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HIGHLIGHTS

• Recent developments of advanced electronic and optoelectronic gas sensors are introduced.

• Sensor array with artificial intelligence algorithms and smart gas sensors in “Internet of Things” paradigm are highlighted.

• Applications of smart gas sensors in environmental monitoring, medical and healthcare applications, food quality control, and public 
safety are described.

ABSTRACT Gas sensor is an indispensable part of modern society with 
wide applications in environmental monitoring, healthcare, food industry, 
public safety, etc. With the development of sensor technology, wireless com-
munication, smart monitoring terminal, cloud storage/computing technol-
ogy, and artificial intelligence, smart gas sensors represent the future of gas 
sensing due to their merits of real-time multifunctional monitoring, early 
warning function, and intelligent and automated feature. Various electronic 
and optoelectronic gas sensors have been developed for high-performance 
smart gas analysis. With the development of smart terminals and the maturity 
of integrated technology, flexible and wearable gas sensors play an increas-
ing role in gas analysis. This review highlights recent advances of smart gas 
sensors in diverse applications. The structural components and fundamental 
principles of electronic and optoelectronic gas sensors are described, and 
flexible and wearable gas sensor devices are highlighted. Moreover, sensor 
array with artificial intelligence algorithms and smart gas sensors in “Internet of Things” paradigm are introduced. Finally, the challenges 
and perspectives of smart gas sensors are discussed regarding the future need of gas sensors for smart city and healthy living. 
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1 Introduction

Gas sensor is a transducer that converts the interaction 
between gaseous analyte and sensing material into a suit-
able form amenable for further processing, providing gas 
composition and concentration information [1, 2]. In the past 
decades, gas sensors have become an indispensable part of 
modern life (Fig. 1) with a broad range of applications in 
atmospheric and indoor monitoring, medical and health-
care, food industry, public safety, chemical production, etc. 
Together with the boom of the Internet of the Things (IoT) 
technology and rising demand for smart applications, smart 
gas sensors emerge as required. Smart gas sensor, also called 
intelligent gas sensor or digital gas sensor, is a module inte-
gration that is with sensor-centered, integrated with com-
munication technology and artificial intelligence technology, 
and in the form of portable sensor [3], flexible and wearable 
sensor [4–6], and sensor array [7, 8]. Smart gas sensors are 
expected to work in future digital home [9], early stage diag-
nosis [10–12], noninvasive medical treatment [13], fitness 
tracking [14], food-quality assessment [15], remote warning 
of gas leakage [16], individual authentication [17], epidemic 
early warning [18], touchless interactive panel [19], visible 
industrial safety alert [20], living-plant healthcare [21], etc.

In the past decade, smart gas sensors, especially port-
able and wearable gas sensors, have become a high-efficient 
and flexible tool in precise analysis field that is restricted 
by personnel perception infeasibility, complex pretreatment 
procedures, and the inevitable use of harmful chemical rea-
gents [22, 23]. The electronics industry has promoted the 
integration of miniaturized sensing chips with standard elec-
tronic components, giving rise to wearable 1.0, mainly in the 
rigid form of smart phone, smart glasses, smart wristband, 
smart watch, etc. In recent years, powered by the growing 
market demand for biometric information and wearable bio-
diagnostics, along with the advancement of IoT technology, 
big data, artificial intelligence (AI), robotics, current rigid 
wearable 1.0 have moved to the next-generation wearable 2.0 
era. Future wearables will surpass the limits of current rigid 
wafers and planar circuit platform technologies and be soft, 
skin-attachable, stretchable, bendable, twistable, rollable, in 
the forms of textiles, patches, tattoos, even tissue hybrids [4, 
5]. The IoT ecology chain consists of (1) flexible and wear-
able sensors for sensing and signal transduction; (2) wire-
less communication for transforming signal and sending data 

to cloud storage and computing; and (3) AI training andd 
warning system for analyzing, interpreting, predicting, and 
generating early alert (Fig. 2). Non-wearable smart gas sen-
sors and sensor arrays have been employed in high-precise 
exhaust emission monitoring, hazardous and toxic gases 
leakage detection for early alarms, mobile environmental 
monitoring for enforcement; while smart wearables have 
emerged in non-invasive diagnosis and smart agriculture, 
and tend to evolve in online healthcare and early warning of 
epidemic events through IoT.

The soft electronic circuits are the core components in 
portable gas sensor. There are three strategies to achieve 
stretchable and wearable electrodes: (1) assembly of the 
rigid inorganic semiconducting material/soft organic semi-
conducting material and circuits (Au/Ag/Cu and conductive 
ink) onto the flexible substrate; (2) directly bond thin con-
ductive material with low Young’s modulus onto the flexible 
substrate; and (3) prepare the conductors that are inherently 
stretchable, for instance, mix the conductive material with 
the flexible substrate. Common flexible electrode fabrication 
technologies include photolithography [24–27] (e.g., physi-
cal vapor deposition [28], chemical vapor deposition [29], 
magnetron sputtering [30], electron-beam evaporation [31]), 
screen printing [32], gravure printing [33], inkjet printing 
[34, 35], and 3D printing [36] (Fig. 3). Diverse flexible sub-
strates, including plastic polymers [37], cellulose paper [38, 
39], silk [40–43], even skin [44–46], with different levels of 
roughness and surface energies [47], influence the mechani-
cal stretchability and adaptability of flexible and wearable 
electronic devices. Besides, inorganic semiconducting mate-
rials including metal oxides (e.g., ZnO [48],  SnO2 [49],  WO3 
[50], Sn-doped-  Bi2O2CO3 [51]), graphene [52, 53], carbon 
nanotubes (CNTs) [54], transition metal dichalcogenides 
(e.g.,  MoS2 [55] and  WS2 [56]), MXene (e.g.,  Ti3C2Tx [57] 
and  V4C3Tx [58]), phosphorene (e.g., black phosphorus [59] 
and violet phosphorus [60]), organic semiconducting mate-
rials including conductive metal–organic framework (e.g., 
 Cu3(HITP)2 [61] and  Ni3(HHTP)2 [62]), covalent organic 
framework (e.g., pyrene COF [63]), hydrogen-bonded 
organic framework (e.g., HOF-FJU-1 [64] and 8PN [65]), 
hydrogel [66–68] as well as other conductive polymers can 
either be used as electrode or sensitive material.

Gas sensors can be categorized into electrically trans-
duced sensor and optically transduced sensor [84, 85]. 
Electrically transduced sensors (electronic sensors) have 
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gained a key role in the gas sensing field, due to integrability 
with wireless communication and microprocessor modules, 
compatibility with standard electronic components, oper-
ability, portability, real-time monitoring, and quick analysis 
[85–89]. The electrical property (e.g., capacitance, imped-
ance, resistance, current, and voltage) variation of a con-
ductive sensing material can be transformed into a readable 
electronic signal and reflect the information (species and 
concentration) of the gas. The electronic gas sensors may 

have covalent or noncovalent interface interaction between 
the sensing material and the gas molecule [90–92]. Repre-
sentative electronic gas sensors include field-effect transistor 
(FET), capacitor, chemiresistor, and electrochemical sensor 
[93–96]. The conductive sensing materials in electronic sen-
sor mainly contain semiconductors and conducting polymers 
in multi-dimensional forms. The technological advancement 
in flexible design and feasible functionalization of sensing 
materials leads to flexible electronic gas sensors, which 

Fig. 1  Smart gas sensors with widespread use in multiple scenes of human life. Adapted illustration 81383831.  Copyright Elenabsl Dream-
stime.com
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achieve highly sensitive (ppb-level detection) detection of 
target analyte. Currently, the discrimination of the gas ana-
logs with similar chemical structures and physical properties 
and the recognition of specific target analyte in the mixture 
gas environment remain as a thorny challenge for the appli-
cation of electronic gas sensors.

Optoelectronic sensors provide a visual identifiability 
platform for gas detection with highly selective and discrimi-
natory responses by fluorimetry or colorimetry methods 
[97–101]. Unlike electronic sensor with a physical electronic 
property change as the sensing signal, optoelectronic sensors 
mainly employ chemical characteristics variation induced by 
the target gas and the sensing material. The visual fluores-
cence or color response upon exposure to target gas reflects 
the optical property variation in the sensing material during 
the detection process [98, 102–106]. However, the inappre-
ciable level of sensitivity caused by gas analyte with relatively 
low sensitivity is still a challenge to optoelectronic gas sensors 
[97]. Besides, accurate recognition and quantitative analysis 
of unknown gas in real-world application are a common chal-
lenge for both electronic and optoelectronic gas sensors.

In this review article, the working principle, structure 
design, signal transduction, detection performance, and 

recent breakthroughs of smart electronic and optoelec-
tronic gas sensors in diverse practical application scenarios 
are summarized. The strategies for enhancing selectivity, 
accuracy, and sensitivity by constructing sensor array, 
machine-learning (ML) algorithm training, and ingenious 
engineering of the applied sensing material are introduced. 
This review provides new conception of remote and in-field 
gas sensing by wirelessly transformation network technol-
ogy and AI-enabled data analysis, which serves as the power 
source for the IoT. The challenges facing the employment 
of smart gas sensors and the future development trends are 
also discussed.

2  Logical Structure and Working Mechanism 
of Gas Sensors

The current section focuses on the gas sensors based on 
electrical and optical principles that sustain considerable 
scientific interests. The specialty area includes, but is not 
limited to, field-effect transistors (FETs), chemiresistors, 
capacitors, diodes, electrochemical sensors, colorimetric 
and fluorescent detectors [85, 107]. Other sensing methods 
such as non-dispersive infrared analyzers, photo-ionization 

Fig. 2  Full-spectrum operation procedures of smart gas sensors
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detectors, fiber waveguide sensors, and interferometric 
sensors are not discussed in this review.

2.1  Electronic Gas Sensors

Electronic gas sensors comprise two main components: 
the sensing material and the transducer (Fig. 4a) [85]. The 

sensing material that is exposed to ambient environment 
will interact with target analyte mostly through physical 
adsorption. The gas–solid interaction induces a change in 
its physical properties (e.g., variance of conductivity (Δσ), 
permittivity (Δε), work function (Δφ)). The electronic 
components in the electronic gas sensors (including FETs, 
resistors, capacitors, inductors) convert the corresponding 
physical quantities into the electrical measurable parameters 

Fig. 3  Substrate and conductive materials and the fabrication methods for flexible and wearable sensing devices. Image for “Silk fibroin,” repro-
duced with permission from Ref. [69].  Copyright 2012, Springer Nature. Image for “Electronic textile” (E-textile), reproduced with permission 
from Ref. [70]. Copyright 2017, American Chemical Society. Image for “Electronic tattoo” (E-tattoo), reproduced with permission from Ref. 
[71]. Copyright 2021, American Association for the Advancement of Science. Image for “Photonic skin,” reproduced with permission from Ref. 
[47]. Copyright 2019, Wiley–VCH. Image for “Nanofibril cellulose” (NFC) thin film, reproduced with permission from Ref. [72]. Copyright 
2014, Wiley–VCH. Image for “Electronic fiber” (E-fiber), reproduced with permission from Ref. [73]. Copyright 2013, Wiley–VCH. Image for 
“Laser-induced graphene” (LIG), reproduced with permission from Ref. [52]. Copyright 2018, American Chemical Society. Image for “Drawned 
single-walled carbon nanotubes” (Drawned SWCNTs), reproduced with permission from Ref. [54]. Copyright 2012, Wiley–VCH. Image for 
“MXene electrode array,” reproduced with permission from Ref. [74]. Copyright 2019, American Chemical Society. Image for “Metal–Organic 
Framework” (2D MOF) thin film, reproduced with permission from Ref. [75]. Copyright 2018, American Chemical Society. Image for “Cova-
lent–Organic Framework” (2D COF) thin film, reproduced with permission from Ref. [76]. Copyright 2019, Wiley–VCH. Image for “Conduc-
tive hydrogel,” Reproduced with permission from Ref. [77]. Copyright 2023, Wiley–VCH. Image for plastic substrate, reproduced with per-
mission from Ref. [78]. Copyright 2015, American Chemical Society. Image for “Paper-based electronic circuits,” reproduced with permission 
from Ref. [79]. Copyright 2009, Wiley–VCH. Images for cloth substrate, reproduced with permission from Ref. [80]. Copyright 2022, Springer 
Nature. Images for plant leaf substrate, reproduced with permission from Ref. [21]. Copyright 2023, Springer Nature. Images for life form (e.g., 
fingernail, insect) substrate, reproduced with permission from Ref. [81]. Copyright 2014, American Chemical Society. Image for “Photolithog-
raphy fabrication technology,” reproduced with permission from Ref. [27]. Copyright 2017, Wiley–VCH. Image for “Screen printing fabrication 
technology,” reproduced with permission from Ref. [32]. Copyright 2021, Shanghai Jiao Tong Univ Press. Image for “Gravure printing fabrica-
tion technology,” reproduced with permission from Ref. [36]. Copyright 2020, Wiley–VCH. Image for “Inkjet printing technology,” reproduced 
with permission from Ref. [35]. Copyright 2020, American Chemical Society. Image for “3D printing technology,” reproduced with permission 
from Ref. [82]. Copyright 2021, Wiley–VCH. Image for “Flexography fabrication technology,” reproduced with permission from Ref. [83]. 
Copyright 2023, Wiley–VCH
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(e.g., capacitance (ΔC), resistance (ΔR), inductance (ΔL)), 
and the final sensing signal is typically in the form of current 
(ΔI) and voltage (ΔU) variations [85, 89, 92, 93, 108]. The 
characteristics of different types of transducers in electronic 
gas sensors are listed in Table 1. The key sensing parameters 
and definitions of gas sensors are listed in Table S1.

In recent decades, the miniaturization and integration 
of conventional silicon-based rigid sensors gave rise to 
smart devices (e.g., smart phone and smart watch) for 
impressive user experience. Thereafter, emerging flexible 
and wearable electronic sensors further enable advances in 
skin patches, electronic tattoos, and smart clothing, where 
traditional rigid electronic sensors restrict their usage. 
Flexible electronic sensors are usually manufactured using 
low-cost materials and large-scale processes like printing 
(Fig. 3). In this context, electronic gas sensors have been 
promoted by synergistic breakthroughs in sensing material 
and the flexible substrate. Substrates are not limited to 
plastic foil [78], paper [79], textile [81], hydrogel [109], 
which can either be bendable, rollable, foldable, stretchable, 
twistable and conformable [4]. Chen et al. defined flexible 
sensors as those can withstand mechanical deformation 
(> 10  m−1 bending curvature or > 1% strain) without device 
failure or significant alteration in sensing performances [4]. 
Hence, the effective electronic gas sensors in both rigid and 
flexible form own at least twofold strength [85, 92]. First, 
the sensing materials should provide a large exposed surface 
and selective binding sites for the covalent or noncovalent 
material–analyte interaction and respond to the interaction 
by changing their electrical properties, such as conductivity, 
work function, and electrical permittivity. Second, the 
transducer (usually refers to standard electronic components 
including chemiresistor, FET, capacitor, inductor, etc.) 
entails a conversion of sensing event into a measurable and 
readable electrical signal (change in resistance, current, 
magnitude, or frequency). Besides, the flexible and wearable 
substrate requires good mechanical flexibility to adapt 
multiple particle application scenes.

2.2  Optoelectronic Gas Sensors

Optoelectronic gas sensors are generally based on various 
optical principles such as absorption, scattering, diffraction, 

reflectance, refraction, luminescence (e.g., photo-, chemi-, 
electrochemi-, and bio-luminescence) (Fig. 4b) [98]. Of 
these, colorimetric and fluorescent sensors are widely 
reported in gas sensing based on the intermolecular 
interactions between the chromophore or fluorophore 
with the target analytes [84]. Optoelectronic gas sensors 
based on chemoresponsive colorants probe the chemical 
sensing signals of analytes, rather than physical properties, 
providing impressive discrimination among very similar 
analytes, which therefore effectively overcome the limitation 
of traditional physisorption or nonspecific chemical 
interactions. Optoelectronic selectivity and distinguishing 
capability are the consequence of intermolecular interactions 
from the very weak van der Waals to the strong covalent or 
ionic bonds (Fig. 4c) [98].

Optoelectronic gas sensors comprise four key elements: a 
light source (e.g., visible or ultraviolet light), a wavelength 
selection device, a substrate, and a detector sensitive to the 
interesting wavelength (Fig. 4b) [98]. Combining array-based 
techniques that use a chemically diverse set of cross-reactive 
sensors with novel digital imaging methods, such optoelec-
tronic gas sensor array (which also called optoelectronic 
noses or tongues) can produce an exquisite visual fingerprint-
ing for target odorants through color difference map patterns, 
and further enhanced olfactory specificity from pattern rec-
ognition of the responses (Fig. 4d). Generally, optoelectronic 
gas sensing materials incorporated in diverse substrates, 
including paper substrate [110], films [111], hydrogels [112], 
silica gel [113], and matrices [114], similar to flexible elec-
tronics, enrich their practical applications.

Color models (or color spaces) provide a mathematical 
structure for representing color change, converting complex 
color change information into measurable and processable 
form [115]. Common color models include CIELAB (Com-
mission Internationale de I’Eclariage), RGB (Red, Green, 
Blue), HSV (Hue, Saturation, Value), CMYK (Cyan, 
Magenta, Yellow, Black), YIQ (Luminance, In-Phase, Quad-
rature-Phase), YUV (Luminance, Chrominance, Chroma) 
and  YCbCr (Luminance, color-difference of blue, color-dif-
ference of red), among which CIELAB and RGB have been 
used extensively in colorimetric gas sensor. The color mod-
els are used for chart the relationship between color changes 
and analyte concentration owing to their own way to extract 
color information.
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Fig. 4  Scheme mechanism of electrochemical and optoelectronic gas sensor. a Schematic illustration of the electrical gas sensors (Type of the 
transducer from top to bottom: capacitor, FET, chemiresistor, inductive gas sensor).  Reproduced with permission from Ref. [39]. Copyright 
2020, American Chemical Society. b Scheme of a general spectroscopic setup. Reproduced with permission from Ref. [84]. Copyright 2018, 
American Chemical Society. c The range of physical or chemical intermolecular interactions to probe VOC signals, from the weakest van der 
Waals to the very strong covalent and ionic bonds. Reproduced with permission from Ref. [98]. Copyright 2013, American Chemical Society. 
d Schematic illustration of the sensor array. Reproduced with permission from Ref. [84]. Copyright 2018, American Chemical Society. The 
pre-oxidation tube. Reproduced with permission from Ref. [118]. Copyright 2017, American Chemical Society. The difference map patterns of 
decylamine, aniline, acetic acid and hexanal are examples of molecular fingerprints. Reproduced with permission from Ref. [119]. Copyright 
2020, American Chemical Society
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The RGB color model is based on the intensity changes 
of red, green and blue colors (each of whose range 0–255). 
RGB color model is widely used in color sensing, with 
certain color channels aligning well with sample absorb-
ance peak to improve measurement accuracy [116]. Vari-
ous methodological methods including the calculation of 
Euclidean distance between colors and the calculation of 
ratios (e.g., B/R, R/B, G/B, R/G) or more complex combi-
nations (e.g., 

√

R
2
+G

2
+B

2

3
 , (B-G)/R, etc.) are used for color 

analysis; and few studies merely use single channel to 
increase resolution [115]. The CIELAB color model is 
based on the change of lightness (L) and A/B (red/green) 
color channels. CIELAB model is more intuitive for color 
perception in human vision and not so susceptible to var-
ying devices and environment (such as lightening con-
ditions), thus, it is widely used in colorimetry sensing. 
CIELAB model uses Cartesian coordinates for a 3D spatial 
representation to improve uniformity in color perception 
and employs Euclidean distance (ΔE) within the color 
space to quantify the sensing response [117]. The HSV 
color model is based on the change of hue, saturation, 
and brightness value. HSV’s maximum value reflects the 
color’s brightness under direct light, and HSV’s consist-
ence across various lighting conditions makes it preferred 
than the RGB model.

3  Smart Gas Sensor Applications

The rapid development of efficient, simple and integrated 
smart electronic and optoelectronic gas sensors has broaden 
their applications in multiple fields such as environmental 

air pollutants monitoring, medical diagnosis, food spoilage 
detection, and public safety warning.

3.1  Environmental Monitoring

Formaldehyde (HCHO) is one of the most concerned 
indoor pollutants. It is considered a carcinogen upon long-
term exposure to an environmental concentration exceed-
ing 0.08 ppm, according to the World Health Organization 
[120]. Portable electronic gas sensors based on metal or 
metal oxide catalysts are usually used for selective detect-
ing formaldehyde, owing to the formaldehyde oxidation 
reaction (FOR) [121, 122]. However, most of formaldehyde 
sensors cannot satisfy the international standard, and their 
long-term working stability can deteriorate via CO poison-
ing, a by-product of FOR. Guo et al. proposed a Cr-doped 
Pd-based electrochemical formaldehyde sensor to address 
these challenges (Fig. 5a) [123]. The sensing catalyst could 
selectively detect formaldehyde down to 72 ppb within 200 
s via a highly efficient electrooxidation.

Volatile aromatic hydrocarbons (VAHs) are highly toxic 
trace air pollutants, including benzene, toluene, ethylben-
zene, xylene, styrene, etc. Metal-oxide semiconductor-based 
chemiresistive sensors with high-operating temperature are 
favored in VAHs detection owing to the ability of adequate 
thermal activation to facilitate the sensing reaction between 
VAHs and surface oxygen species to induce charge transfer 
[124]. However, insufficient sensing selectivity and high-
active interferent gas (such as ethanol and formaldehyde) 
restricted their practical application. Lee et al. recently 
reported a  CeO2/Rh–SnO2 bilayer chemiresistive sensor 
array assisted with pattern recognition for distinguishing 

Table 1  Characteristics of different types of transducers in electronic gas sensors [39]

Transduction type Advantages Disadvantages

Chemiresistor Simple configuration and working principle Susceptible to environmental perturbations, restricted 
by single type of output (e.g., resistance or current), 
high operating temperature, cross-sensitivity, aging and 
drifting

Field-effect transistor Diverse types of output signals (e.g., drain-source current, 
threshold voltage, sub-threshold swing)

Susceptible to environmental perturbations, cross-sensitive 
to gas with high structural and property similarities, 
underperforming recovery and long-term stability

Capacitor Capability of additional measurement than chemiresistor, 
allowing for better selectivity and reliability

Susceptible to environmental cleanliness, edge effect, and 
parasitic capacitance

Inductor Can be magnetically coupled with an external coil for 
wireless detection

Less common due to relatively complex circuit 
configuration
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aromatic and nonaromatic gases (Fig.  5b) [124]. They 
revealed that the high VAHs sensing ability was ascribed to 
the  CeO2 overlayer with moderate catalytic activity, which 
could covert highly reactive interfering gases to less- or non-
reactive forms via catalytic oxidation.

Nitrogen oxide  (NO2) is a common inorganic small 
molecule pollutant that causes acid rain and photochemical 

smog. Previous studies have reported diverse innovative 
electronic sensing materials for detecting trace  NO2, in both 
rigid and flexible forms, such as TMDs [55, 125], MXenes 
[126], phosphorene [60], and MOFs [62]. One of the biggest 
challenges for  NO2 chemiresistive and FET sensor is that the 
recovery difficulties owing to high physisorption energy and 
desorption problem and material deterioration in humidity. 

Fig. 5  Flexible and wearable metal/metal oxide and hydrogel-based electronical gas sensors for environmental pollutants monitoring. a For-
maldehyde monitoring with ultrathin Cr-Pdene layer.  Reproduced with permission from Ref. [123]. Copyright 2022, Wiley–VCH. b Ultrasensi-
tive discriminate VAHs and non-VAHs based on  CeO2/Rh–SnO2 bilayer sensor. Reproduced with permission from Ref. [124]. Copyright 2023, 
Springer Nature. c-e Wireless self-powered  NO2 gas sensor based on hydrogel patch. Reproduced with permission from Ref. [16]. Copyright 
2023, Wiley–VCH
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Another technique challenge for flexible  NO2 sensors is their 
poor ductility under mechanical deformation in conjugation 
with flexible substrate. Wu et al. fabricated a flexible Zinc 
trifluoromethanesulfonate (Zn(OTf)2)/polyacrylamide 
(PAM)-carbon based  NO2 electrochemical sensor to address 
mentioned challenges (Fig. 5c–e) [16]. The hydrogel-based 
sensor not only exhibited ultrahigh sensitivity (1.92%/ppb), 
ultralow limit of detection (LOD) of 0.1 ppb, outstanding 
recovery, but also worked well under different deformations 
and in subzero temperatures and under high humidity. They 
also integrated the hydrogel-based sensor into well-designed 
miniaturized circuit module to form a flexible wireless 
 NO2 monitoring system, which could be worn for  NO2 
pre-warning.

3.2  Medical and Healthcare Applications

Point-of-care testing (POCT) is a on-site rapid sampling and 
instant assay method using portable analytical instruments 
and accompanying reagents that helps to shorten the clinical 
decision-making time [127]. Previous studies have confirmed 
that a variety of breathing [128], urine [129], and blood [130] 
volatiles could be utilized as the biomarker for early illness 
diagnosis (Fig. 6a). Thus, gas sensor-based POCT platform 
has a great potential as a rapid, inexpensive, noninvasive 
and painless method for early disease diagnosis and health-
care assessment [128, 130, 131]. However, weak changes 
in the biological signal generated in the early stage of dis-
eases cannot be easily perceived, and the screening for single 
biomarker is not reliable for disease diagnosis. Thus, multi-
functional sensors are on the demand for multidimensional 
and simultaneous biological signal acquisition. For instance, 
Zhou et al. fabricated a wearable healthcare platform using 
gas and strain sensing in non-overlapping mode for monitor-
ing of abnormal physiological signals of Parkinson patients; 
the biomimetic sensing layer (ZIF-L@Ti3CNTx composite: 
the zeolitic imidazolate framework flower-like particles 
in situ grown on the  Ti3CNTx nanosheet) was inspired by the 
synaptic structure (Fig. 6b) [132]. The bioinspired ZIF-L@
Ti3CNTx-based sensor exhibited high performance in dual-
mode monitoring of expiratory dimethylamine (DMA) gas 
markers and somatic kinematic dysfunctional tremors of Par-
kinson’s sufferers. With integration into a flexible circuit, 
the smart dual-mode sensor provides a prospect for real-time 

telemedicine Parkinson disease diagnosis. Zhang et al. also 
provided a POCT platform based on electronical array and 
machine learning for noninvasive disease diagnosis via uri-
nary volatile, which will be discussed in a later section [129].

Dental caries and periodontitis are usually ascribed to 
food impaction and residues that easily breeding anaerobic 
bacteria to destruct periodontal tissue, accompanied with 
 NH3 and volatile sulfur compounds (VSCs) emission from 
proteins metabolisms of these anaerobic bacteria [133, 
134]. Exhaled volatile biomarkers have been popularized 
in oral disease diagnosis based on electrochemical sensing 
signal along with optical analysis. For example, Li and 
coworkers used a fluorescent material to visually identify 
the precise location of lesion sites by selectively detecting 
the emission concentration of local VSCs (Fig. 6c) [134]. 
Kim and coworkers developed a visual wearable sensor to 
detect the trace breath  H2S of halitosis’ sufferers [135]. Jin 
and coworkers fabricated a local  NH3 sensor array for hali-
tosis diagnosis [136]. Multiple detecting methods provide 
preliminary diagnosis of dental disease.

Another emerging wearable bioelectronic devices is 
tissue-like skin-sensor. Kim et al. recently proposed a 
wearable bioelectronic skin-device formed by an ultrathin 
conductive functionalized hydrogel, which enables the 
rapid diffusion and transport of target bioanalytes (Fig. 6d) 
[137]. The hydrogel not only allowed the penetration of 
oxygen molecules from the blood vessels through skin, 
but also measured the reduction bioelectronic signals of 
diffused oxygen, providing a new way for transcutaneous 
oxygen pressure  (tcPO2) measurement.

3.3  Agricultural Quality Control

Smart agricultural quality assessment sensors have attracted 
great interests as sensing platforms for real-time monitoring 
food freshness and spoilage for in situ storage and ex situ 
supply chains. Food spoilage sensors can report a spoiler 
alarm by detecting meat decomposition biomarkers such as 
total volatile basic nitrogen (TVBN) including volatile bio-
genic amines (VBA) and ammonia, produced by the decar-
boxylation of amino acids under interaction with microbes 
within protein-rich food [138–140]. Common VBAs include 
putrescine, cadaverine and spermidine, n-hexyl amine, ben-
zylamine,  NHEt2 [141–143], etc. Although previous study 
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has reported lots of VBA sensors utilizing colorimetric 
and fluorescent changing method [142–147], their practi-
cal usage was limited in trace concentration detection with 
high-resolution optical camera. To address this challenge, 
Istif et al. invented a miniature (2 × 2  cm2) capacitor sen-
sor based on poly(styrene-co-maleic anhydride) (PSMA) 
polymer sensing material for VBA response (Fig. 7a) [148]. 
Three aspects supported the advances and practicality of this 
type of VBA sensors: first, the low-cost and batch-fabrica-
tion-compatible of facile synthesis of PSMA; second, the 
miniaturization of the capacitor sensor for easy integration; 

and third, the compatibility of capacitive sensor with wire-
less mobile phones that not be impacted by motion artifacts.

Wearable plant sensors are one of ten emerging tech-
nologies in the world for improvement world food security 
[149–151]. Wei et al. provided an unprecedented multifunc-
tional and real-time wearable plant sensor that could simul-
taneously measure plant VOCs, temperature and humidity 
(both leaf surface and the surrounding environment). They 
also first employed machine learning (such as PCA method 
for reduced data dimensions for classification) to process 

Fig. 6  Multi-functional gas sensor of pathological biomarkers for disease diagnoses. a Representative exhaled biomarkers for pathological anal-
ysis.  Reproduced with permission from Ref. [128]. Copyright 2021, Wiley–VCH. b Flexible dual-mode gas and strain sensor for point-of-care 
health-monitoring of Parkinson’s disease. Reproduced with permission from Ref. [132]. Copyright 2023, Wiley–VCH. c Wearable fluorescent 
mouthguard VSCs sensor for accurate localization of hidden dental lesion sites. Reproduced with permission from Ref. [134]. Copyright 2020, 
Wiley–VCH. d Flexible electronic skin oxygen molecules sensors. Reproduced with permission from Ref. [137]. Copyright 2021, American 
Association for the Advancement of Science
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sensing data for quantitative early diagnosis and prediction 
of the best sensor combination (Fig. 7b).

3.4  Public Safety

In recent years, there has been an increasing ecological and 
public health concern associated with domestic gas leakage, 
dangerous chemicals transportation wrecks, industrial 

accidents, natural disaster and national security. Particularly, 
major chemical leakage accidents, such as the derailed 
train carrying vinyl chloride hazardous chemicals in Ohio, 
frequent chemical plant explosions, and volcano eruptions, 
not only cause potential explosions and fire incidents by 
combustible substances, but also long-term health risks by 
leaked chemicals. Besides, chemical warfare agents (CWAs) 
used in military operations can cause huge damages to the 
human body through pathophysiological effects [153]. 

Fig. 7  Smart gas sensors for food freshness and spoilage of protein-rich food. a Schematic illustration of real-time wireless monitoring of the 
biogenic amines released from spoiled meat.  Reproduced with permission from Ref. [148]. Copyright 2023, Springer Nature. b Scheme illustra-
tion of wearable plant sensing platform integrated with VOCs, humidity and temperature sensors. Reproduced with permission from Ref. [152]. 
Copyright 2023, American Association for the Advancement of Science
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Therefore, great commercial demands have emerged for 
rapid analysis of toxic gas leak, flammable and explosive 
gases as well as nerve agents.

3.4.1  Gaseous Explosive Gas Sensors

Hydrogen  (H2) has emerged as one of the most promising 
clean substitutes for fossil fuels. Hydrogen sensors are in 
high demand for safety management during transportation 
and utilization of  H2 owing to its low ignition energy and 
wide explosive limits (4%-75%) [154]. Palladium is usu-
ally considered as the best noble metal (e.g., Pd-Au dual-
metal-modified  In2O3 [154], Pd nanotube arrays [155], Pd 
NPs decorated graphene [156]) for  H2 sensors because it 
converted into PdHx according to the reversible reaction 
of 2Pd + xH2 ↔  2PdHx [157]. To address the long-response 
time problem resulted from the flexible metal oxide semi-
conductor (MOS)-based sensors, Sun et al. recently designed 
an Pd-modified MOF thin film (MOF-Pd) and integrated 
it into a paper-based circuit for a fast  H2 leakage detection 
(Fig. 8a) [158]. The Epi-MOF-Pd sensor is both flexible 
and enduring, demonstrating high sensitivity toward 1%  H2 
with 155% resistance response within 12 s over 10 thousand 
bending cycles.

Nitroaromatic explosives including picric acid (PA) and 
o-Nitrophenol (o-PN) are not only with great damage to peo-
ple lives and property, but their residues contaminate natural 
resources and lead to human health and environmental sus-
tainability. Optoelectronic sensors are popular in detection 
explosives including nitro-organics, nitramines, and perox-
ides, owing to their flexible and versatile chemical selectiv-
ity toward various explosives as a result of multiple analyte 
binding mechanisms [159]. Yang et al. also proposed an 
effective portable ultrasensitive dual-mode fluorescent sen-
sor based on 3,4-bis (4-(1,2,2-triphenylvinyl) phenyl) thio-
phene (TPE-Z) hydrogel and a methyl red design concept for 
on-site detection of PA vapor [160], providing an innovative 
potential for on-site optoelectronic gas sensors.

3.4.2  Nerve‑Agent Vapor Detection

CWAs including were intentionally developed for military 
targets and globally banned through the chemical weapons 
convention. Unfortunately, the low fabrication costs and 

easy manufacture, CWAs have still been used in some 
terrorist-related conflicts and resulted in mass civilian 
casualties. The organophosphorus nerve agents, such as 
diethylchlorophosphate (DCP), Sarin, Tabun and Soman, 
are extremely toxic to the human through the respiratory 
tract and skin [161]. The intake of trace nerve agents can 
result in an accumulation of acetylcholine in the central and 
peripheral nervous system, causing the destruction of the 
nerve impulses conduction and hence death within a few 
minutes. The biggest challenge for detection of nerve agents 
is that they are usually colorless and odorless, and one of the 
most popular effective ways for rapid onsite identification 
is by visual optoelectronic sensors, due to the low cost, 
ease fabrication and intrinsic optical properties. Huh 
et al. lately summarized a series of utilizable compounds 
including polymers, enzymes, organic or inorganic dyes 
and nanoparticles as colorimetric and fluorescent sensing 
materials [162]. Dou et al. recently proposed an innovative 
aggregation-induced emission (AIE) probe regulation 
strategy for an aggregated-to-aggregated colorimetric-
fluorescent dual-mode for DCP vapor detection (Fig. 8b) 
[163]. They constructed a porous polymer-based chip 
loaded with the probe toward DCP vapor, integrating it into 
a watch, and achieved two-week continuous monitoring 
of DCP with an immediate response and low LOD down 
to 1.7 ppb. Atmosphere interferences such as aromatic 
compounds, esters, amines, alcohol, and carboxylic acids 
can passivate the sensors or cause to false-positive responses 
to nerve agents [164]. Shaw et al. [165] recently reported 
a fluorescence-based method for rapid differentiation of 
V-series and G-series nerve agents and successfully avoided 
false positive signal resulting by common acids.

4  Smart Gas Sensors with Artificial 
Intelligence and Wireless 
Telecommunication Technology

From the aforementioned newest state of gas sensors, the 
advanced materials, fabrication and integration techniques 
and data analysis are in high demand for design of selec-
tive gas sensors for practical uses. In fact, most present gas 
sensors, especially electronic gas sensors, simply focus on 
improving the selectivity toward target, with great chal-
lenges of cross-reactive sensitivity to address. Haick et al. 
have summarized the selective identification approaches: 
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Fig. 8  Smart explosive and nerve agent sensors for public safety. a Schematic diagram of a palladium-modified epitaxial metal–organic frame-
work hydrogen sensor.  Reproduced with permission from Ref. [158]. Copyright 2024, American Chemical Society. b Schematic diagram and 
logical discriminant diagram of a portable sensing platform for dual-mode recognition of the vapor of nerve agent analog DCP vapor. Repro-
duced with permission from Ref. [163]. Copyright 2024, American Chemical Society
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selective sensors and cross-reactive (or semi-sensitive) sen-
sors combined with pattern recognition (Fig. 9) [166].

4.1  Selective Sensor

Selective sensing mode focused on the high identification 
of specific target analyte in the presence of interference 
species, which usually requires the design of highly 
selective receptor materials to probe signals. Selective 
sensing generally defined as detecting specific gas in the 
presence of interfering gaseous species, ascribed to a more 
specifical analyte–sensor interaction. Till now, most reported 
selective sensors have focused on quite reactive small 
inorganic molecules such as  NO2 [62],  H2 [167],  H2S [168], 
 NH3 [169] and some VOCs (e.g., formaldehyde [170, 171], 
acetone [172]). However, selective sensing is challenging 
for less reactive target analyte and even more challenging in 
complex mixtures, viz. effective discrimination among gases 
with chemical, structural, and electrical similarities [107].

4.2  Sensor Array with Artificial Intelligence 
Algorithms

Cross-reactive detection usually originates higher-reactive 
interferences that reduces the signals between target and 

sensing material (Fig. 10). It is preferable and used in a 
changing and unknown complex mixture analysis since most 
analyte–sensor interactions are based on less specific physi-
cal absorption [107]. The prevalent strategy for precise gas 
pattern recognition is by well-designed sensor array with 
assisted advanced artificial intelligence algorithms. The opti-
mum sensor array should comprise of diverse high-specific-
ity sensors and sensors that have individual responses (not 
strictly selective) to nearly all species in the targeted mixture 
[107]. All the responses are collected to produce analyte-
specific response fingerprints and are analyzed by machine 
learning algorithms [173].

Additionally, the changing environment (e.g., relative 
humidity, operating temperature, pressure) poses a threat 
to aging effect of sensing material, followed by response 
degradation (known as the drift error), which impacts the 
long-term stability. ML indeed paves an effective strategy 
for selective distinguishment of desirable gases by analysis 
of interfering effects and background noise in data analysis, 
and improving the long-term drift compensation of the sen-
sor array via a transfer learning approach [174].

The core problems of machine learning can be divided into 
two broad categories, classification and regression. Before 
training, features engineering is the most prerequisites for 
model training and prediction accuracy. Feature engineering 
is the most important prerequisites for model training and 

Fig. 9  Scheme illustration of two target sensing modes (take the disease detection as examples): a selective nanoscale sensing mode; and b 
cross-reactive sensing mode.  Reproduced with permission from Ref. [166]. Copyright 2015, Wiley–VCH
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prediction accuracy. For electronic sensors, normalized 
response signals, concentration, response/recovery time, 
area under the sensing curves, carrier mobility, threshold 
voltage, gate voltage, exponential fitting constants, and 
relative humidity are popularly extracted to be the classic 
features of a specific target species. For optoelectronic 
sensor, the R, G, B values as well as the coordinates 
within the pixel dots, which denoted as (R, G, B, x, y), and 
corresponding relative variations of the fluorescent intensity, 
chain length of targets are usually extracted as the features of 
targets. Model training requires a large dataset, sometimes 
principal component analysis (PCA) for feature selection, 
and accurate prediction of target type and concentration by 
choosing proper classification and regression algorithms.

Classifiers are used to predict gas types. For example, 
unsupervised learning algorithms (e.g., principal component 
analysis [175], hierarchical clustering analysis [176], and 
K-means clustering [177]) are favorable in pre-classification 
of unknown species without labels, and supervised learning 
algorithms (e.g., decision tree [178], random forests [179], 
support vector machine [179], K-nearest neighbors [180], 
and linear discriminant analysis [181]) can be used in 
accurate recognition of target species within the mixture, 
especially discrimination of VOCs with similar chemical 
structures. PCA is the most used approach to reduce 
dimensions and forms unlabeled clustering of targets, while 
linear discriminant analysis (LDA) is rarely used but can 
provide labeled classification of the targets [182].

Regressors are used to predict the gas concentration. 
For example, backpropagation neural network and extreme 
learning machine exhibit good performance in gas 
concentration estimation [183]. Linear regression is often 
used to solve problems when the dependent variable is a 
linear combination of the independent variables. While 
facing some more complex relationship, neural networks 
(e.g., convolutional neural network [183], multilayer 
perception [179], recurrent neural network [184], radial basis 
functional neural network [185], and spiking neural network 
[186]) have been developed either through supervised 
learning or unsupervised learning. For example, artificial 
neural network (ANN) model is useful for estimation 
of the concentration of VOC mixtures in the same head 
group (e.g., alkane chain length and molecular chain with 
hydroxyl/carboxyl/phenyl group) [187]. It also provides a 
major advantage in computational prediction speed in 
signal recovery and can be readily integrated into mobile 
terminals, paving the way for cost-effective and powerful 
sensing systems [188].

Deployment of machine learning (ML) algorithms ena-
bles the high prediction accuracy of unknown species rec-
ognition (Table 2). Moving on to the unfinished example in 
Sect. 3.2 related to urinary volatiles based POCT platform, 
Zhang et al. constructed a portable POCT platform inte-
grated MXene frameworks-based cross-reactive sensor array 
(Fig. 11) [129]. They prepared MXene frameworks (MF) 
sensing layers via metal ion-doped, sequence-regulated and 

Fig. 10  Overall artificial intelligent process from raw signals, calibration & drift compensation, feature extraction, dimension reduction to pat-
tern recognition. R.H. for relative humidity and Temp. for temperature
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optimized ligand-engineered modifications, and produced 
differentiated responses patterns of 13 urinary volatiles via 
the MF sensor array. And they considered that the SVM 
algorithm owns the best diagnostic performance in discrimi-
nating the health and patient samples and a good classifica-
tion of different disease (e.g., diabetic comorbid depression, 
diabetes and liver impairment), among the other three ML 
algorithms. Their POCT platform achieves noninvasive 
diagnosis of several disease with a high accuracy of 91.7%.

The current trend for precise multi-gas identification 
and analyte distinguishment is using arrays of broadly 
cross-responsive sensors in conjugation with machine 
learning algorithms. Fan et al. recently reported a biomi-
metic olfactory chips (BOCs) system based on a high-den-
sity monolithic 3D PdO/SnO2 sensor array (100–10,000 
sensors per chip), which mimicked the diversity of bio-
logical olfactory receptors (namely, the pixel diversity) 
[212]. It was supported by a peripheral signal read-out 
circuit and the resistance of each pixel could be read out 
accurately. Each pixel responded differently upon expo-
sure to various odors; thus, the pixel diversity generated 
a series of signature patterns for various odor molecules. 
First, they examined that the BOC system could recog-
nize 8 odors with different concentrations under a set of 
humidity background, and the prediction accuracy was up 
to 99.04% by using a CNN model for classification (pre-
dicting gas type) and regression (predicting gas concen-
tration). Then, they collected 100 gas response patterns of 
each odor species of 24 odors (Fig. 12a, b) and recognize 
each odor in the gas mixtures with a t-distributed stochas-
tic neighbor embedding and SVM algorithm (Fig. 12c). 
The excellent classification capability of the BOC system 
helps to effectively identifying orange and red wine from 
the blind boxes (Fig. 12d–g), demonstrating its immense 
potential of practical applications.

One of the most prominent challenges for atmosphere gas 
detection is the humidity interference. One big advantage 
of optoelectronic sensor arrays is that they can be fabri-
cated insensitive to humidity. Park et al. recently fabricated 
a novel colorimetric sensor array based on a series of 2D 
MOF films (DGIST-15) [211]. The monolayer film consisted 
of two moieties (dicopper paddlewheel clusters and dimeth-
ylamine azobenzene), showing a broad spectrum of colors 
from green to red that was sensitive to surrounding analyte 
species. The DGIST-15-based colorimetric sensor array 
was constructed by a series of DGIST-15 films pretreated 

by different solvents that responded to analytes with vari-
ous color changes (Fig. 13a, b). The results showed that this 
sensor array exhibited diverse response patterns to 15 VOCs 
(including similar analytes such as Hex and Cyhex, IPA, 
EtOH, and MeOH, DMF and DMA). The array also exhib-
ited the potential for identification of mixtures (Fig. 13c, 
d). Interestingly, they demonstrated that the DGIST-15 film 
exhibited real-time reversible color transitions in the vary-
ing RH of 10%–60%, thus required no extra heat treatment 
to displace the adsorbed water and facilitated continuous 
environmental monitoring.

4.3  Smart Gas Sensors in “Internet of Things” 
Paradigm

IoT consists of smart devices that connect with each other by 
wireless communication, many different low power wireless 
communication technologies and protocols such as ZigBee, 
Bluetooth Low Energy (BLE), LoRa, SigFox, Z-Wave, 
WiFi, and Near Field Communication (NFC) can be used 
to connect the smart gas sensors for further data processing 
and future IoT applications. IoT-based early warning system 
for remote monitoring atmospheric air quality and epidemic 
events.

Wireless sensing networks can improve the spatial and 
temporal resolution of the obtained sensing signals and sup-
port real-time detection in some inaccessible situations [85, 
213]. For example, Fan et al. proposed a novel self-powered 
integrated nanostructured-gas-sensor (SINGOR) based on 
3D Pd/SnO2 thin film and a wireless SINGOR network for 
building a smart home (Fig. 14a–c) [9]. The 3D Pd/SnO2 
thin film-based sensor array with PCA and SVM algorithms 
was used for providing the accurate identification of  H2, for-
maldehyde, toluene, and acetone in a wide range of relative 
humidity (0–85%) through cross-responses. Then, a series 
of SINGOR were deployed in the several sites of a house 
and generated a wireless sensor network for uploading their 
continuous monitoring data, and achieved accurate gas leak-
age localization. Jin et al. also designed a novel photolumi-
nescence-enhanced light fidelity (Li-Fi) telecommunication 
technique for their  NO2 sensors to achieve remotely tracking 
air pollutants change with high sensing performance and 
low-power consumption [18].

Wearable bioelectronic gas sensors in combination with 
IoT technology also present a future prospect for preventing 
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Table 2  Applications of gas sensor/sensor array using various machine learning algorithms

ANN Artificial neural network; AR Allergic rhinitis; BPNN Back propagation neural network; CDA Canonical discriminant analysis; CKD 
Chronic kidney disease; CNN Convolutional neural networks; DFA Discriminant factor analysis; DM Diabetes mellitus; DNN Deep neural 
networks; DT Decision trees; GAT  Global affine transformation; GPD Gaussian plume dispersion; HCA Hierarchical cluster analysis; KNN 
k-nearest neighbor; KSS Kennard–Stone sequential; LDA Linear discriminant analysis; LGBM Light gradient boosting machine; LR Logistic 
regression; MLR Mixed logistic regression; MLP Multilayer perceptron; NB Naïve Bayes; NN Neural network; PCA Principal component 
analysis; PLS Partial least squares regression; QDA Quadratic discriminant algorithm; RF Random forest; RWLS Robust weighted least square; 
SCAD stable coronary artery disease; SHBP single-hidden-layer back propagation artificial neural network; SNN Spiking neural network; SVM 
Support vector machine; XGBoost: Extreme gradient boosting

Application Gas type Sensor number ML method (processing task) Refs

Method Processing

Environmental monitoring Indoor VOCs 5 PCA/ANN/CNN/DNN Clustering, classification, 
prediction

[175]

Indoor VOCs 1 RF/SVM/NB/MLP Classification [179]
n-butanol 12 KNN/SVM Classification [180]
VOCs 1 PCA/KNN/SVM/RF/LDA Dimension reduction, 

classification
[181]

Indoor air 1 GAT/KSS/RWLS/BPNN/MLP Calibration, classification, 
prediction

[189]

7 harmful gases 1 PCA/HCA/SVM Dimension reduction, clustering, 
regression, prediction

[176]

Contaminated air 8 PCA/LDA/RF/KNN Dimension reduction, 
classification,

[190]

VOCs 1 ANN Classification, regression [187]
VOCs 1 KNN/SVM/SHBP Classification [191]
VOCs 1 PCA Dimension reduction [192]
Ethanol, acetone 8 PCA/LDA Dimension reduction, 

classification, regression
[193]

VOCs 6 SVM/KNN/MLP/RF/XGBoost/
LGBM

Classification [194]

Toxic gases 10 LDA/SVM/MLP/DNN Classification [20]
CO,  NH3,  NO2,  CH4, and 

acetone
8 CNN Classification, prediction [195]

Gaseous pollutants 15 HCA/PCA/SVM Clustering, dimension 
reduction, classification, 
predication

[196]

VOCs 2 PCA/KNN/pN-BPNN/SVM Dimension reduction, feature 
extraction, classification, 
prediction

[197]

Disease diagnosis & health 
treatment

Lung cancer biomarkers 9 PCA Dimension reduction, clustering [198]
Gastric cancer biomarkers DFA Classification [199]
Stable coronary artery disease 

biomarkers
19 SVM/KNN/ANN Classification [200]

Ethanol 32 Self-developed algorithm/GPD Classification, regression [201]
Breath biomarker 4 PCA Classification [202]
Breath biomarkers 6 HCA/PCA/SVM/PLS Clustering, classification, 

regression, prediction
[203]

Allergic rhinitis biomarkers 32 PCA/CDA Dimension reduction, 
clustering, classification

[204]

Food processing Aflatoxin contamination (in 
maize)

12 SVM/KNN Classification [205]

H2S (from eggs) 1 ANN Classification [206]
Food sample odors 16 PCA/KNN/RF Dimension reduction, 

classification
[207]

Amine gases 2 PCA/HCA/CNN Clustering, classification [208]
Public safety Chemical warfare agents 24 PCA/KNN/SVM/RF/LDA Dimension reduction, 

classification,
[209]

NH3,  NO2 4 BP-NN/PLS/MLR Classification, regression [210]
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outbreaks of respiratory infectious diseases. For instance, 
Wang et al. developed a wearable bioelectronic mask for 
wireless monitoring viral proteins from airborne media 
(Fig. 14d) [214]. With the assist of IoT technology, the smart 
masks were expected to warn and prevent epidemic events. 
Besides, AI-enabled database analytics at the cloud server 
realize new AIoT technology for low-cost collection and 
transformation of sensing information from the smart gas 
sensors to the cloud wirelessly. With visual data from the 
sensing device assisted by algorithms and statistical models 
tool, flexible  H2 sensor still works well in extreme deformed 
condition [215].

5  Summary and Prospects

In the past decades, smart gas sensor technology has been 
motivated by integration, IoT, and advanced algorithms 
and shifts from current rigid portable device to flexible 
and wearable electronics. The fundamental working 
principles of electrical and optoelectronic gas sensors, the 
full operation procedures of smart wearable gas sensors, 
the sensor architectures, and recent advances of smart gas 
sensors in a diverse range of applications are introduced 
in this review. With wireless telecommunication technique 

Fig. 11  A portable POCT platform for noninvasive disease diagnosis via urine VOCs with ML. a–c Schematic illustration of urine sample col-
lection and the testing process of MXene-based POCT platform. d Heatmap of electrical signals of the sensor array for the training cohort. e 
SVM algorithm helps to classify the health and the patients. f-i Effect verification of the prediction results from the POCT platform to identify 
the health and the patients with different diseases.  Reproduced with permission from Ref. [129]. Copyright 2022, American Chemical Society
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and machine learning-enabled technology to power IoT, 
gases can be well identified for diverse applications with 
high sensing performances. This section discusses the 
challenges and future prospects of smart gas sensors.

5.1  Sensing Accuracy and Detection Discrimination

High level of accuracy and precision in electronic and 
optoelectronic measurement is the prerequisite for sensing 

Fig. 12  A Biomimetic olfactory system integrated into a quadrupedal mobile robot. The system uses a monolithic 3D PdO/SnO2 sensor-array 
chip, and per chip is cooperated with 10 thousand individually addressable sensors. a–c Cross-reactive sensitivity and artificial intelligence algo-
rithms of the chips for distinguishability for 24 odors in mixed components. d–g The olfactory chips combined with vision sensors on a robot 
dog.  Reproduced with permission from Ref. [212]. Copyright 2024, Springer Nature
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reliability in practical monitoring. Sensor drift is the key fac-
tor that induces inaccurate electronic measurement, which is 
the result of the aging of the sensor component under long-
term changing environment conditions (e.g., temperature 
and humidity). Inaccurate colorimetric reading also impacts 

the interpretation of sensing results. To address these chal-
lenges, exploring and utilizing powerful calibration and 
analysis techniques, such as machine leaning and deep 
learning, is crucial for measurement error reduction and 
sensing dataset reproducibility. Although current smart gas 

Fig. 13  Colorimetric sensor array based on monolayer MOF films for VOC identification. a The color pattern before and after VOC analytes 
exposure. b Classification of similar analytes by HCA dendrogram. c–d Color variations of EtOH and MeOH in mixtures.  Reproduced with per-
mission from Ref. [211]. Copyright 2024, Springer Nature
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sensors and sensor arrays show practical potential in multi-
components identification by pattern recognition methods, 
the complexity of air mixtures remains great challenge for 
accurate sesning. Deep-learning with big sensing data may 

provide an effective solution to address the sensing accuracy 
issue in a complex and diverse environment. 

Fig. 14  a–c Smart gas sensors in future smart home.  Reproduced with permission from Ref. [9]. Copyright 2021, American Chemical Society. 
d Real-time monitoring platform of different respiratory infectious diseases for early warning of epidemic events. Reproduced with permission 
from Ref. [214]. Copyright 2022, Elsevier
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5.2  Data Integrity and Reproducibility

Conventional opinions of the reliability and credibility 
of gas sensors for practical usages are based on the 
data integrity and reproducibility; however, recent 
opinions proposed that adequate data processed with 
deep-learning have a great error rate, even with a better 
prediction of classification, which remains a question for 
exploration. Yet, with a small dataset, accurate, reliable 
and reproducible data across instruments and operators 
are still significant for the credibility of gas sensors in 
practical application.

5.3  Low-Frequency Noise

One crucial parameter to impact the LOD of electronic 
gas sensors is the low-frequency noise (e.g., 1/f noise 
and random telegraph noise) during sensing transmission 
to the computing unit, which has been overlooked 
in most studies. High SNR is a necessary parameter 
in the integrated system with massive integration of 
sensor array; otherwise, a higher low-frequency noise 
could severely degrade the sensitivity. However, it still 
remains a challenge to address this issue due to the lack 
of systematical investigation on the origin and generation 
mechanism of the sensor noise.

5.4  Inherent Consistence

Sensor performances can endure inherent inconsistence 
across device or environment variations, when scaled 
up for larger fabrication. For example, the physisorption 
property of some 2D material (e.g., black phosphorus 
has a wide thickness-tunable band gap) can be highly 
influenced by material configuration, which can induce 
device-to-device variations in the chemiresistors and FETs. 
Some promising colorimetric sensing materials such as 
anthocyanins vary from different biological sources and 
environment conditions. Though the signal normalization 
processing provides an effective way to suppress the device 
inconsistence, the essential innovate solutions are required to 
tackle these challenges, such as improving material stability 
and refining fabrication techniques.

5.5  Material Science and Digital Integration

The trend of smart electronic and optoelectronic gas sensors 
is poised at the intersection of advanced material science and 
digital technology. The innovative sensing materials lay the 
foundation of sensitivity and selectivity. Spontaneously, the 
integration of IoT and AI-driven data processing technology 
revolutionize the collection, analysis, and utilization of 
sensing dataset. For electronic gas sensors, advanced neural 
network algorithms (e.g., KNN, CNN) and time–frequency 
transform help calibrate and make drift compensation to 
improve long-term sensing performances. For optoelectronic 
gas sensors, advanced image processing algorithms (e.g., 
thresholding and edge detection) are helpful for accurate 
colorimetry data extraction. Precise collection and analysis 
of the color change through rationally choose color models 
assist to accurately calculate analyte concentration and 
improve sensing reliability. AI technologies also improve 
data interpretation. For instance, SVM and MLP assist gas 
monitoring and early warning for environmental issues. 
Deep learning algorithms, especially neural networks, 
coordinated with optoelectronic sensors, enable food safety 
insurance by identifying complex patterns.

This review discusses the current development and future 
prospects of smart gas sensors. The latest interdisciplinary 
concept of smart gas sensors gathers the advancements 
of  material science, embedded computing technology, 
wireless sensing network and IoT, which underscores the 
versatility and transformative potential.
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