j.apcatb.2021.](https://doi.org/10.1016/j.apcatb.2021.120478) [120478](https://doi.org/10.1016/j.apcatb.2021.120478)

- 21. Y.-Y. Yang, H. Guo, D.-W. Huang, L. Li, H.-Y. Liu et al., Simultaneously tuning oxygen reduction pathway and charge transfer dynamics toward sacrifcial agent-free photocatalytic H₂O₂ production for *in situ* water disinfection. Chem. Eng. J. **479**, 147863 (2024).<https://doi.org/10.1016/j.cej.2023.147863>
- 22. J. Kim, M.-C. Kim, S.S. Han, K. Cho, Accessible Ni-Feoxalate framework for electrochemical urea oxidation with radically enhanced kinetics. Adv. Funct. Mater. **34**, 2315625 (2024). <https://doi.org/10.1002/adfm.202315625>
- 23. M. Ning, Y. Wang, L. Wu, L. Yang, Z. Chen et al., Hierarchical interconnected NiMoN with large specifc surface area and high mechanical strength for efficient and stable alkaline water/seawater hydrogen evolution. Nano-Micro Lett. **15**, 157 (2023). <https://doi.org/10.1007/s40820-023-01129-y>
- 24. L. Jiang, J. Pan, Q. Li, H. Chen, S. Zhou et al., A holistic green system coupling hydrogen production with wastewater valorisation. EcoMat **4**, e12254 (2022). [https://doi.org/10.1002/](https://doi.org/10.1002/eom2.12254) [eom2.12254](https://doi.org/10.1002/eom2.12254)
- 25. S. Hong, K. Ham, J. Hwang, S. Kang, M.H. Seo et al., Active motif change of Ni-Fe spinel oxide by Ir doping for highly durable and facile oxygen evolution reaction. Adv. Funct. Mater. **33**, 2209543 (2023). [https://doi.org/10.1002/adfm.](https://doi.org/10.1002/adfm.202209543) [202209543](https://doi.org/10.1002/adfm.202209543)
- 26. E. Rahman, S. Hong, J. Lee, S.W. Hong, K. Cho, Ni-Fe oxides/ $TiO₂$ heterojunction anodes for reactive chlorine generation and mediated water treatment. ACS Appl. Mater. Interfaces **15**, 17867–17878 (2023). [https://doi.org/10.1021/acsami.](https://doi.org/10.1021/acsami.3c00581) [3c00581](https://doi.org/10.1021/acsami.3c00581)
- 27. S. Kim, S. Choung, W. Lee, S. Bae, J.W. Han et al., Tuning electrochemical water oxidation towards ozone evolution with heterojunction anode architectures. J. Mater. Chem. A **10**, 17132–17141 (2022).<https://doi.org/10.1039/D2TA02731C>
- 28. M.S. Koo, K. Cho, J. Yoon, W. Choi, Photoelectrochemical degradation of organic compounds coupled with molecular hydrogen generation using electrochromic $TiO₂$ nanotube arrays. Environ. Sci. Technol. **51**, 6590–6598 (2017). [https://](https://doi.org/10.1021/acs.est.7b00774) doi.org/10.1021/acs.est.7b00774
- 29. J. Lim, Y. Yang, M.R. Hofmann, Activation of peroxymonosulfate by oxygen vacancies-enriched cobalt-doped black $TiO₂$ nanotubes for the removal of organic pollutants. Environ. Sci. Technol. **53**, 6972–6980 (2019). [https://doi.org/10.1021/acs.](https://doi.org/10.1021/acs.est.9b01449) [est.9b01449](https://doi.org/10.1021/acs.est.9b01449)
- 30. Y.U. Shin, H.Y. Yoo, S. Kim, K.M. Chung, Y.G. Park et al., Sequential combination of electro-Fenton and electrochemical chlorination processes for the treatment of anaerobically-digested food wastewater. Environ. Sci. Technol. **51**, 10700–10710 (2017). [https://doi.org/10.1021/acs.est.7b020](https://doi.org/10.1021/acs.est.7b02018) [18](https://doi.org/10.1021/acs.est.7b02018)
- 31. B.M. De Borba, R.F. Jack, J.S. Rohrer, J. Wirt, D. Wang, Simultaneous determination of total nitrogen and total phosphorus in environmental waters using alkaline persulfate digestion and ion chromatography. J. Chromatogr. A **1369**, 131–137 (2014). [https://doi.org/10.1016/j.chroma.2014.10.](https://doi.org/10.1016/j.chroma.2014.10.027) [027](https://doi.org/10.1016/j.chroma.2014.10.027)
- 32. Q. Emparan, R. Harun, J.A. Kodiappan, Efect of microalgaeto-palm oil mill effluent (POME) ratio for rapid effective pollutants removal and biomass production. Desalin. Water Treat. **198**, 119–125 (2020).<https://doi.org/10.5004/dwt.2020.25979>
- 33. I. Vyrides, D.C. Stuckey, A modifed method for the determination of chemical oxygen demand (COD) for samples with high salinity and low organics. Bioresour. Technol. **100**, 979–982 (2009). [https://doi.org/10.1016/j.biortech.2008.06.](https://doi.org/10.1016/j.biortech.2008.06.038) [038](https://doi.org/10.1016/j.biortech.2008.06.038)
- 34. A. Ahlawat, V.G. Sathe, V.R. Reddy, A. Gupta, Mossbauer, Raman and X-ray difraction studies of superparamagnetic $NiFe₂O₄$ nanoparticles prepared by sol–gel auto-combustion method. J. Magn. Magn. Mater. **323**, 2049–2054 (2011). <https://doi.org/10.1016/j.jmmm.2011.03.017>
- 35. H. Li, S. Chen, Y. Zhang, Q. Zhang, X. Jia et al., Systematic design of superaerophobic nanotube-array electrode comprised of transition-metal sulfdes for overall water splitting. Nat. Commun. **9**, 2452 (2018). [https://doi.org/10.1038/](https://doi.org/10.1038/s41467-018-04888-0) [s41467-018-04888-0](https://doi.org/10.1038/s41467-018-04888-0)
- 36. G. Dong, M. Fang, J. Zhang, R. Wei, L. Shu et al., *In situ* formation of highly active Ni–Fe based oxygen-evolving electrocatalysts *via* simple reactive dip-coating. J. Mater. Chem. A **5**, 11009–11015 (2017). <https://doi.org/10.1039/C7TA01134B>
- 37. Q. Xue, H.-Y. Sun, Y.-N. Li, M.-J. Zhong, F.-M. Li et al., Au@ Ir core-shell nanowires towards oxygen reduction reaction. Chem. Eng. J. **421**, 129760 (2021). [https://doi.org/10.1016/j.](https://doi.org/10.1016/j.cej.2021.129760) [cej.2021.129760](https://doi.org/10.1016/j.cej.2021.129760)
- 38. K.S. Exner, T. Lim, S.H. Joo, Circumventing the OCl versus OOH scaling relation in the chlorine evolution reaction: beyond dimensionally stable anodes. Curr. Opin. Electrochem. **34**, 100979 (2022). [https://doi.org/10.1016/j.coelec.2022.](https://doi.org/10.1016/j.coelec.2022.100979) [100979](https://doi.org/10.1016/j.coelec.2022.100979)
- 39. C. Mahala, M.D. Sharma, M. Basu, 2D nanostructures of $CoFe₂O₄$ and NiFe₂O₄: efficient oxygen evolution catalyst. Electrochim. Acta **273**, 462–473 (2018). [https://doi.org/10.](https://doi.org/10.1016/j.electacta.2018.04.079) [1016/j.electacta.2018.04.079](https://doi.org/10.1016/j.electacta.2018.04.079)
- 40. Z.-G. Ye, H.-M. Meng, D.-B. Sun, Electrochemical impedance spectroscopic (EIS) investigation of the oxygen evolution reaction mechanism of Ti/IrO₂ +MnO₂ electrodes in 0.5m H_2SO_4 solution. J. Electroanal. Chem. **621**, 49–54 (2008). [https://doi.](https://doi.org/10.1016/j.jelechem.2008.04.009) [org/10.1016/j.jelechem.2008.04.009](https://doi.org/10.1016/j.jelechem.2008.04.009)
- 41. D.H. Taffa, R. Dillert, A.C. Ulpe, K.C.L. Bauerfeind, T. Bredow et al., Photoelectrochemical and theoretical investigations of spinel type ferrites $(M_xFe_{3-x}O₄)$ for water splitting: a mini-review. J. Photon. Energy **7**, 012009 (2017). [https://doi.](https://doi.org/10.1117/1.jpe.7.012009) [org/10.1117/1.jpe.7.012009](https://doi.org/10.1117/1.jpe.7.012009)
- 42. G. Rekhila, Y. Bessekhouad, M. Trari, Visible light hydrogen production on the novel ferrite $NiFe₂O₄$. Int. J. Hydrog. Energy **38**, 6335–6343 (2013). [https://doi.org/10.1016/j.ijhyd](https://doi.org/10.1016/j.ijhydene.2013.03.087) [ene.2013.03.087](https://doi.org/10.1016/j.ijhydene.2013.03.087)
- 43. K. Kitsuka, K. Kaneda, M. Ikematsu, M. Iseki, K. Mushiake et al., N-type $TiO₂$ thin films for electrochemical ozone production. J. Electrochem. Soc. **157**, F30 (2010). [https://doi.org/](https://doi.org/10.1149/1.3265469) [10.1149/1.3265469](https://doi.org/10.1149/1.3265469)
- 44. I.A. Moreno-Hernandez, B.S. Brunschwig, N.S. Lewis, Crystalline nickel, cobalt, and manganese antimonates as

electrocatalysts for the chlorine evolution reaction. Energy Environ. Sci. **12**, 1241–1248 (2019). [https://doi.org/10.1039/](https://doi.org/10.1039/C8EE03676D) [C8EE03676D](https://doi.org/10.1039/C8EE03676D)

- 45. S. Virtanen, P. Schmuki, A.J. Davenport, C.M. Vitus, Dissolution of thin iron oxide flms used as models for iron passive flms studied by *in situ* X-ray absorption near-edge spectroscopy. J. Electrochem. Soc. **144**, 198–204 (1997). [https://doi.](https://doi.org/10.1149/1.1837385) [org/10.1149/1.1837385](https://doi.org/10.1149/1.1837385)
- 46. J. Kunze, A. Ghicov, H. Hildebrand, J.M. Macak, L. Traveira et al., Challenges in the surface analytical characterisation of anodic TiO₂ films–a review. Z. Für Phys. Chem. 219, 1561– 1582 (2005).<https://doi.org/10.1524/zpch.2005.219.11.1561>
- 47. C.E. Finke, S.T. Omelchenko, J.T. Jasper, M.F. Lichterman, C.G. Read et al., Enhancing the activity of oxygen-evolution and chlorine-evolution electrocatalysts by atomic layer deposition of TiO₂. Energy Environ. Sci. **12**, 358–365 (2019). [https://](https://doi.org/10.1039/c8ee02351d) doi.org/10.1039/c8ee02351d
- 48. S.R. Kelly, H.H. Heenen, N. Govindarajan, K. Chan, J.K. Nørskov, OH binding energy as a universal descriptor of the potential of zero charge on transition metal surfaces. J. Phys. Chem. C **126**, 5521–5528 (2022). [https://doi.org/10.1021/acs.](https://doi.org/10.1021/acs.jpcc.1c10362) [jpcc.1c10362](https://doi.org/10.1021/acs.jpcc.1c10362)
- 49. J. Park, E.J. Hwang, S. Hong, K. Cho, Electrochemical chlorine evolution by Bi–Ti oxide with a heterojunction on Ir–Ta oxide: insights from the efects of layer confgurations. J. Phys. Chem. C **127**, 9640–9649 (2023). [https://doi.org/10.1021/acs.](https://doi.org/10.1021/acs.jpcc.3c01841) [jpcc.3c01841](https://doi.org/10.1021/acs.jpcc.3c01841)
- 50. K. Ham, S. Hong, S. Kang, K. Cho, J. Lee, Extensive activesite formation in trirutile $CoSb₂O₆$ by oxygen vacancy for oxygen evolution reaction in anion exchange membrane water splitting. ACS Energy Lett. **6**, 364–370 (2021). [https://doi.org/](https://doi.org/10.1021/acsenergylett.0c02359) [10.1021/acsenergylett.0c02359](https://doi.org/10.1021/acsenergylett.0c02359)
- 51. J. Kim, D. Kwon, K. Kim, M.R. Hofmann, Electrochemical production of hydrogen coupled with the oxidation of arsenite. Environ. Sci. Technol. **48**, 2059–2066 (2014). [https://doi.org/](https://doi.org/10.1021/es4046814) [10.1021/es4046814](https://doi.org/10.1021/es4046814)
- 52. J. Choi, Y. Qu, M.R. Hoffmann, $SnO₂$, $IrO₂$, $Ta₂O₅$, $Bi₂O₃$, and TiO₂ nanoparticle anodes: electrochemical oxidation coupled with the cathodic reduction of water to yield molecular H_2 , in *Nanotechnology for Sustainable Development*. ed. by M.S. Diallo, N.A. Fromer, M.S. Jhon (Springer International Publishing, Cham, 2012), pp.223–234
- 53. H. Park, K.-H. Choo, H.-S. Park, J. Choi, M.R. Hofmann, Electrochemical oxidation and microfltration of municipal wastewater with simultaneous hydrogen production: infuence of organic and particulate matter. Chem. Eng. J. **215**, 802–810 (2013). <https://doi.org/10.1016/j.cej.2012.11.075>
- 54. L. Li, Y. Liu, Ammonia removal in electrochemical oxidation: mechanism and pseudo-kinetics. J. Hazard. Mater. **161**, 1010– 1016 (2009).<https://doi.org/10.1016/j.jhazmat.2008.04.047>
- 55. V. Schmalz, T. Dittmar, D. Haaken, E. Worch, Electrochemical disinfection of biologically treated wastewater from small treatment systems by using boron-doped diamond (BDD) electrodes: contribution for direct reuse of domestic wastewater. Water Res. **43**, 5260–5266 (2009). [https://doi.org/10.1016/j.](https://doi.org/10.1016/j.watres.2009.08.036) [watres.2009.08.036](https://doi.org/10.1016/j.watres.2009.08.036)
- 56. S.O. Ganiyu, C.A. Martínez-Huitle, Nature, mechanisms and reactivity of electrogenerated reactive species at thin-flm boron-doped diamond (BDD) electrodes during electrochemical wastewater treatment. ChemElectroChem **6**, 2379–2392 (2019). <https://doi.org/10.1002/celc.201900159>
- 57. T.A. Pressley, D.F. Bishop, S.G. Roan, Ammonia-nitrogen removal by breakpoint chlorination. Environ. Sci. Technol. **6**, 622–628 (1972). <https://doi.org/10.1021/es60066a006>
- 58. A. Urtiaga, I. Ortiz, A. Anglada, D. Mantzavinos, E. Diamadopoulos, Kinetic modeling of the electrochemical removal of ammonium and COD from landfill leachates. J. Appl. Electrochem. **42**, 779–786 (2012). [https://doi.org/10.1007/](https://doi.org/10.1007/s10800-012-0458-5) [s10800-012-0458-5](https://doi.org/10.1007/s10800-012-0458-5)
- 59. C. Oliveira, C.R. Chaves, P. Bargiela, M. da Graça Carneiro da Rocha, A.F. da Silva et al., Surface studies of the chemical environment in gold nanorods supported by X-ray photoelectron spectroscopy (XPS) and *ab initio* calculations. J. Mater. Res. Technol. **15**, 768–776 (2021). [https://doi.org/10.1016/j.](https://doi.org/10.1016/j.jmrt.2021.08.059) [jmrt.2021.08.059](https://doi.org/10.1016/j.jmrt.2021.08.059)
- 60. M. Sgroi, P. Roccaro, G.V. Korshin, V. Greco, S. Sciuto et al., Use of fuorescence EEM to monitor the removal of emerging contaminants in full scale wastewater treatment plants. J. Hazard. Mater. **323**, 367–376 (2017). [https://doi.org/10.1016/j.](https://doi.org/10.1016/j.jhazmat.2016.05.035) [jhazmat.2016.05.035](https://doi.org/10.1016/j.jhazmat.2016.05.035)

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional afliations.