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HIGHLIGHTS

• Biological fundamentals and recent progress of artificial sensory neurons are systematically reviewed.

• Basic device, performance metrics, and potential applications of artificial sensory neurons are summarized.

• Challenges for the future development of artificial sensory neurons are discussed.

ABSTRACT Spike-based neural networks, which use spikes or action potentials 
to represent information, have gained a lot of attention because of their high energy 
efficiency and low power consumption. To fully leverage its advantages, convert-
ing the external analog signals to spikes is an essential prerequisite. Conventional 
approaches including analog-to-digital converters or ring oscillators, and sensors 
suffer from high power and area costs. Recent efforts are devoted to constructing 
artificial sensory neurons based on emerging devices inspired by the biological 
sensory system. They can simultaneously perform sensing and spike conversion, 
overcoming the deficiencies of traditional sensory systems. This review summarizes 
and benchmarks the recent progress of artificial sensory neurons. It starts with the 
presentation of various mechanisms of biological signal transduction, followed by 
the systematic introduction of the emerging devices employed for artificial sensory 
neurons. Furthermore, the implementations with different perceptual capabilities 
are briefly outlined and the key metrics and potential applications are also provided. 
Finally, we highlight the challenges and perspectives for the future development of artificial sensory neurons.
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1 Introduction

Artificial intelligence (AI) has significantly propelled the 
advancement of human society, including fields such as 
healthcare, transportation, manufacturing, and entertainment 
[1–5]. The recent release of ChatGPT shows remarkable per-
formance in interactive dialogue generation, confirming the 
fact that the era of AI is approaching. The realization of 
AI relies heavily on computing hardware, which is widely 
utilized with conventional von Neumann architecture [6, 7]. 
However, there is a well-known bottleneck in von Neumann 
architecture due to the separation of computing and mem-
ory units [8, 9]. Frequent data transmission between these 
units is required, leading to decreased computing speed and 
increased energy consumption. For applications such as edge 
computing and the Internet of Things (IoT), where energy 
efficiency is paramount, there is a pressing demand for new 
computing architectures [10–12].

Neuromorphic computing, inspired by the structure and 
function of biological neural networks (BNNs), utilizes 
artificial neurons and synapses to process information 
[13–17]. It intends to surmount the von Neumann bottle-
neck, facilitating efficient and parallel data processing. Such 
architecture is particularly well-suited for tasks involving 
pattern recognition, sensory processing, and real-time data 
analysis. Spiking neural networks (SNNs), regarded as the 
third generation of artificial neural networks (ANNs), have 
garnered significant attention due to their high energy effi-
ciency and spatiotemporal processing capabilities [18, 19]. 
In contrast to traditional ANNs, which employ continuous 
values to represent neuron activations, SNNs use discrete 
spikes or pulses to convey information, analogous to the 
BNNs. Specifically, in an SNN, neurons integrate incoming 
signals over time and when the integrated signals reach a 
certain threshold, the neuron generates a spike and trans-
mits it to other neurons. Nowadays, various strategies have 
been proposed for the implementation of artificial neurons 
in SNNs [20]. Artificial neurons based on complementary 
metal–oxide–semiconductor (CMOS) technology have 
been applied in the TrueNorth chip (IBM) and the Loihi 
chip (Intel) owing to their excellent technology maturity [21, 
22]. However, drawbacks such as poor scalability, limited 
neural dynamics, and high power consumption are inevita-
ble. To address these issues, emerging memory devices are 
being extensively investigated for neuronal implementation, 

including memristors, insulator–metal transition (IMT) 
devices, phase change memories (PCM), ferroelectric field-
effect transistors (FeFET), magnetic skyrmionics devices, 
and ovonic threshold switching (OTS) devices and so on 
[23–26]. Moreover, SNN hardware by co-integrating novel 
neuronal and synaptic devices has also been successfully 
demonstrated [27, 28].

Spike information in discrete representation is integral 
to the training and operation of SNNs. However, sensory 
data collected from the environment by various sensors, are 
typically analog in nature and thus cannot be directly fed 
into the SNN for processing. Consequently, there is a critical 
need for specialized devices capable of converting analog 
signals into spikes. One conventional method to address this 
challenge is the utilization of analog-to-digital converters 
(ADCs). ADCs operate by sampling the analog signal at 
regular intervals and subsequently quantizing each sample 
to produce a digital value. The attributes of noise immunity, 
ease of integration, and flexibility have contributed to their 
widespread adoption in modern electronic systems [29]. In 
addition to ADCs, ring oscillators have also been employed 
to translate analog signals into spike trains. A ring oscillator 
functions by employing a series of inverting amplifier stages 
connected in a loop, thereby creating a feedback system that 
sustains oscillation. As the signal propagates through each 
stage, it experiences a phase shift and gain, which are care-
fully designed to maintain a constant waveform. The number 
of stages and their arrangement determine the frequency and 
complexity of the output signal. The oscillator’s capacity 
to produce a stable, repetitive waveform renders it useful 
in diverse applications, including timing circuits and sig-
nal generation [30–33]. Nonetheless, the power consump-
tion of both ADCs and ring oscillators remains a significant 
concern, particularly in scenarios requiring high resolution 
and high speed. Furthermore, their complex circuit designs 
result in physical sizes that may be unfavorable in compact 
designs. Such limitation is exacerbated when multiple con-
verters or oscillators must be integrated or when the design 
area is a primary constraint. Therefore, the development of 
devices that can efficiently and compactly convert signals 
from the analog domain to the spike domain is of paramount 
importance.

The biological sensory system processes external stimuli, 
such as physical touch, light, sound, and chemicals, in par-
allel with ultra-low power consumption. When a stimulus 
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is detected by receptors, an electrical spike is generated 
and transmitted to the central nervous system (CNS) for 
decoding [34]. In recent years, drawing inspiration from 
the operating mechanism of the biological sensory system, 
emerging neuromorphic devices-based artificial sensory 
neurons (ASNs) that can efficiently convert environmental 
information into electrical spikes have been widely explored, 
aiming to overcome the limitations of conventional CMOS-
based counterparts. Emerging neuromorphic devices gen-
erally offer high scalability, low power consumption, and 
high speed, which can reduce the energy and hardware costs 
associated with sensory transduction [35, 36]. The imple-
mentations of ASNs are highly rely on artificial neuronal 
devices and various sensors. Currently, a number of reviews 
provide a comprehensive summary on artificial neuronal 
devices from perspective of materials, neural dynamics, and 
applications [24, 37–41]. For example, Lee et al. [24] high-
lighted the 2D materials-based artificial neuronal and synap-
tic devices for next-generation neuromorphic computing. Liu 
et al. [37] reviewed the emerging volatile switching materi-
als with a focus on the neuronal dynamics for computational 
and sensing applications. Wang et al. [40] surveyed various 
artificial neuronal devices for brain-computer interfaces and 
neuroscience research. However, in these reviews, ASNs 
are ignored or briefly discussed as an aspect of neuronal 
applications. It should be pointed out that ASNs are gener-
ally realized based on artificial neuronal devices, they are 
quite different in terms of biological fundamentals, working 
mechanism, performance metrics, potential applications, and 
future roadmap. ASNs imitate the behavior of biological 
receptors instead of biological neurons and function as sen-
sors to detect the external stimulus. Their spiking dynamics 
is heavily contingent on the matching between the artifi-
cial neuronal devices and sensors. Because of their sensing 
capabilities, the assessment of ASNs is not limited to the 
spiking frequency, uniformity, stability and power consump-
tion that we care about the artificial neuronal devices, but 
also includes properties such as sensitivity, dynamic range, 
linearity, resolution, response time and so on that related to 
sensors. The ASNs are expected to play their roles in neuro-
morphic sensing, while artificial neuronal devices are mostly 
used for neuromorphic computing. In light of this, the devel-
opment roadmap of ASNs should be envisioned by integrat-
ing the evolution of artificial neuronal devices and sensors. 
Consequently, different from previous review reports, we 
present a comprehensive review on recent progress in ASNs 

from biological principle, various implementations, char-
acteristic evaluation to future development, aiming to offer 
guidelines for the advancement of neuromorphic sensing and 
computing. Noting that the term “artificial sensory neuron” 
is not determinately defined and used to represent devices 
such as sensors with neuronal devices, sensors with artificial 
synapses, or sensors that incorporate both artificial neuronal 
and synaptic devices [42–46]. To clarify, here, we use ASNs 
to denote devices or systems capable of sensing external 
stimuli and converting them into spikes according to the 
biological description of sensory neurons [47–50].

In this review, we survey the recent progress of ASNs 
for neuromorphic sensing and encoding (Fig. 1). We firstly 
introduce the working mechanism of different biological sen-
sory receptors which may offer some insights for the devel-
opment of ASNs. Then we summarize the devices normally 
used for ASNs, for example, memristor, 2D memtransistor, 
and field effect transistor. In addition, various categories 
of ASNs are presented including tactile, thermal, acoustic, 
olfactory, visual, gustatory, ionic, and multimodal sensation. 
Furthermore, the performance metrics such as energy con-
sumption, linearity, sensitivity, and the potential applications 
of ASNs are provided. Finally, we discuss the challenges and 
perspectives of ASNs for practical application.

Fig. 1  An overview of ASNs from biological fundamentals, devices 
to sensation implementation and applications
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2  Mechanism of Biological Signal 
Transduction

The encoding of external stimuli in humans is achieved via 
biological sensory receptors. They are specialized cells or 
structures within the sensory organ, which can detect spe-
cific types of incentives and convert them into electrical 
spike signals that can be interpreted by the CNS [51]. Gen-
eral types of sensory receptors, according to their function-
ality, encompass visual receptors, tactile receptors, thermal 
receptors, gustatory receptors, acoustic receptors, olfactory 
receptors, etc. These receptors help to perceive and adapt to 
changes in the environment with appropriate physiological 
responses. Deep understanding of working mechanism of 
biological receptors may offer some insights to the future 
development of ASNs.

2.1  Visual Receptors

The visual sensory system is critically important, as approxi-
mately 80% of external information is received through the 
eyes. It enables the interpretation of environmental cues such 
as brightness, shape, and color, contributing to the decision-
making. Additionally, it assists in navigating, avoiding 
potential dangers, and ensuring safety. The human eye com-
prises several structures, including the cornea, pupil, iris, 
lens, ciliary body, vitreous humor, choroid, sclera, and retina. 
Among them, the retina is responsible for light detection and 
transduction. The retina’s structure includes the pigmented 
epithelium layer, photoreceptor layer, bipolar cell layer, gan-
glion cell layer, nerve fiber layer, and supporting cells and 
blood vessels (Fig. 2a). There are two types of photorecep-
tors: rods and cones, which detect light and perform pho-
totransduction [52, 53]. A move from dark to bright causes 
a hyperpolarization of photoreceptors and a move from 
bright to dark leads to a depolarization of photoreceptors 

Fig. 2  Biological visual system and molecular mechanism of visual encoding. a The structure of retina. Reproduced with permission from Ref. 
[52]. Copyright 2022, Elsevier. b Response of photoreceptor. c Process of phototransduction. Reproduced with permission from Ref. [54]. Copy-
right 2009, Elsevier
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(Fig. 2b). Specifically, light is absorbed by photopigments, 
causing a conformational change that transforms the photo-
pigment from an inactive meta-rhodopsin state to an active 
meta-rhodopsin II state (Fig. 2c) [54]. This transformation 
activates the G-protein transducin, which is bound to the 
cytoplasmic surface of the photoreceptor cell membrane, 
leading to the release of guanosine-5’-diphosphate (GDP) 
and subsequent binding to guanosine-5’-triphosphate (GTP) 
[55]. This causes GTP to dissociate from the photopigment. 
The activated transducin and GTP interact with the phos-
phodiesterase (PDE) enzyme, catalyzing the hydrolysis of 
cyclic guanosine monophosphate (cGMP) into guanosine 
monophosphate (GMP). The cGMP is essential for main-
taining the opening of cGMP-gated ion channels in the cell 
membrane. The decrease in cGMP concentration result-
ing from its breakdown leads to the closure of these ion 
channels. The closure prevents cation ions from entering 
the cell, resulting in hyperpolarization of the photorecep-
tors [56–58]. This hyperpolarization inhibits the release of 
neurotransmitters from photoreceptor cells to bipolar cells, 

thus reducing the electrical potential of bipolar cells. The 
process is reversed in the absence of light.

2.2  Tactile/Thermal Receptors

The tactile sensory system is essential as it enables indi-
viduals to perceive and interpret physical contact, provid-
ing crucial information for object recognition, manipu-
lation, and social interaction. Skin, with its complex and 
layered structure, is the primary organ to detect pressure, 
vibration, and temperature. Understanding how tactile infor-
mation is perceived and encoded is vital. Recent progress 
has revealed that the mechanically sensitive cation chan-
nel PIEZO2 plays a significant role in mechanotransduction 
[59–62]. Within the cutaneous structure, various mechano-
receptors such as Merkel cells, detect mechanical stimuli 
and convert them into electrical spikes that are transmitted 
to the CNS for decoding (Fig. 3a) [63–66]. Mechanotrans-
duction occurs as follows: when external pressure, vibra-
tion, or tension is applied to the skin, it deforms the cell 

Fig. 3  Signaling transduction of tactile/thermal sensation. a Cutaneous structure with mechanoreceptors.  Reproduced with permission from 
Ref. [66]. Copyright 2022, Frontiers. b Tactile transduction in the Merkel cell-neurite complex. Reproduced with permission from Ref. [63]. 
Copyright 2014, Elsevier. c Thermal transduction at molecular level related to TRPM 8 and TRPV 1. Reproduced with permission from Ref. 
[73]. Multidisciplinary Digital Publishing Institute
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membrane of mechanoreceptors, leading to the opening of 
mechanosensitive ion channels, such as PIEZO2 (Fig. 3b) 
[63]. The opening of PIEZO2 channels allows cation ions to 
enter the cells, causing depolarization. This depolarization 
activates voltage-gated calcium channels, which results in 
the release of neurotransmitters and the generation of action 
potentials [67]. However, the intricacies of mechanotrans-
duction are still not fully understood because of the diversity 
of mechanoreceptors.

Thermal sensation is another aspect of tactile perception, 
allowing individuals to sense the temperature. This ability 
is crucial for adapting to environments and avoiding dam-
age from temperature change [68]. Thermoreceptors are 
specialized receptors that detect temperature changes and 
convert them into electrical spikes [69]. It is well-reported 
that thermoreceptors containing the transient receptor 
potential melastatin 8 (TRPM8) ion channel are sensitive 
to cold temperatures (8 ~ 28 °C), while those with the tran-
sient receptor potential vanilloid 1 (TRPV1) channel con-
tribute to the detection of warmth and heat (24 ~ 35 °C), as 
shown in Fig. 3c [70–73]. Both TRPM8 and TRPV1 are 
calcium-permeable channels, and when activated by cold or 
high temperatures, a conformational change in their struc-
ture occurs, opening the channels and allowing calcium 
ions to flow into the cell, which generates action potentials. 
The signals are then transmitted through dorsal root gan-
glia (DRG) to the cortex for processing. It should be noted 
that the molecular mechanisms underlying the activation of 
TRPM8 and TRPV1 by cold and heat are not fully under-
stood, and active research in this area is ongoing.

2.3  Gustatory Receptors

Taste is another sensory modality for humans, playing a 
pivotal role in food evaluation, the formation of dietary 
preferences, and the avoidance of potential toxins. Through 
tasting, we can accomplish recognition and differentiation 
of various flavors, including sweet, salty, sour, bitter, and 
umami sensations, which is instrumental in assessing the 
nutritional value, freshness, and quality of foods and bever-
ages. Additionally, taste is closely linked to the pleasure or 
displeasure experienced during eating. The primary struc-
ture on the tongue for taste detection is the papillae [74, 75]. 
Fungiform papillae are small, club-shaped structures con-
centrated in the middle region of the tongue; foliate papillae 

are leaf-shaped and located on the sides at the back of the 
tongue; circumvallate papillae, surrounded by a circular 
trench, are the largest, pyramid-shaped papillae found at 
the back of the tongue (Fig. 4a). These papillae contain a 
plethora of taste buds, which are receptors capable of sens-
ing five classes of taste perception: bitter, umami, sour, 
salty, and sweet (Fig. 4b) [76, 77]. Taste receptor cells can 
be categorized into three types based on functionality and 
morphology: Type I, II, and III, as depicted in Fig. 4c [78]. 
Type I cells serve as supporting cells to regulate the dynam-
ics of neurotransmitters, particularly adenosine triphosphate 
(ATP) and it is also supposed to be related to the salty taste. 
Type II cells detect and transduce sweet, bitter, and umami 
stimuli, while Type III cells are sensitive for sour incentives. 
Type II cells are G protein–coupled receptors (GPCRs) that 
activate intracellular signaling pathways upon ligand bind-
ing. Most type II cells respond to only one taste quality 
such as bitter or sweet, because they express only one type 
of GPCR [75]. However, multiple taste qualities can be 
detected since TAS1R, TAS2R, and other taste receptors 
are often stimulated simultaneously. Type III cells are rec-
ognized as “presynaptic” cells with afferent nerves because 
they express synaptic proteins rather than GPCRs and are 
also thought to be involved in the detection of sour stimuli 
[79]. Currently, the mechanisms how the sweet, umami, and 
bitter taste are sensed and transduced are well investigated. 
These tastes share the same transduction pathway but the 
sweet taste is related to TAS1R2/3, bitter taste is governed 
by TAS2R, and umami taste is linked to TAS1R1/3 [77]. 
The detailed signaling cascade is as follows: the tastant 
binds to GPCRs, initiating a conformational change that 
causes the dissociation of gustducin  Gα from  Gβ3/Gγ13. 
This activates phospholipase  Cβ2  (PLCβ2), leading to the 
hydrolysis of phosphatidylinositol 4,5-bisphosphate  (PIP2) 
and the production of inositol 1,4,5-triphosphate  (IP3) and 
diacylglycerol (DAG).  IP3 promotes the opening of type 3 
 IP3 receptors  (IP3R3), releasing  Ca2+ from the endoplasmic 
reticulum (ER) and increasing intracellular cytosolic cal-
cium concentration  ([Ca2+]i). The elevated  [Ca2+]i activates 
the TRPM5 channel and the caused depolarization opens 
voltage-gated sodium channels to allow  Na+ flow in and 
generate action potential (Fig. 4d) [79–81]. For salty taste 
transduction, it is believed that epithelial sodium channels 
(ENaCs), composed of α, β, and γ subunits, are the receptors 
sensitive to salt. The entry of  Na+ through ENaCs induces 
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depolarization, generating action potentials. However, the 
specific subunits involved in salty taste transduction and the 
complex mechanism of intracellular molecular interactions 
have yet to be fully elucidated. For sour taste transduction, 
it has been suggested that PKD2L1 and PKD1L3 are the 
receptors [82]. However, subsequent investigations have 
presented contradictory results, indicating that the ablation 
of these receptors does not deprive sensitivity to acids [83, 
84]. Recent studies have revealed that otopetrin1 (OTOP1) 
is the real channel that responds to acids (Fig. 4e) [85–87]. 
The influx of  H+ through the OTOP1 channel triggers 
depolarization and inhibits the opening of potassium  (K+) 
channels  (Kir2.1), further enhancing depolarization. Such 
depolarization generates action potentials by controlling 
the voltage-gated sodium channels.

2.4  Olfactory Receptors

The olfactory system, responsible for the sense of smell, 
is important for both humans and animals. It functions as 
a primary sensory system to detect and distinguish vola-
tile odors in the environment. This system not only enables 

individuals to enjoy scents but also performs essential tasks 
such as identifying food, avoiding threats, and facilitating 
social interactions [88, 89]. For example, the ability to detect 
spoiled food through smell can prevent illness. Moreover, 
the olfactory system is closely linked to memory and emo-
tions, with certain scents capable of evoking memories and 
affecting mood, underscoring its significant impact on cog-
nitive and emotional processes. Figuring out how the nose 
detects odors and transduces signals into action potentials is 
vital for fully understanding the olfactory system. Decades 
of research have established that olfactory sensory neurons 
(OSNs) are the key cells involved in odor detection [90]. 
Each OSN comprises an axon, cell body, dendrites, and a 
dendrite knob armed by numerous cilia with hair-like struc-
ture which houses a number of odorant receptors. Olfactory 
transduction initiates when odorant molecules bind to these 
receptors (Fig. 5) [91–93]. This binding induces a conforma-
tional change and activates the trimeric, olfaction-specific G 
protein  (Golf). The activated Golf stimulates the production 
of cyclic adenosine monophosphate (cAMP), which serves 
as a second messenger, from ATP by the enzyme adenylate 
cyclase III (ACIII). The increased cAMP level leads to 

Fig. 4  The mechanism of taste sensing and encoding. a Papillae distribution in tongue.  Reproduced with permission from Ref. [75]. Copyright 
2006, Springer Nature. b Taste receptor cells mediate taste sensation. Reproduced with permission from Ref. [77]. Copyright 2009, Elsevier. c 
Type I, II, and III receptor cells of taste. Reproduced with permission from Ref. [78]. Copyright 2010, Rockefeller University Press. d Process 
of sweet, umami, bitter and salty transduction. e Process of sour transduction. d–e Reproduced with permission from Ref. [79]. Copyright 2020, 
Springer-Verlag GmbH Germany
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the activation of a cAMP-dependent protein kinase, which 
phosphorylates cyclic nucleotide-gated channels (CNGCs), 
allowing them to open and resulting in the influx of  Na+ and 
 Ca2+ ions into the cell. Changes in intracellular and extracel-
lular ion concentrations induces a depolarization. Moreover, 
the elevated  Ca2+ levels open  Ca2+-activated chloride ion 
channels (CaCCs), further depolarizing the membrane of the 
OSN and generating an action potential. However, the high 
 Ca2+ concentration also contributes to the adaptation and 
recovery of the signal transduction pathway for the reason 
that the  Ca2+ causes the GDP bound to the activated  Golf 
[94]. In addition,  Ca2+ binds to Calmodulin (CaM) activates 
 Ca2+ kinase type II (CaMKII). The  Ca2+-CaM complex 
lowers the interaction of cAMP with CNGC, and CaMKII 
reduces the activity of ACIII through phosphorylation. Phos-
phodiesterase 1C (PDE1C) is also activated, accelerating the 
hydrolysis of cAMP to AMP. These processes, initiated by 
the influx of  Ca2+ ions, ultimately adapt and terminate the 
olfactory transduction pathway.

2.5  Auditory Receptors

The ability to perceive sound is essential for communica-
tion, cognitive function, social interaction, and safety. The 
auditory system is the organ that detect the sound-induced 
vibration, amplify and convert it into electrical spikes. The 
auditory system has a large dynamic range, allowing to 
capture the sound in a large intensity and frequency range. 
Variations caused by sound vibration in air pressure create 

fluid movements in the cochlear duct, causing mechani-
cal vibrations at the organ of Corti’s sensory epithelium 
[95]. The cochlea’s varying physical characteristics along 
its length result in frequency-specific vibrations across dif-
ferent segments of the epithelium. Outer hair cells (OHCs) 
enhance these vibrations, with the mechanical signals are 
then relayed to inner hair cells (IHCs) for transmission to 
afferent neurons [96–98]. The key process of sound percep-
tion is the auditory mechanotransduction, which is highly 
related to the hair bundle (Fig. 6) [98, 99]. Hair bundle is 
mechanically sensitive as it consists of stereocilia which 
arranges in an ascending way. The stereocilia are connected 
by the top-link filament that contains two homodimers. At 
the low site of the top-link filament, there are some transduc-
tion channels that can be opened by the deflection of hair 
bundles toward the longest stereocilia, allowing the  Ca2+ /
K+ flux in and cause depolarization. In addition, the ion flux 
triggers the adaptation, which is supposed to be beneficial 
for the frequency selectivity and signal amplification. Fast 
adaptation may occur through  Ca2+ binding to the channel, 
stabilizing it in a closed state, or by  Ca2+ binding near the 
channel, releasing a mechanical element that reduces ten-
sion and causes channel closure [100, 101]. Slow adapta-
tion involves a motor protein at the upper point of top-link 
filament, which climbs up along F-actin to produce tension 
[102, 103]. Mechanical stimulation allows  Ca2+ to enter ste-
reocilia, which releases the motor from F-actin and closes 
the channel. As calcium levels drop, the motor reestablishes 
tension.

Fig. 5  Transduction cascade of olfactory receptors.  Reproduced with permission from Ref. [93]. Copyright 2012, The Korean Society for Bio-
chemistry and Molecular Biology
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3  Emerging Devices for ASNs

Biological sensory receptors implement the spiking encod-
ing of external perception through intricated molecules/ions 
movement, enabling high energy-efficient signal processing 
of humans [104]. Throughout history, drawing inspiration 
from biology has always been an impetus to the technology 
advancement. These biological sensory receptors offer some 
clues to achieve neuromorphic sensing. Despite it is quite 
difficult to simulate the elaborate transduction path for per-
ception encoding, simulating the functionality of biological 
sensory receptors to translate the analog signal to spikes is 
viable.

ASNs are devices or systems tend to mimic the behav-
ior of biological sensory neuron. As mentioned above, it 
commonly consists of diverse kinds of sensors to detect the 
stimuli and artificial neuronal devices to produce spikes to 
encode sensory data. To overcome the area and energy dis-
advantage of CMOS-based artificial neuronal device, up to 
date, various innovative memory devices for artificial neu-
ronal devices have been developed, including single transis-
tors, 2D memtransistor, memristors, phase change memory, 
magnetic tunneling junctions, and ferroelectric memory 
[105–112]. Below we’ll highlight emerging devices that 
have been employed to implement ASN.

3.1  Memristor

Memrisive devices have been widely used for neuromor-
phic computing [17, 113, 114]. The diffusive memristor or 
redox-based memristor, is an electronic device that exhibits 
a reversible change in resistance under electric field effect 
[115, 116]. The dielectric materials typically used in diffu-
sive memristor include metal oxides, conducting polymers, 
and solid electrolytes, while the electrodes generally are 
active metals [117]. The working mechanism of a diffusive 
memristor involves the migration of charged ions or vacan-
cies within the material when a sufficient electric field is 
established [118, 119]. When a voltage is applied across the 
memristor, the electric field causes ions to move from the 
metal electrode into the oxide, creating a conductive path 
known as a filament. As the ions accumulate, the filament 
grows, and the resistance across the memristor decreases, 
allowing more current to flow. Conversely, when the electric 
field is reversed, the ions begin to diffuse back toward the 
original electrode, shrinking the filament and increasing the 
resistance. This bidirectional adjustment of the filament’s 
size and the corresponding resistance change is the essence 
of the operation of the diffusive memristor. The resistance 
change of the memristor is tunable by controlling the voltage 
magnitude and polarity [120–122]. Based on the working 

Fig. 6  Transduction cascade of auditory receptors.  Reproduced with permission from Ref. [98]. Copyright 2011, Elsevier
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mechanism of the diffusive memristor, the electrodes and 
insulating layer are required to pose some specific character-
istics to contribute to the formation/rupture of filaments. The 
active metals should be easily ionized and diffused into the 
insulating layer. In addition, the metal element will undergo 
redox reactions under the electrical field. For the insulating 
layer, the materials should be chemically stable and have 
some degree of ionic conductivity rather than electrically 
conductive.

The Mott memristor, another type of memristor, also 
exhibits a reversible change in resistance based on the Mott 
transition, a quantum mechanical effect observed in certain 
materials, such as transition metal oxides like vanadium 
dioxide  (VO2) and niobium oxide  (NbOx) [123–126]. These 
materials undergo a phase transition from a semiconducting 
state (HRS) to a metallic state (LRS) when an electric field 
or temperature is applied. In detail, in its initial state, the 
oxide acts as an insulator due to the localization of electrons, 
which are trapped in orbitals around the metal ions. When a 
sufficiently high voltage is applied, the electric field causes 

the electrons to delocalize, transitioning the material into a 
conductive state known as a Mott insulator. This transition 
is accompanied by a significant drop in resistance, allowing 
current to flow through the material. Removing the electric 
field allows the material to return to its insulating state as the 
electrons re-localize, restoring the original high resistance 
[127–129]. There are some key features of Mott memristive 
materials. First, Mott materials must have fast and revers-
ible switching capabilities, enabling the memristor to switch 
between states rapidly. Second, they need to exhibit high 
thermal stability and robustness to fatigue to guarantee that 
there is no obvious performance degradation of switching 
cycling. Both diffusive and Mott memristors can be har-
nessed for ASN by integrating them with external resistor, 
capacitor, and various sensors (Fig. 7a). When the applied 
voltage reaches the threshold voltage, the memristor transits 
to LRS, leading to a rapid discharge of a capacitor, which in 
turn reduces the applied voltage. However, when the voltage 
falls below the holding voltage, the memristor spontaneously 
returns to its HRS, terminating the discharging process and 

Fig. 7  Structure, electrical characteristics and ASN implementation circuit of a memristor, b STLFET, Reproduced with permission from Ref. 
[142].  Copyright 2020, American Chemical Society and c 2D memtransistor
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allowing for recharging [130, 131]. In this process, a peri-
odic increase and decrease in output voltage/current can be 
observed and the oscillatory frequency is strongly dependent 
on the circuit’s charging and discharging speeds.

The performance of ASN based on diffusive and Mott 
memristors differs significantly. Diffusive memristors typi-
cally use a leaky integrate and fire (LIF) strategy for spike 
generation with a relatively long integration time that results 
in a spike frequency ranging from 1 to 1000 Hz [132, 133]. 
In addition, the ultralow current of diffusive memristors 
allows for low power operation, but their large variation need 
to be further improved. Mott memristors, on the other hand, 
show high uniformity after device optimization and have 
been used for hardware verification of SNN. They usually 
employ an oscillation method for spike generation, which 
can produce spike frequencies up to kHz or MHz, making 
them suitable for fast encoding and processing [134–136]. 
However, the output current of Mott-based ASN is typi-
cally in the milliampere range, leading to higher energy 
consumption.

3.2  Single Transistor Latch‑Based Field Effect 
Transistor (STLFET)

Recently, ASNs based on the single transistor latch (STL) 
phenomenon have been reported. Their structures are planar 
or vertical n-p-n devices with a floating p-based region. The 
STL effect, which occurs at high drain biases, is an extreme 
case of floating-body effects observed in silicon-on-insulator 
metal–oxide–semiconductor field-effect transistors (SOI 
MOSFETs) [137, 138]. When the drain bias is high, the pro-
duced impact ionization current close to the drain forward 
biases the body-to-source diode, which raises the body poten-
tial. This enhanced body bias subsequently lowers the thresh-
old voltage of the SOI MOSFET, causing an upsurge in the 
drain-to-source current and generating more impact ionization 
current. This positive-feedback phenomenon, which happens 
when the impact ionization current surpasses the leakage cur-
rent of the body-to-drain diode, triggers a sudden increase in 
the subthreshold current and the body potential. However, 
this positive feedback has its own limitation: as the body 
bias increases, the drain saturation voltage increases accord-
ingly, leading to a reduction in the channel electric field and a 
decrease in the impact ionization current. Furthermore, as the 

drain current intensifies, the effective potential across the chan-
nel reduces because of the resistance drop in the source and 
drain regions. To achieve the STLFET, the materials character-
istics should be carefully considered. High electron mobility of 
semiconducting channel is desirable. Besides, high dielectric 
constant of gate provides precise control over the channel and 
the source and drain materials must form a ohmic contact with 
channel to allow current flow. The STL phenomenon can be 
exploited for spike generation through circuit design (Fig. 7b) 
[139–141]. When a constant input current  (Iin) is applied to the 
collector, positive charges accumulate in the parasitic capaci-
tance because the STLFET is in HRS when a low voltage is 
applied. With the accumulated positive charges, the output 
voltage  (Vout) measured at the collector increases. When  Vout 
exceeds the latch-up voltage  (Vlatch), the accumulated charges 
flow out toward the emitter to decrease  Vout, which is the fir-
ing process as the STLFET changes to LRS. After firing, the 
STLFET automatically returns to the HRS to enable repeti-
tive integrations in the resting state. STL-based ASNs offer 
several advantages: i)their CMOS-compatible manufacturing 
enables excellent integration with other circuit components 
and high uniformity/stability, which is beneficial for the mass 
fabrication of ASN; ii) the driving current is very low (~ nA), 
showing great potential for low-power applications. The gener-
ated spike frequency of STL-based ASNs is less than 1 kHz 
because the charging and discharging time is roughly at mil-
lisecond level.

3.3  2D Memtransistor

A memtransistor, also known as a memory transistor, is 
a cutting-edge device that merges the functionalities of a 
transistor and a memory [143–145]. It features three termi-
nals: two electrodes connected with atomically thin chan-
nel and a third gate that modulates the electrical behavior. 
Memtransistors commonly rely on Schottky barrier tuning 
such as vacancy/ion transport, charge trapping, or ferroelec-
tric domain switching at metal–semiconductor interfaces. 
The working mechanism involves the use of an external gate 
voltage to modulate the carrier density in the 2D material, 
controlling the transistor’s channel conductance. Addition-
ally, the application of a suitable bias across the source 
and drain electrodes induces a non-volatile change in the 
resistance state of the 2D material, akin to a memristor, 
which is achieved through the movement of defects, ions, 
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or by altering the material’s lattice structure. This dynamic 
resistance can be "remembered" even after the voltage is 
removed, providing non-volatile memory storage. The 
transistor-like functionality allows for the modulation of 
current between the source and drain terminals, making the 
device reconfigurable for advanced neuromorphic comput-
ing [146–149]. To fabricate the 2D memtransistors, the 2D 
semiconducting materials should be atomically thin with 
high electron mobility. Additionally, the bandgap of 2D 
materials is preferably tunable to regulate the resistance of 
memtransistors. Similar to the STLFET, the electrodes need 
to make a low-resistance ohmic contact with 2D materi-
als. The current–voltage characteristics of memtransistors 

demonstrate a significant increase in current level with 
increasing gate voltage. When the current surpasses a pre-
defined current threshold, a current spike can be detected. 
Leveraging this characteristic, memtransistors can be identi-
fied as ASNs alone or by connecting it with other sensors 
to implement ASN (Fig. 7c). External stimuli can directly 
alter the current behavior or indirectly influence it by adjust-
ing the gate voltage, thereby controlling the spike dynam-
ics. The spike frequency of memtransistor-based ASN is 
typically around kHz, which is higher than that of diffusive 
memristor and STLFET-based ASN. Two-dimensional (2D) 
semiconductors, such as molybdenum disulfide  (MoS2) and 
indium selenide  (In2Se3), have been extensively explored 
for memtransistor applications [146, 150–154]. Harnessing 
the unique properties of 2D materials such as high surface-
to-volume ratio, the memtransistor shows superior sens-
ing abilities, which are beneficial to enhance the sensitiv-
ity. The performance comparison of diffusive memristor, 
Mott memristor, STLFET, and 2D memtransistor is shown 
in Fig. 8 and detailed characteristics of these devices are 
listed in Table 1.

4  Various Types of ASN

4.1  Artificial Tactile Neuron (ATTN)

Artificial tactile systems are engineered to mimic or aug-
ment the sense of touch in artificial or robotic entities. These 
systems find extensive application across diverse fields, 
including robotics, prosthetics, virtual reality, and medical 

Fig. 8  Performance comparison of diffusive memristor, Mott mem-
ristor, STLFET, and 2D memtransistor in terms of area, CMOS com-
patibility, uniformity, power consumption, and spike frequency

Table 1  Detailed characteristics of diffusive memristor, Mott memristor, STLFET, and 2D memtransistor

Device Diffusive memristor Mott memristor STLFET 2D memtransistor

Working mechanism Redox reaction Phase change Impact ionization current 
modulation

Carrier modulation

Advantages Compact structure, low 
power

Compact structure, high 
uniformity

CMOS compatibility, low 
power consumption, high 
uniformity

High tunability

Limitations Large cycle-to-cycle and 
device-to-device variation

High power consumption, Large area Large area, large variation

Materials characteristics Active electrode such as Ag, 
Cu and chemical stable 
dielectric layer

Mott materials that can 
switch between insulating 
and conducting states due 
to phase transition

Semiconductor channel with 
high carrier mobility and 
gate with high dielectric 
constant

2D semiconductor 
materials (e.g., MoS₂, 
graphene) with atomic 
thinness, high mobility, 
and tunable electronic 
properties

Functionality Volatile memory Volatile memory Volatile memory Non-volatile memory
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devices [155–158]. The stringent criteria for power effi-
ciency and footprint in these applications present challenges 
that traditional sensors often struggle to meet. ATTN, which 
imitate the characteristics of biological tactile systems, rep-
resent a promising solution to address these challenges. 
They are capable of detecting pressure cues and converting 
them instantaneously into spikes for subsequent process-
ing. At present, Mott memristors are the most widely used 
devices to achieve tactile encoding. For example, Zhang and 
colleagues conducted groundbreaking work on ATTN by 
integrating a  NbOx memristor with a piezoelectric device 
(Fig. 9a) [159]. In this configuration, the piezoelectric device 
functions as a self-powered source, converting tactile sig-
nals into electrical voltage. It generates voltage at the onset 
of pressure, reaching a maximum output that corresponds 
to the degree of exerted pressure and subsequently decays 
due to the charge leakage. The frequency of output spikes is 
sensitive to the amplitude of the source voltage. Importantly, 
when the pressure is high, the produced voltage is also high, 

suppressing the ATTN to generate spikes, which is analo-
gous to the biological protective inhibition observed in liv-
ing organisms. This work demonstrates the viability of using 
 NbOx memristors to transform tactile information into spikes 
by establishing a correlation among pressure, input voltage, 
and spiking rate. Despite progress, this work lacks the ability 
of resembling to the behavior of biological mechanorecep-
tors such as low adaptive receptors (SA), which response to 
sustained static pressure. In addition, the spatial integration 
of tactile perception via ATTN, which combines sensory 
data from various tactile receptors to create a comprehensive 
understanding of the spatial characteristics of objects and the 
environment, has not been reported.

With these challenges in mind, Li et al. [160] fuses a 
 NbOx-based Mott memristor with a polypyrrole (PPy)-based 
resistive pressure sensor with micro-pyramidal structures. 
The spike generation frequency shows a linear relationship 
with the applied pressure stimuli. Notably, the ATTN oper-
ates at an exceptionally low range (below 1 kPa), enabling 

Fig. 9  Artificial tactile neurons. a ATTN with Mott memristor.  Reproduced with permission from Ref. [159]. Copyright 2020, Springer Nature. 
b ATTN with diffusive memristor and rank order coding algorism. Reproduced with permission from Ref. [165]. Copyright 2022, Elsevier. c 
ATTN with biologically neuronal adaptation. Reproduced with permission from Ref. [177]. Copyright 2022, John Wiley & Sons
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the detection and conversion of slight pressures. To illustrate 
the concept of spatial tactile integration, two pressure sen-
sors were connected to the memristor. The results indicated 
that the integrated spiking frequency from parallel sensors 
was higher than that from individual sensors, implying a 
significant reduction in response time and an improved speed 
of tactile perception. Integrating the ATTN with other hard-
ware is important for tasks like recognition, Wen et al. [161] 
developed an artificial perceptual learning system capable 
of encoding and decoding Morse code. The system’s core 
components include a ATTN with a perception module, an 
encoding module, and a microcontroller unit (MCU). The 
ATTN converts the pressure into spikes and the MCU counts 
these spikes, decodes them, and displays the Morse code 
translations through an array of LED lights. This method 
has been verified by successfully encoding and interpreting 
all 26 letters of the English alphabet.

Unfortunately, a single device is difficult to meet the 
requirements of practical applications where multiple sen-
sors should be deployed. A sensor array can significantly 
enhance detection capabilities because the combined 
response of multiple sensors provides more comprehensive 
information than a single sensor could [162]. Addition-
ally, using an array can improve overall system reliability 
by reducing the risk of complete failure, and mitigating the 
potential for errors or malfunctions that could be caused by a 
single sensor [163]. Fang et al. [164] reported a 3 × 3 ATTN 
array with  VO2 memristors and resistive sensors. Such array 
can be utilized to realize letter recognition by coupling it 
with a voltage comparator and a field-programmable gate 
array (FPGA). When various stimulus patterns (~ 5 kPa) are 
applied to the 3 × 3 array, the resultant output spikes are 
processed and subsequently visualized on a screen. Moreo-
ver, a larger 64 × 64 ATTN array was proposed by Ye and 
colleagues through a triboelectric nanogenerator (TENG) 
and diffusive memristor (Fig. 9b) [165]. With this array, the 
trajectory recognition/texture extraction were completed. 
The ATTNs detect the signal and generate spikes when pres-
sure is applied, distinguishing the pressured units from those 
unpressurized. Note that the temporal information of spik-
ing reflects the strength of pressure, therefore, the pressing 
intensity of each cell can be extracted by decoding the first 
spiking timing based on rank order coding algorism (rank 
order coding refers to a mechanism by which information is 
encoded in the relative timing or frequency of neuronal spik-
ing rather than the absolute timing or frequency) [166, 167].

For the envisioned applications in robotics, neural pros-
thetics, and skin electronics, it is essential that ASNs are 
capable of being seamlessly integrated onto curved surfaces 
or of being worn on the body [168–170]. Developing flex-
ible ASNs is indispensable since ASN mounted on rigid 
substrates are not well-suited for these applications due 
to their inability to conform to uneven shape. Recently, a 
flexible ATTN was proposed with a  VO2 memristor and a 
resistive sensor [171]. The spiking performance of the flex-
ible ATTN remains stable even after 1000 bending cycles. 
Leveraging this robust stability, a flexible tactile encoding 
system designed for motion direction recognition has been 
demonstrated. In this system, three distinct input voltages 
are applied to three separated ATTNs. By analyzing the fre-
quencies of the output spikes in the temporal domain, the 
direction of movement can be accurately distinguished. This 
demonstrates the system’s capability to interpret complex 
tactile information and could have significant implications 
for applications in wearable technology, human–machine 
interfaces, and smart prosthetics.

The mass production of ATTNs is not feasible without 
relying on sophisticated semiconductor fabrication tech-
niques. While Mott memristors are widely utilized due to 
their high uniformity and stability, the large-scale manu-
facturing presents significant challenges. Consequently, 
there is an immediate need to investigate and develop new 
ATTNs that are compatible with established foundry pro-
cesses. Based on STLFET and a TENG, Han et al. [172] 
reported an ATTN with ~ kHz spike frequency. The key 
fabrication process of STLFET entails arsenic doping for 
the emitter and collector and boron doping for the base 
with all dopants activated by subsequent rapid thermal 
annealing. These steps are compatible with current CMOS 
technology, which means that the STLFET can not only be 
mass-produced but also can be seamlessly integrated with 
peripheral circuits to form complex sensory systems. This 
compatibility simplifies the design and manufacturing pro-
cess, as engineers can utilize familiar tools and techniques 
while exploiting the unique features of the STLFET-based 
ATTNs.

In the field of biology, neuronal adaptation, also known 
as firing rate adaptation, is a fundamental property of neu-
rons that allows them to modify their response to a constant 
or repetitive stimulus [173, 174]. Mechanoreceptors with 
fast adaptation, including Meissner’s corpuscles and Pacin-
ian corpuscles, promptly react to variations in mechanical 



Nano-Micro Lett.           (2025) 17:61  Page 15 of 49    61 

inputs such as touch and vibration, yet they quickly reduce 
their activity when the stimulation keeps constant [175]. 
This enables the nervous system to focus on the perception 
of dynamic alterations rather than the sustained pressure. 
For instance, upon contacting with a surface or gripping 
an item, these receptors are instantly activated to convey 
the initial sensation and the surface’s texture. Nevertheless, 
once the contact remains unaltered, their signaling dimin-
ishes, enabling you to disregard the ongoing tactile sensa-
tion and instead respond only to new events, such as the 
object’s movement or a shift in its position. This fast adapta-
tion is vital for activities that demand intricate motor skills, 
like manipulating objects or discerning minute variations 
on surfaces. While mechanoreceptors with slow adaptation, 
such as Merkel cells and Ruffini endings, persistently firing 
in the presence of ongoing mechanical stimulation, which 
allows the nervous system to monitor continuous pressure 
or deformation over an extended period [176]. In contrast 
to the fast adaptation, these receptors provide continuous 
response about the stimulus’ intensity and duration, render-
ing them indispensable for detecting steady applied forces, 
such as holding an object. For example, when you grasp 
a cup, the slow-adapting receptors consistently detect the 
pressure the cup exerts on your skin, guaranteeing that you 
sustain an appropriate hold. Such sustained response is cru-
cial for tasks that require prolonged attention to pressure 
and force, such as holding or manipulating objects without 
dropping them. These behaviors enable receptors to adjust 
their firing patterns, which helps change the sensitivity of 
neurons, expand the dynamic range, maintain precise motor 
control, filter out background noise, and focus on meaning-
ful or significant stimuli, which is essential for processing 
complex information. Adopting the ionic memristor with Pt/
Co3O4-x /ITO structure, Xie et al. [177] realized an ATTN 
that was capable of detecting slight pressure changes under 
the background of constant strong pressure to emulate the 
tactile adaptation characteristics of human skin (Fig. 9c). 
When a force is constantly exerted, a spiking adaptation 
can be observed with decreased spike frequency. Interest-
ingly, a slight increase in current amplitude terminates 
the adaptation and restores its initial spiking frequency, 
enabling the capture of subtle pressure fluctuations in the 
environment. However, developing ATTNs that can simul-
taneously mimic the slow adaptation and fast adaptation of 
mechanoreceptors is still challenging probably because the 
tunability of firing dynamics of single ATTN is not easy. A 

reconfigurable ATTN is imperative to achieve multimodal 
perception, not only for tactile, but also for visual, olfactory 
and other senses.

4.2  Artificial Thermal Neuron (ATMN)

Upon contact with an object, we perceive not only its pres-
sure but also its temperature, which informs us of its cur-
rent state. Consequently, it can be inferred that ATMNs are 
integral to constructing artificial perception systems. The 
emerging devices employed for ATTNs also can be hired for 
ATMNs, albeit with distinct implementation configurations. 
Because of the inherent thermal effect of these devices, they 
can act as thermal sensors by themselves. Therefore, the 
circuit for completing the ATMNs is simpler compared to 
other classes. Lee et al. [178] have recently developed an 
ATMN with a STLFET whose electrical characteristics, 
specifically its threshold voltage, are strongly influenced by 
temperature (Fig. 10a). As temperature rising, the threshold 
voltage decreases, leading to the spiking frequency increase. 
This is attributed to the higher temperature increasing the 
ionization rate, permitting more holes to accumulate in the 
base region, which lowers the transistor’s threshold voltage. 
Detailed analysis of the spiking frequency across different 
temperatures further supports this mechanism. The thermal 
encoding operation range of ATMN is 30 ~ 110 °C, offering 
a broad dynamic range suitable for various applications in 
IoT. Similarly, a temperature-regulated ATMN using a diffu-
sive memristor is reported by Wu and colleagues [179]. The 
temperature dominates the Ag filament formation by con-
trolling the activation energy for Ag ion transport. Higher 
temperatures enable the formation of a conductive channel 
at a lower electric field, leading to an increased spiking fre-
quency and a reduced delay time. However, challenges such 
as high-power consumption (up to microjoules) remain to 
be resolved. Shi et al. [180] have endeavored to improve 
these by optimizing the device’s structure, extending its 
range from 20 to 80 °C and reducing power consumption 
to be as low as 90 pJ  spike−1 (Fig. 10b). An  AlOx insulat-
ing layer is inserted into the device to mitigate leakage cur-
rent, thus enabling low energy consumption. Despite these 
advancements, the inherent variability of Ag-based artificial 
neuronal devices still poses stability challenges, with higher 
temperatures potentially exacerbating fluctuations in tem-
perature encoding. Mott insulator is another candidate that 
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can be applied to the ATMNs. Han et al. [181] introduced 
a flexible ATMN utilizing  VO2, which operates from 25 °C 
(with a spiking frequency of 16.9 kHz) to 40 °C (60.2 kHz). 
They developed a physical model based on 3D Pool–Frenkel 
emission and Newton’s law of cooling, distinct from those 
of diffusive memristor-based or STLFET-based ASN. The 
model’s simulation results align well with experimental data 
in the range of 20 to 40 °C. This design holds promise for 
integration into flexible neuromorphic intelligent systems. In 
addition, Zhao et al. [182] reported an ATMN with a work-
ing range from 40 to 120 °C using  NbOx (Fig. 10c). For Mott 
materials, the temperature sensing capability is determined 

by the IMT temperature. Therefore, the  NbOx-based sensor 
offers a broader detection range than the  VO2-based sensor, 
as the IMT temperature of  NbOx is higher (800 °C) com-
pared to  VO2 (67 °C). While the progress in temperature 
encoding is encouraging, some considerations must be fig-
ured out. Many reported neuromorphic temperature sensors 
consume high energy, making them less competitive with 
biological temperature receptors. Additionally, there is a 
need for sensors that can encode an ultra-wide temperature 
range, such as from 0 to 100 °C or beyond, which probably 
can be addressed through material and device engineering 
advancements.

Fig. 10  Artificial thermal neurons with various emerging devices: a STLFET; Reproduced with permission from Ref. [178].  Copyright 2021, 
IEEE. b Diffusive memristor; Reproduced with permission from Ref. [180]. Copyright 2022, IEEE. c Mott memristor. Reproduced with permis-
sion from Ref. [182]. Copyright 2023, Royal Society of Chemistry
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4.3  Artificial Acoustic Neuron (AAN)

Artificial acoustic systems are devised to replicate, enhance, 
or modify sound for various applications such as cochlear 
implants and robotic navigation, perception, localization, 
and interaction [183, 184]. They include loudspeakers, 
microphones, soundbars, and home theater systems, which 
are used to produce and capture sound for entertainment, 
communication, and recording purposes. Nevertheless, these 
systems are bulky and high-power-consuming because of 
the complex circuit implementation [185, 186]. AANs offer 
a more efficient alternative by mimicking the human audi-
tory system’s ability to convert sound waves into spikes, 
which is compact and consumes significantly less energy. 
Yun et al. [187] suggested an AAN by merging a TENG that 
is responsive to sound pressure with STLFET. The TENG is 
structured with a top copper electrode, a fluorinated ethyl-
ene propylene (FEP) film bonded to a base copper electrode 
(FEP/Cu), and eight spacers to keep the top electrode and 
FEP film apart. Sound wave pressure on the FEP/Cu through 
a mesh causes it to vibrate, generating alternating current 
via triboelectrification (Fig. 11a). This current makes the 
STLFET oscillate, and louder sounds produce more spikes. 
An artificial acoustic module has also been developed for 
pitch classification, with two neuron modules resonating 
at 118 and 174 Hz used to classify C3 (130.8 Hz) and G3 
(196.0 Hz) piano pitches (Fig. 11b). The input layer had 
neuron modules with TENGs of 118 and 174 Hz, and the 

output layer had two synaptic nodes: one for C3 and one 
for G3. With a winner-take-all principle, the system identi-
fied pitches by comparing synaptic frequencies. This is the 
first attempt to develop AAN inspired by biological auditory 
neural pathways.

4.4  Artificial Gustatory Neuron (AGN)

Electronic tongues mimic the human sense of taste. Utiliz-
ing arrays of chemical sensors, it can be employed in the 
food and beverage industries to analyze and classify tastes 
[188–190]. By interpreting output signals through pattern 
recognition algorithms, they discriminate and quantify vari-
ous taste sensations. Recently, an AGN, which composes 
of a pH sensors/sodium ion sensor and STLFET, has been 
introduced by mimicking the biological taste receptor [191]. 
As the pH decreases, the buffer solution produces more 
hydrogen ions that bind to the hydroxyl groups on the  Al2O3 
surface, resulting in an increase in both surface charge and 
potential. This higher surface charge and potential decrease 
the threshold voltage of the STLFET, reducing the energy 
barrier and increasing the oscillation spiking frequency. 
Hence, low pH values can be encoded by high output spiking 
frequencies, and vice versa (Fig. 12a). Similarly, a sodium-
sensitive sensor made of sodium ionophore X can repre-
sent low or high sodium ion concentrations by high or low 
output spiking frequencies. The sodium-selective ionophore 

Fig. 11  Artificial acoustic neurons. a Working mechanism of acoustic sensor. b Hardware implementation of acoustic differentiation. a–b 
Reproduced with permission from Ref. [187].  Copyright 2023, Elsevier
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generates a membrane potential by capturing sodium ions, 
driven by the concentration gradient across the membrane 
and solution interface (Fig. 12b). Furthermore, a neuromor-
phic E-tongue capable of distinguishing between different 
flavors, such as vinegar and brine, has been proposed. The 
tastes are effectively separated based on the spike dynam-
ics of the two output nodes. This work demonstrates the 
advantages of spiking gustatory architecture over traditional 
systems in terms of energy efficiency and hardware cost. 
However, significant effort is still required to advance its 
practical application. The human sense of taste can detect 
five primary tastes including sweet, sour, salty, bitter, and 
umami while the spiking gustatory system that accomplish 
the encoding of sweet, bitter, umami is lacking. Integrating 
all taste encoding abilities into a single system, akin to the 
human tongue, is essential for interaction with other elec-
tronic systems. An evident concern is the decoding of spike 
signals. When multiple tastes are detected simultaneously 
by the all-in-one system, correctly decoupling the output 
spikes is crucial for accurate interpretation, avoiding errors 
or omissions. Analyzing spike amplitude or frequency with 
algorithms may be beneficial, and establish a one-to-one 
correspondence between spike frequency and input flavors 
by regulating the electrical performance of AAN is another 
option.

4.5  Artificial Olfactory Neuron (AON)

Artificial olfactory system, also known as electronic noses or 
e-noses, are apparatus that imitate the function of the human 
olfactory system, detecting and identifying odors [192, 193]. 
These devices can detect volatile organic compounds and 
other chemical substances in the air, and are extensively 
applied in a variety of applications such as food quality, 
environmental monitoring, and diagnostics [194–196]. Most 
of the existing olfactory systems use traditional architecture, 
which impose severe demands on the transmission band-
width and subsequent computational resources. To tackle 
this issue, Wang and colleagues developed an artificial olfac-
tory system that integrates gas sensing, data storage, and 
processing functions (Fig. 13a) [197]. The system’s encod-
ing units are realized by wiring the commercial gas sen-
sors to a diffusive memristor. The synapses, based on non-
volatile memristive devices, transmit signals from AON to 
relay neurons according to synaptic weights that are trained 
through supervised spike-rate dependent plasticity (SRDP). 
The relay neurons process the signals from the synapses 
and classify the gases. A processing unit, organized with 
a field-programmable gate array (FPGA) and an applica-
tion-specific integrated circuit (ASIC) for signal processing 
and generation, receives the outputs from the neurons and 

Fig. 12  Artificial gustatory neurons. a AAN for pH sensing. b AAN for sodium ion sensing. a–b Reproduced with permission from Ref. [191].  
Copyright 2022, American Chemical Society
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distributes the necessary control signals to the respective 
components. This olfactory system can clearly identify four 
gas samples (formaldehyde, ethanol, acetone, and toluene) 
with different spiking patterns. However, the system does 
not encode gas concentration, which is an essential dimen-
sion of odor information. Han et al. [198] reported an AON 
that can convert both the gas type and the concentration 
to spikes, significantly expanding its applicability in areas 
such as air quality and toxicology monitoring (Fig. 13b). The 
AON contains a semiconductor metal oxide (SMO) sensor 
and a STLFET. It is important to note that the gas absorp-
tion reactions on SMO sensors are typically activated at 
higher temperatures (200 to 400 °C), necessitating a micro-
heater. With  SnO2-based and  WO3-based sensors, the AON 
can implement the spiking encoding of gas species  (NH3, 
CO, acetone,  NO2) with different concentrations. However, 
an encoding problem exists in such systems. For instance, 
2 ppm of  NH3 and 20 ppm of CO can share a very similar 

spiking frequency with the neuromorphic nose module 
composed of the  WO3 gas sensor and the MOSFET neuron. 
Furthermore, the inclusion of the microheater significantly 
increases the power consumption of the entire system. Fur-
ther development of novel gas sensors or AONs will assist 
to mitigate these dilemmas.

4.6  Artificial Biochemical Neuron (ABCN)

Drawing inspiration from the biological receptor, ion chan-
nels in the cell membrane are maintained in a closed, equi-
librium state to ensure a balanced distribution of cations 
and anions across the membrane [199, 200]. Upon exposed 
to external stimuli, these ion channels open, initiating the 
production of electrical signals that are transmitted to the 
CNS. Furthermore, the neural activity is influenced by the 
concentration of neurotransmitters [201, 202]. Despite the 
development of some ionic sensors, they do not possess the 

Fig. 13  Artificial olfactory neurons. a AON-based neural network for gas recognition.  Reproduced with permission from Ref. [197]. Copyright 
2022, John Wiley & Sons. b AON for gas type and concentration detection. Reproduced with permission from Ref. [198]. Copyright 2022, John 
Wiley & Sons
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capability to generate spikes [203, 204]. Thus, the devel-
opment of ABCNs that is sensitive to the concentration of 
biological species holds significant potential. They could 
fully replicate the electrophysiological characteristics of 
biological receptors and work in situ in biological environ-
ments. Sarkar and colleagues described an organic artifi-
cial neuron (OAN) that functions as an ABCN, exhibiting 
spiking behavior that is sensitive to ion or biomolecular 
concentration [205]. The OAN operates in liquid environ-
ments and inherently interfaces with biological systems. 
The device primarily consists of two organic electrochemi-
cal transistors (OECTs) connected in a cascade to form an 
organic electrochemical nonlinear device (OEND), as shown 
in Fig. 14a. The transistors are made from organic mixed 
ionic-electronic conductors (OMIECs): poly(3,4-ethylenedi-
oxythiophene) (PEDOT) doped with poly (styrene sulfonate) 
(PSS), and poly(2-(3,3′-bis(2-(2(2-methoxyethoxy)ethoxy)
ethoxy)-[2,2′-bithiophen]-5-yl) thieno [3,2-b] thiophene) 

(p(g2T-TT)), as presented in Fig. 14b. The OEND’s nega-
tive differential resistance allows the OAN to generate sta-
ble and repeatable current spiking under voltage bias. These 
spikes are highly dependent on the NaCl concentration, with 
the spiking frequency increasing with  Na+ concentration 
(Fig. 14c). This is due to the interaction between ions and 
the PEDOT: PSS, which alters the doping level and drain 
current of the OECT. The OAN’s behavior is closely similar 
to that of biological neurons, where changes in ionic con-
centration gradients between the intracellular and extracel-
lular medium impact neuronal firing threshold and timing. 
The OAN also responds to biomolecular concentration, 
with dopamine affecting its spiking frequency (Fig. 14d). A 
modified OAN with an ionophore-based selective membrane 
demonstrates  K+ response selectivity, akin to biological ion 
channels (Fig. 14e). The OAN’s biointerfacing capability is 
illustrated by the introduction of a biomembrane, which halts 
oscillations when inserted between the gate and channel 

Fig. 14  Artificial biochemical neuron. a Structure of ABCN. b Device and materials used for ABCN. c Spiking under different NaCl concentra-
tions. d Spiking under different dopamine concentrations. e Selectivity of ABCN. f ABCN-based biohybrid neuron. a–f Reproduced with per-
mission from Ref. [205].  Copyright 2022, Springer Nature
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(Fig. 14f). However, there are many obstacles related to 
organic materials that have not been solved which impede 
the ABCN to perfectly interact with wet biological surround-
ings: 1) organic materials generally suffers instability when 
exposed to environmental factors, i.e., temperature, ultravio-
let (UV) radiation, leading to the performance degradation 
[206, 207]; 2) the heat generation during the operation may 
disintegrate the structure of organic materials; 3) the organic 
materials are indeed promising for scalability, but it is chal-
lenge for organic materials to achieve high uniformity across 
large-scale production; 4) integrating organic materials with 
existing silicon-based technologies can be complex due to 
differences in processing techniques and material compat-
ibility; 5) organic-based ASN probably possesses higher 
energy consumption compared to inorganic alternatives (sev-
eral tens of nanojoules per spike for organic materials versus 
sub-nanojoules per spike for inorganic materials). Presently, 
investigations to address these limitations and improve the 
performance of organic-based ASN is ongoing, aiming to 
meet the needs of biological applications.

4.7  Artificial Visual Neuron (AVN)

AVNs aim to mimic the way of biological photoreceptors 
encode visual information, providing a more efficient and 
energy-efficient way of capturing and interpreting visual 
data [208]. They are developed for a variety of applica-
tions including autonomous vehicles, robotics, surveil-
lance, and medical imaging. Their ability to perform com-
plex visual tasks with minimal power and computational 
resources makes them particularly attractive for use in 
resource-constrained environments. Generally, AVN are 
required to be highly sensitive, responsive, compact, and 
selective, imitating the biological photoreceptor as far as 
possible and a lot of efforts have been devoted to achieve 
this goal. Radhakrishnan et al. [209] reported a AVN using 
 MoS2 memtransitor to encode the intensity of white light 
(Fig. 15a). With the photodiode, the light intensity can be 
converted into current and consequently impact the spike 
generation of AVN (Fig. 15b). Such properties allow the 
AVN to well encode the images with different brightness. 
Notably, the performance of AVN can be tuned by varying 
the testing parameters, which shows the potential to meet 
various demands (Fig. 15c). Lee and colleagues [210] also 
developed a AVN operating in the visible light spectrum 

by finely tailoring the electrical characteristics of Ag-doped 
 GeSe2 and integrating it with a photodiode. The encoder’s 
spiking frequency changes when the condition changes from 
“light off” to “light on”, mirroring the behavior of photo-
receptor cells. Simulation data suggests that this system is 
available for the classification of chest X-ray images, aiding 
in disease diagnosis. Visible light coding can indeed cover 
most of the application scenarios, however, for specific situ-
ation, invisible light plays a dominate role. For instance, 
infrared (IR) machine vision, which efficiently interprets, 
converts, and processes vast amounts of IR optical data 
about objects, has emerged as a critical technology for mak-
ing decisions in diverse fields such as autonomous driving, 
intelligent night vision, military defense, and medical diag-
nosis. In a pioneering study, Wang et al. [211] have devel-
oped an AVN that operates in the mid-infrared (MIR) range 
with a 2D van der Waals heterostructure (b-AsP/MoTe2), 
as shown in Fig. 15d. The AVN employs a stochastic near-
infrared (NIR) sampling terminal to efficiently process the 
MIR optical information. The b-AsP layer, with its narrow 
bandgap of ~ 0.15 eV and high MIR optical absorption, acts 
as the MIR photosensitive layer; while  MoTe2, with a band-
gap of ~ 1.0 eV, serves as the NIR sensitizer. The sensor’s 
photoresponsivity is a result of the photovoltaic (PV) and 
photothermoelectric (PTE) effects. The MIR laser-induced 
temperature gradient, along with the Seebeck coefficients 
and thermal conductivities, leads to hole diffusion and the 
generation of a positive PTE photocurrent. NIR illumination 
generates electron–hole pairs, which are separated by the 
built-in electric field, resulting in a negative photovoltaic 
current (Fig. 15e). The spiking frequency is almost linear 
proportional with light power intensity, which enables the 
image encoding (Fig. 15f).

Improving the resolution of AVNs can significantly 
enhance its ability to capture fine details and image clarity. 
The most straightforward way to increase resolution is to 
use an array with a higher number of pixels. Such strategy 
requires the structure of AVNs should be compact. On this 
account, Zhao and colleagues proposed an AVN based on 
perovskite oxide  NdNiO3 (NNO), which has an optical band-
gap of 1.7 eV [212]. When exposed to visible light, the NNO 
memristor generates electron–hole pairs in the NNO layer, 
resulting in increased conductance, a decrease in thresh-
old voltage, and an improvement on the spiking frequency. 
This design offers a more compact solution by integrating 
the photodetector with the memristor, thereby reducing the 
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complexity and power consumption of the circuit. However, 
NNO poses some drawbacks such as chemical instability, 
expensive cost, and complex fabricated process. To over-
come these issues, Han et al. [142] utilized a polycrystalline 
Si-based STLFET, which is sensitive to visible light wave-
lengths and intensities, to produce an AVN. Its intrinsic light 
responsiveness eliminates the need for external resistors or 
additional sensors, showcasing high scalability and compact-
ness. Notably, it can generate distinct spike trains for red, 
green, and blue light with varying intensities but exhibits 
invariable spikes for IR light across different intensities. 
To extend the AVN’s capability to broadband wavelengths 
including IR, researcher substituted poly-Si with InGaAs, 
which has a narrower bandgap energy of 0.75 eV [213]. This 
allows the sensor to encode both visible and IR light, even 

at ultralow intensities, demonstrating high light sensitivity. 
This AVN operates near 1 V, offering low energy consump-
tion and high speed compared to previous poly-Si AVNs.

As mentioned previously, AVNs tend to reproduce the 
biological processes of the photoreceptors, particularly in 
terms of sensory perception and information encoding. 
Therefore, an ANV that is biologically plausible is more 
likely to accurately capture the essence of biological sensory 
mechanisms. Depth perception in human eyes enables the 
estimation of relative distances in three-dimensional space 
and the judgment of an object’s distance from the viewer 
[214]. This capability is essential for navigation, object 
interaction, and spatial positioning. The primary cue for 
depth perception is binocular disparity, where the brain cal-
culates depth by comparing slightly different images from 

Fig. 15  Artificial visual neurons. a Structure of  MoS2 memtransistor based ASN. b Spike generation of  MoS2 memtransistor based ASN. c 
Spike rate encoding and the tunability of spiking behavior. a–c Reproduced with permission from Ref. [209].  Copyright 2021, Springer Nature. 
d Structure of MIR responsive ASN. e Working mechanism and f spiking encoding of MIR responsive ASN. d–f Reproduced with permission 
from Ref. [211]. Copyright 2023, Springer Nature. g Depth perception, h color selectivity and i spiking timing encoding with ASN. g Repro-
duced with permission from Ref. [216]. Copyright 2022, John Wiley & Sons. h Reproduced with permission from Ref. [217]. Copyright 2023, 
Springer Nature. i Reproduced with permission from Ref. [221]. Copyright 2022, John Wiley & Sons
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each eye due to their horizontal separation [215]. Recently, 
Chen et al. [216] reported an AVN that resembles such vis-
ual depth perception, with its spiking rate dependent on the 
object’s distance (Fig. 15g). Comparing the spiking rates 
from the “two eyes” permits the calculation of depth infor-
mation. Additionally, asthenopia, a condition of discomfort, 
pain, or tiredness in the eyes after prolonged focus, is also 
shown. The spiking rate slows down in the fatigue state, 
which reduces sensitivity and causes defocus. The same 
group developed another AVN attempts to imitate the color 
selectivity of human eyes, which is a result of the complex 
interaction between light, cornea, lens, and cones [217]. It is 
able to differentiate various light wavelengths and intensities 
with no overlap in spike frequency, effectively conveying 
the color and intensity of light stimulation (Fig. 15h). This 
capability is particularly useful for recognizing mixed-color 
patterns, where distinct wavelengths should be clearly dis-
tinguished. Moreover, it has an ultra-low power consump-
tion of less than 400 picowatts per spike in visible light and 
operates at a spiking frequency ranging from 0.1 to 1200 Hz, 
which is comparable to biological cones. This AVN could 
serve as a fundamental component for hardware that imple-
ments sophisticated color perception within spiking neural 
networks (SNNs).

Spiking-timing-based encoding is a critical feature of 
visual perception. Such characteristics can be exemplified 
by the face recognition of rhesus monkeys [218]. Though 
there are more than ten synaptic steps to convert the visual 
information from photoreceptors to cortex, they can imple-
ment the face recognition within 160 ms, which reveals that 
each step must accomplish the processing in 10 ms. Since 
cortical neurons fire at rates of 0 to 100 spikes per second, 
rate-spiking encoding alone does not fully account for this 
behavior. It has been proved that spiking-timing encoding 
is more useful than spiking-rating for fast response [219, 
220]. Building on this insight, Radhakrishnan et al. [221] 
developed a photoencoder comprising two cascaded three-
stage inverters and an XOR logic gate with a total of 21 
memtransistors based on photosensitive 2D monolayer 
 MoS2. Experimental results indicate that the time of the 
first spike is inversely proportional to light intensity, which 
suggests that light intensity can be encoded by the timing of 
the first spike (Fig. 15i). Furthermore, the spiking perfor-
mance can be adjusted by tuning the applied voltage, demon-
strating adaptive photoencoding capability in both scotopic 
and photopic conditions. This is akin to visual adaptation 

in biological systems and is essential for maintaining clear 
vision across a range of environments, from bright sunlight 
to dim moonlight.

4.8  Artificial Multimodal Neuron (AMN)

Single-mode perception offers clues from a specific aspect of 
the environment or object but often overlooks other critical 
details, potentially leading to misinterpretations [222, 223]. 
Multimodal perception, the ability to interpret and integrate 
information from multiple sensory modalities such as sight, 
sound, touch, taste, and smell, can effectively mitigate the 
issues arising from single-mode perception [224, 225]. It 
provides a more comprehensive sensing of the environment, 
enhancing decision-making and response capabilities. For 
robots and autonomous vehicles, multimodal perception is 
essential for achieving human-like intelligence and versatil-
ity. Currently, AMNs that can concurrently perceive and con-
vert various stimuli into spikes have also been presented. For 
example, Duan and colleagues developed an AMN, which 
integrates a piezoresistive sensor and a  VO2 volatile memris-
tor, to fulfill haptic-temperature fused sensation (Fig. 16a) 
[226]. It takes advantage of the voltage dividing effect and 
the inherent thermal sensitivity of  VO2 to detect and encode 
pressure and heat from an object at the same time. Different 
weight and temperature of cups generates various output 
spiking waveforms (Fig. 16b), which are labelled as inputs 
to feed into the multilayer perceptron (MLP) for processing 
and classification. Since the AMN integrates two modali-
ties, the spiking frequency alone is insufficient for accurate 
classification. Hence, the spiking amplitude should also be 
considered as a classification criterion (Fig. 16c). In addi-
tion, adding more parameters in the input data leads to better 
training performance. An analogous work was also reported 
by Zhu et al. [227] but with an array demonstration, enhanc-
ing its suitability for intelligent applications. With a 3 × 3 
AMN array, they were able to clearly distinguish “n”-, “v”-, 
and “z”-shaped objects with noise at various temperatures 
by leveraging the frequency and amplitude attributes of 
the fused output spikes (Fig. 16d). Two 3 × 3 matrices cor-
responding to single modalities (pressure or temperature) 
were also constructed for accuracy comparison. The results 
indicate that the multimodal fusion approach outperforms 
unimodal methods in recognition rate, indicating a higher 
level of intelligence. Intriguingly, increasing temperature is 
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beneficial for recognition accuracy. The AMN array exhibits 
a thermally assisted frequency enhancement, with the output 
frequency from noiseless pixels increasing with tempera-
ture when the pressure remains constant (Fig. 16e). Such 
frequency difference between noiseless and noisy pixels 
becomes more significant because heating effectively sup-
presses the frequency signals from the noisy pixels when 
heated. A 20 × 20 array simulation was conducted based on 
the experimental data with a SNN classifier (Fig. 16f). The 
system achieved a higher recognition rate (93%) for distin-
guishing cup features using patterns with multiple modes 
compared to adopting only the temperature mode (72.5%) 
or the pressure mode (67%).

Visual-thermal cross-modal perception, which integrates 
visual and thermal data, allows for the detection of objects 
and living beings that may be obscured or indistinguish-
able in the visual spectrum. It can enhance human–machine 
interaction by endowing machines with a human-like per-
ception, leading to more intuitive and natural interactions. 
For future intelligent system with high energy efficiency, 
an artificial visual-thermal neuron is pivotal. Motivated by 
this, an AMN to encode the external light and temperature 
via a STLFET has been presented by Han and colleagues 
[228]. The movement of electrons within the transistor 

can be precisely controlled by light and temperature stim-
uli, allowing for the adjustment of spiking frequency. An 
increase in temperature or light intensity leads to a higher 
spiking frequency, but temperature having a more signifi-
cant impact than light (Fig. 17a). Such AMN holds prom-
ise for fingerprint recognition, where valleys and ridges are 
represented by bright and dark light, and the authenticity 
of fingerprints is determined by temperature differences 
(Fig. 17b). This is the first attempt of hybrid visual-thermal 
encoding with a single device, although challenges related 
to stability, uniformity, and large-scale integration remain to 
be overcome. Apart from tactile-thermal and visual-thermal 
perception, visuo-tactile integration is another category of 
multi-modal perception, which emulate the procedure of 
brain to process information from eyes and skins together 
[229, 230]. It is particularly important in conditions where 
visual or tactile information alone might be insufficient to 
achieve a thorough insight. For example, when grasping an 
object, visual information about the object’s shape and size 
is combined with tactile information about its texture to cre-
ate a more accurate discernment of the object [231, 232]. 
Hitherto, researchers are developing artificial visuo-tactile 
neurons to enable machines to perform tasks that require 
the same level of visuo-tactile integration as humans. As 

Fig. 16  Artificial multimodal neurons for tactile and temperature sensing. a Structure of AMN. b Spiking encoding of temperature and tactile 
information with AMN. c Neural network for object classification. a–c Reproduced with permission from Ref. [226].  Copyright 2022, John 
Wiley & Sons. d 3 × 3 AMN array. e Temperature-enhanced recognition accuracy with AMN. f Classification simulation with 20 × 20 AMN 
array. d–f Reproduced with permission from Ref. [227]. Copyright 2022, John Wiley & Sons
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an illustration, Sadaf and colleagues proposed a system that 
converts visuo-tactile information into spikes using a pho-
tosensitive  MoS2 memtransistor and a triboelectric tactile 
sensor (Fig. 17c) [233]. The system captures the features of 
multimodal sensory integration, demonstrating super-addi-
tive response, inverse effectiveness, and temporal congru-
ency. Increasing the visual stimulus or tactile stimulus could 
significantly enhance the spike probability, and the synergic 
effect of visual and tactile stimulus yields a higher spike 
probability than that of either stimulus alone (Fig. 17d). The 
visuo-tactile encoder circuit comprises four memtransistors, 
occupying a considerable chip area and presenting a com-
plex design. Furthermore, it’s possible to obtain the same 
spike probability even if under different visuo-tactile condi-
tions, making it challenging to differentiate solely based on 

spike probability. To avoid confusion, additional clues like 
the time-to-first spike should be entailed. Another concern 
is the encoding time, which can take dozens to hundreds of 
seconds, severely lowering the processing speed. Therefore, 
accelerating the encoding process through device optimiza-
tion is crucial for practical applications.

Merging the gas and light signals by AMN is also dem-
onstrated by Yuan et al. [234] with Mott memristor and an 
amorphous indium gallium zinc oxide (IGZO) thin-film 
transistor (TFT) (Fig. 17e). The IGZO TFT shows respon-
siveness to both  NO2 gas and UV light. Under  NO2 gas 
stimulation, the AMN exhibits inhibitory behavior, whereas 
it demonstrates excitatory behavior upon UV light. This 
is different to other works, where all modalities typically 
induce excitation. By coupling the  NO2 gas spike encoder 

Fig. 17  AMNs for visual-thermal, visual-tactile and visual-olfactory sensing. a Distribution of spike frequency under different temperatures 
and light intensities. b Fingerprint recognition with visual-thermal AMN. a–b Reproduced with permission from Ref. [228].  Copyright 2023, 
American Chemical Society. c Structure of visual-tactile AMN. d Spiking performance of visual-tactile AMN. c–d Reproduced with permission 
from Ref. [233]. Copyright 2023, Springer Nature. e Configuration of visual-olfactory AMN. f Spiking behavior under stimulation of light and 
gas. e–f Reproduced with permission from Ref. [234]. Copyright 2023, American Chemical Society
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and the UV light spike encoder, both gas and light stimuli 
can be encoded into spikes, and their relationship is interac-
tive through lateral regulation (Fig. 17f). They found that an 
increase in spike frequency for UV light leads to a decrease 
in spike frequency for  NO2 gas. The integration of light-
gas perception is achieved through circuit interconnection, 
delivering an alternative approach to address the spike cou-
pling issue by separating two paths. However, this scheme 
sacrifices hardware area costs and does not really achieve a 
true fusion of perceptions.

5  Key Metrics of ASNs

5.1  Power Consumption

Power consumption is a primary concern in electronic 
devices due to its direct impact on heat dissipation, per-
formance degradation, and overall energy efficiency. To 
calculate the total power consumption of ASNs, one must 
consider the power demands of both the sensors (if appli-
cable) and the neuronal devices. The power consumption 
of sensors is typically evaluated based on their operating 
voltage and current, but for ASNs, these parameters are 
often not provided, making power estimation challenging. 
Accordingly, here, we focus on evaluating the power con-
sumption of neuronal devices using spikes. The average 
energy per spike is calculated as the V × I × t/N, where V 
is input voltage, I is output current, t is stimulation time, 
N is spike number [235, 236]. Achieving ultra-low power 
consumption for energy efficient sensing and encoding is 
the ambition, since it can offer a longer operation time 
under limited power supply and mitigate the thermal 
effect to increase the service life for practical applica-
tions. In order to lower the power consumption of arti-
ficial neuronal devices, decreasing the operation current 
is an effective way and several methods such as nanodots 
involvement, element doping, multi-layered oxide design, 
and incorporation of diffusion layer have been demon-
strated [237–239]. As a part of the ASN, improving the 
energy efficiency of sensors is also important and the main 
approach to achieve this is through materials engineering 
[240–242]. For example, Guo et al. [242] fabricated a pres-
sure sensor with 10 nW via MXene nanosheets and Luo 
et al. [240] reported a low-power (3 nW) piezoresistive 

sensor using carbon-decorated fabric. A more promising 
manner is to integrate sensing and encoding functions 
within a single device, namely, in-sensor encoding. This 
idea has been implemented in the visual domain, whereas 
its application to other sensory modalities is still under 
investigation [142]. The main challenge lies in the distinct 
material candidates for sensors and neuromorphic devices.

5.2  Sensitivity and Dynamic Range

The sensitivity of an ASN is a measure of its ability to 
detect and respond to a specific stimulus, quantifying the 
variation in output spiking frequency for a given change 
in the input [243–245]. It is expressed as Δf/Δx, where 
Δf represents the change of output spiking frequency, and 
Δx denotes the change in the input. Sensitivity is crucial 
for ASN design as it determines the dynamic range and 
the minimum level that can be perceived. An ideal ASN 
is supposed to achieve a high sensitivity within a wide 
dynamic range. However, there is a tradeoff between high 
sensitivity and dynamics range [246]. The sensitivity of 
ASNs with wide dynamic range is lower, yet the dynamic 
range of those with high sensitivity is narrow. Fortunately, 
the development of novel materials probably provides an 
encouraging solution to overcome this challenge. Recently, 
a flexible ferroelectric pressure sensor with ultrahigh sen-
sitivity over a broad range was reported [247]. Such a goal 
can also be realized with porous conductive hybrid com-
posite [248]. It can be envisioned that ASNs with wide 
dynamic range and high sensitivity are accessible with 
the advancement of material science. The requirements 
for sensitivity and dynamic range of ASNs vary with the 
targeting applications. A sensor with high sensitivity can 
detect minor changes in the input stimulus, making it suit-
able for applications that demand high precision and sen-
sitivity. On the other hand, a sensor with low sensitivity 
is more robust to noise and less sensitive to tiny changes, 
which is potential for applications that require robustness 
and a wide input range. Therefore, in practical applica-
tions, the required sensitivity of ASNs needs to be consid-
ered in multiple dimensions such as detection limit, signal-
to-noise ratio, robustness, and dynamic range to ensure 
their reliability and effectiveness in specific environments.
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5.3  Linearity

The linearity of ASNs is a critical parameter of its per-
formance, referring to the capacity to produce an output 
spike frequency that is linearly proportional to a changing 
input. Linearity estimation, which is also expressed as the 
percentage of nonlinearity, involves comparing the ASNs 
measured output to its expected output across a range of 
inputs and determining the closeness of the data to a best-
fit line [249]. The linearity of ASNs can be measured by 
 Dout(max)/  Outf.s × 100%, where  Dout(max) is the maximum 
output deviation of spikes, and  Outf.s is the full-scale output 
of spikes [250]. This calculation allows for the quantifica-
tion of linearity error, which is the discrepancy between the 
ASNs’ actual output and theoretical output. It is noteworthy 
that high linearity is essential for applications that demand 
accurate and repeatable measurements, as it ensures that the 
response faithfully represents the input’s true value, thus 
maintaining the authenticity of the data collected. A non-
linear response can lead to measurement errors, particularly 
in critical applications where precise and predictable per-
formance is essential such as control systems and scientific 
research, necessitating calibration or the use of linearization 
techniques to ensure reliable and accurate data interpreta-
tion. The linear response of ASNs is jointly determined by 
the performance of artificial neuronal devices and sensors. 
Currently, a number of strategies, for instance, microstruc-
ture engineering, and materials design, have been proposed 
to improve the linearity of sensors [247, 251–253]. Nonethe-
less, there is no theoretical or experimental demonstration 
to improve the linear spiking output of artificial neuronal 
devices. How to optimize the linear response of ASNs is 
still challenging.

5.4  Response Time

The response time of ASNs determines how quickly it can 
detect and react to input stimuli. It is defined as the time 
taken for the ASNs to output spikes that accurately reflect 
the input, which is vital in applications that need rapid 
response such as in real-time monitoring systems. A fast 
response time ensures that the ASNs can quickly capture 
and relay information about the stimuli, enabling timely 
decision-making and ensuring the reliability of the sys-
tem. Whereas a slow response time may be sufficient for 

less time-sensitive applications like long-term data collec-
tion but can lead to delayed reactions and potential errors in 
critical situations. Given that there are two approaches for 
spike generation (oscillation and LIF) of ASNs, the response 
time of oscillatory ASNs (~ μs) is much faster than that of 
LIF ASNs (~ ms) because the integration process of LIF 
is time-consuming. Here, we neglect the response time of 
the sensor. Actually, the response time of the sensor ranges 
from several milliseconds to seconds. For pressure sensors, 
it can be optimized by microengineering through making 
the material more compressible and elastic [254]. As dis-
cussed above, it is easy to find that the response time of 
ASNs is governed by the performance of sensors. How to 
further improve the characteristics of sensors is an urgent 
issue needs to be solved for ASNs.

5.5  Resolution

The resolution of a ASN refers to the smallest change in 
the physical quantity being measured that the ASNs can 
detect and encode. It is a measure of the ASNs’ ability to 
distinguish two different conditions. High-resolution ASNs 
can detect and encode very small changes in the dynamic 
range, providing more precise and detailed data. Conversely, 
ASNs with lower resolution may only be able to detect larger 
changes, leading to less granular and potentially less accu-
rate measurements. Resolution is often expressed in terms of 
the smallest increment the ASNs can measure, such as centi-
grade for ATMNs or Pascal for ATTNs. For scenarios where 
detailed and precise measurement is required such as medi-
cal diagnostics, and security surveillance, a high-resolution 
ASN is preferable. Whereas in certain applications where 
broad trends or approximate values are acceptable, low-
resolution ASNs is adequate. It should be pointed out that 
higher resolution will inevitably increase the data volume 
and put forward higher requirements for processing. Thus, 
the resolution choice of ASNs should balance the practical 
constraints like processing power, storage, and application 
needs. The resolution of ASNs is highly dependent on the 
resolution of sensors, therefore improving the resolution of 
sensors is beneficial for the ASNs. It is reported that the 
resolution of sensors can be enhanced by the manufacturing 
process or microstructure design [255, 256]. These schemes 
are believed to be applicable to the resolution improvement 
of ASNs.
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5.6  Stability

The stability of ASNs represents their ability to maintain 
a consistent spiking output during their operational life, 
resisting to the aging and variation of environmental con-
ditions such as humidity, temperature, mechanical stress. 
Obviously, a high stability of ASNs is required for real 
applications because it ensures that the output of ASNs 
suffers minimal drift or change in various surroundings. 
Instability of ASNs can lead to measurement error, safety 
issues, and increased operational costs due to the need for 
more frequent recalibrations or replacements. However, 
for applications where a short lifetime is demanded, e.g. 
implantable electronics to avoid chronic risk, ASNs that 
can be dissolved in physiological solution are desired. 
Considering the robustness of commercial sensors, the 
stability of ASN can be evaluated by estimating the per-
formance of artificial neuronal devices. Though a ther-
mal stable STL MOSFET-based artificial neuron has been 
reported, most of the current artificial neuronal devices are 
susceptible to temperature fluctuations because the thresh-
old switching process is thermal-sensitive. A summary 
of the performance metrics of various ASNs is shown in 
Table 2.

6  Potential Applications of ASNs

6.1  Machine Learning

Combining machine learning with sensors has been used 
to interpret the sensing data [260–262]. SNNs are ANN 
models that are inspired from the functionality of biologi-
cal neural network [263, 264]. Unlike conventional ANNs, 
which use continuous signals, SNNs process information 
through discrete spike signals, which is the same as the 
communicated way between biological neurons by action 
potentials. SNNs excel at handling temporal information 
and event-related dynamics, which has garnered consid-
erable interest in the fields of cognitive science and neu-
roscience [265, 266]. Since ASNs can convert external 
data into spikes, they are well-suited for integration with 
SNNs to implement energy-efficient processing systems. 
For instance, Yuan et al. [267] developed a calibratable 
ASN for gesture recognition. It can detect curvature and 

convert it into spike signals, with higher curvature result-
ing in a lower spiking frequency (Fig. 18a). When attached 
to human fingers, these ASNs enable the detection of dif-
ferent hand gestures by analyzing the spiking patterns. 
Statistical analysis of the spiking frequency across vari-
ous gestures reveals distinct patterns, demonstrating the 
effectiveness of the spike-based neuromorphic perception 
system for gesture recognition. These spikes can then be 
input into an SNN for classification after the SNN has 
been trained using backpropagation algorithms based on 
the spiking behavior of the ASN (Fig. 18b).

Reservoir computing, drawing inspiration from the human 
brain’s adaptive learning capabilities, is a burgeoning field 
in computational neuroscience and machine learning that 
employs recurrent neural networks (RNNs) [268, 269]. This 
approach has three primary components: a reservoir, an input 
layer, and an output layer. The reservoir, as the core of the 
system, comprises neurons with recurrent connections that 
can process and store temporal data. The input layer receives 
external signals and delivers them to the reservoir, while 
the output layer, which could be a readout layer or a simple 
linear transformation, generates the final output based on the 
reservoir’s state. The reservoir’s non-linear dynamics allows 
it to execute intricate computations and learn from data 
through a procedure known as reservoir computing training 
[270, 271]. In this context, spikes can serve as the input sig-
nals to train the reservoir network, which can be acquired by 
ASNs. Lee et al. [257] developed a ATTN capable of iden-
tifying and classifying tumors. The sensor’s output spiking 
frequency correlates with the elastic stiffness of materials, 
making it suitable for recognizing the modulus distribution 
patterns of biological objects with various disease states 
(Fig. 18c). The color-coded ultrasound elastography images 
indicate the stiffness of the imaged materials, and the shape 
of this stiffness distribution is commonly used to diagnose 
the malignancy of breast tumors. With the ATTN, such stiff-
ness distribution can be translated into a spike distribution. 
During the processing, a data augmentation technique and 
temporal sequence extraction are employed to preprocess the 
images, which are then mapped to virtual neurons within the 
reservoir for classification (Fig. 18d). These findings prove 
the huge potential of ASNs and reservoir computing in dis-
ease diagnosis.

Pulse-Coupled Neural Networks (PCNNs) are neural 
network models that simulate the neural activity in the 
visual cortex of mammals [272, 273]. In PCNNs, neurons 
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Table 2  Summary of performance metrics of various ASNs

Type Sensor configuration Power con-
sumption

Sensitivity Dynamic range Linearity (%) Response time Year References

Tactile Mott memristor + Pres-
sure sensor

0.14 mJ 3 kHz/kPa 3.8 ~ 10.8 kPa 13.8 0.0321 ms 2022 [171]

Mott memristor + Pres-
sure sensor

0.6 nJ 23.3 MHz/kPa 0.3889 ~ 0.700 kPa 25.17 1.4 us 2021 [160]

Mott memristor + TENG 4 nJ – – – 21 ms 2020 [159]

OTS memristor + Pres-
sure sensor

3.54 nJ 70.6 kHz/kPa 6 ~ 20 kPa 20.8  < 1 us 2022 [257]

Mott memristor + Pres-
sure sensor

28.5 nJ 60.8 kHz/kPa 4.8 ~ 6.4 kPa 17.3 4.71 us 2022 [164]

Mott memristor + Pres-
sure sensor

2.1 nJ 3 kHz/N 1.37 ~ 2.85 N 12.5 1.5 us 2024 [161]

Diffusive memris-
tor + Pressure sensor

30 mJ – – – – 2020 [159]

Mott memristor + Pres-
sure sensor

40 nJ 26.6 kHz/mN 0.25 ~ 1.02 mN 12.5 – 2022 [258]

STL MOSFET + TENG 0.98 nJ 1.6 kHz/kPa 3.2 ~ 5.09 kPa 25.41 0.107 s 2022 [172]

Diffusive memris-
tor + TENG

0.84 mJ – 10 ~ 40 kPa – 3.72 s 2022 [165]

Auditory STL MOSFET + TENG 67.5 nJ 680 Hz/dB 70 ~ 110 dB 27.22 0.037 s 2023 [187]

Gustatory STL transistor + Bio-
sensor

40 pJ 133 Hz/pH pH: 3 ~ 9 pH: 63.29 pH: 0.001 s 2022 [191]
100 Hz/log[Na+] Na+:  10–4 ~  10–1 

Mol
Na+:22

Na+:0.001 s

Biochem-
ical

Organic Electrochemi-
cal Transistors

750 nJ 0.38 Hz/mM 
NaCl

80–160 mM NaCl 29.6 2 s 2022 [205]

Olfactory Diffusive memris-
tor + Gas sensor

0.6 nJ – – – 200 s 2022 [197]

STL MOSFET + Gas 
sensor

6 uJ 31.25 Hz/ppm 
@NH3

0–2 ppm @NH3 10 @NH3 0.007 s 2022 [198]
20 @CO 6 @

Acetone7.5 Hz/ppm @
CO

0–20 ppm @CO

583 Hz/ppm @
Acttone

21 @NO20–3 ppm @Acttone

50 Hz/ppm @
NO2

0–2 ppm @NO2

Thermal Mott memristor 40 nJ – 313 ~ 393 K – 13.5 ms 2023 [182]
STL MOSFET 5 nJ 17.21 Hz/°C 30 ~ 110 °C 18.3 0.1 ms 2021 [178]
Diffusive memristor 90 pJ 1.73 Hz/°C 20 ~ 80 °C 24 3.2 ms 2022 [180]

Mott memristor 3 nJ 0.23 kHz/°C 5 ~ 40 °C 3.6 0.001 ms 2022 [181]
Diffusive memristor – – 35 ~ 65 °C – 0.5 s 2022 [179]
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communicate through pulses or spikes, each neuron respond-
ing to specific input stimuli. The key concept in PCNNs is the 
synchronization of neuron activity, where neighboring neurons 
synchronize their firing patterns based on the timing of incom-
ing pulses. This synchronization enables PCNNs to identify 
patterns and features in data by analyzing spatial and temporal 
relationships. The network’s capability to capture both spatial 
and temporal information makes PCNNs suitable for complex 
pattern recognition and analysis. Evidently, ASNs, which can 
generate spikes, can serve as an input for PCNNs. For exam-
ple, Wu et al. [274] demonstrated a AVN for image segment 
with a Mott memristor and  IGZO4 photosensor (Fig. 18e). The 
AVN is highly sensitive and can respond to UV intensities as 
low as 0.2 mW  cm−2. Different UV wavelength combinations 
(254 nm or 365 nm or both) elicit varying spike frequencies, 
suggesting the AVN’s potential as an image detector. Accord-
ingly, a butterfly image (600 × 600 pixels) with mixed UV light 
was reconstructed and encoded, and then segmented by PCNNs 
(Fig. 18f). The butterfly was successfully extracted from the UV 
image, even with a noise background. Combining ASNs with 

neural network offers several advantages such as energy effi-
ciency, robustness to noise, event-driven processing, but they 
also face challenges, e.g. traditional von Neumann architectures 
are not well-suited for spikes-based processing, necessitating 
the development of new types of processors, such as neuromor-
phic chips, which are still in the early stages of development.

6.2  Nociceptive Sensation

Nociceptive sensation refers to the perception of pain trig-
gered by harmful stimuli, acting as a vital mechanism that 
alerts the body to potential damage or injury [275, 276]. It 
results from the activation of specialized nerve fibers known 
as nociceptors, which are sensitive to various stimuli like 
extreme temperature, pressure, light, or chemical irritants 
[277, 278]. When stimulated, nociceptors convert the signals 
into spikes and send them to the brain for processing and 
interpretation. There are four typical features of nocicep-
tors: “threshold,” “relaxation,” “no adaption,” and “sensa-
tion” [279, 280]. The threshold of a nociceptor indicates 

Table 2  (continued)

Type Sensor configuration Power con-
sumption

Sensitivity Dynamic range Linearity (%) Response time Year References

Visual STL MOSFET 0.27 nJ 1.6 Hz/μW 
@1550 nm

397 ~ 1550 nm – 0.005 s 2021 [213]

0.5 -20 mW 
@1550

Diffusive memristor 1.7 uJ 10.83 Hz/cm 0 ~ 30 cm 19.38 0.1 s 2022 [216]

2D memtransistor 100 nJ 0–25 W/m2 0.8 s 2022 [221]

2D memtransistor – 1.12 kHz/W/cm2 0 ~ 80 W/cm2 10.8 10 us 2023 [211]

STL MOSFET 10 nJ 18.4 Hz/mW 0 ~ 1.24 mW 10.6 0.019 s 2020 [142]

Diffusive memristor 1 mJ 15 Hz/mW 0 ~ 2.5 mW 23.07 0.11 s 2021 [259]

Mott memristor 130 nJ – 0 ~ 100 mW – 0.044 s 2023 [212]

Diffusive memristor 10 nJ – – – – 2022 [210]

Diffusive memristor 0.6 pJ 2 kHz/ nW/μm2 
@360 nm

360–532 nm 22.05 @360 nm 0.25 ms 2023 [217]

0.03 ~ 0.5 nW/μm2

22.2 Hz/nW/
cm2@405 nm

17 @405 nm

0.22 Hz/ nW/
μm2 @532 nm

40 @532 nm
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the level of stimulation needed to activate the nociceptive 
nerve fiber and elicit a pain response (Fig. 19a). Unlike other 
sensory receptors with lower activation thresholds, nocic-
eptors typically have higher thresholds, responding only to 
intense or potentially damaging stimuli. Once the stimuli are 
removed, the activity or sensitivity of nociception decreases, 
a process known as relaxation (Fig. 19b). This relaxation is 
a protective mechanism that helps maintain an appropriate 
pain response, preventing excessive suffering or disability. 
The no adaption process describes the situation where noci-
ceptors do not decrease their activity or sensitivity over time 
in response to a sustained pain stimulus, which plays a sig-
nificant role in the development and maintenance of chronic 
pain. Nociceptive sensation also encompasses allodynia and 
hyperalgesia (Fig. 19c). Allodynia refers to the phenomenon 

where non-painful stimuli can evoke pain under certain con-
ditions, while hyperalgesia is the exaggerated pain response 
to normally painful stimuli.

The use of ASNs to emulate the characteristics of noci-
ceptors has been well presented. As an illustration, Zhu 
et al. [258] reported an artificial spiking nociceptor using 
a pyramidal pressure sensor and a Mott memristor. The 
nociceptor only generates spikes when the applied pres-
sure exceeds a critical value, mimicking the “threshold” 
feature of biological nociceptors (Fig. 19d). Furthermore, 
the “relaxation” and “no adaption” properties were also rep-
licated, as the spiking activity ceased upon the removal of 
pressure and remained constant over long-term pressure. To 
simulate the nociceptive sensation, a wedge is used to apply 
a significant force to the sensor, causing localized damage 

Fig. 18  ASNs with neural network. a Encoding of finger curve. b Classification by SNN. a–b Reproduced with permission from Ref. [267].  
Copyright 2022, Springer Nature. c Tumor stiffness encoding with ASN. d Tumor classification by reservoir computing. c–d Reproduced with 
permission from Ref. [257]. Copyright 2022, John Wiley & Sons. e Working flow of image segment. f Implementing image segment by ASN 
and PCNN. e–f Reproduced with permission from Ref. [274]. Copyright 2020, American Chemical Society
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and creating an “injury” state (Fig. 19e). In this case, apply-
ing the same force to the pressure sensor, the severity of the 
injury is directly proportional to the output frequency of 
the nociceptor, reflecting the “hyperalgesia” characteristic. 
Compared to the normal state, the injured nociceptor exhib-
its a lower pressure threshold for spike generation, dem-
onstrating the “allodynia” characteristic. Likewise, Wang 
et al. [281] proposed a thermally nociceptive system based 
on ATMN in which a core–shell  CsPbBr3@graphdiyne 
nanocrystals is used (Fig. 19f). An integrated thermoelectric 
module is used to detect external thermal stimuli and convert 
them into voltage signals, which can be used to activate the 
ATMN (Fig. 19g). The spiking signals produced are then 
conveyed to a motor controller, commanding the robotic arm 
to escape from a hot source (Fig. 19h). For temperatures that 

do not pose a threat to the nociceptor, the system does not 
generate any output signals, and the robotic arm remains 
stationary. At higher temperatures, the stimulus can be con-
sidered a warning, as prolonged exposure may lead to injury. 
In such cases, spikes are generated with a delay of a few 
seconds, and the robotic arm is directed to flee upon receiv-
ing the spiking signals. For extremely high temperatures, 
fast spike generation prompts the robotic arm to escape rap-
idly. Spiking nociceptors contribute to the development of 
intelligent sensory systems and facilitate the construction of 
humanoid robots, neural prostheses, and neural interfaces. 
Despite the advancements, there are challenges in deploy-
ing ASNs for nociceptive emulation. Biological nociceptors 
are proficient at detecting a wide range of painful stimuli 
and distinguishing between them, showing high sensitivity 

Fig. 19  Nociceptive system with ASNs. a Threshold property of nociceptor. b Relaxation of nociceptor. c Nociceptive sensation. d Threshold 
emulation with ASN. e Schematic of injury state and simulation of nociceptive sensation. d–e Reproduced with permission from Ref. [258].  
Copyright 2022, IEEE. f Structure of memristor. g Circuit of ASN-based nociceptive system. h Nociceptive response of robot arm. f–h Repro-
duced with permission from Ref. [281]. Copyright 2022, John Wiley & Sons
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and selectivity. ASNs-based nociceptors must acquire high 
level of sensitivity and selectivity to accurately detect and 
interpret various pain signals. Moreover, nociceptive signals 
are typically integrated with other sensations to generate 
an accurate perception of pain, highlighting the importance 
of integrating ASN-based nociceptive systems with other 
sensory systems to provide a holistic pain experience. The 
threshold is pivotal, because it determines the onset of pain 
perception and subsequent responses. However, this thresh-
old is not fixed and can vary under different conditions. 
Consequently, developing an ASN-based nociceptor with 
an adaptive threshold could significantly improve its adapt-
ability to diverse environments. Another critical aspect is 
biocompatibility when integrating these ASNs into neural 
interfaces. Ensuring the biocompatibility is crucial to pre-
vent immune reactions, inflammation, or rejection by the 
body, a factor that has yet to be thoroughly investigated. 

Lastly, current ASN-based nociceptive perception systems 
can typically only respond to a single stimulus, which is 
relatively simple. To emulate the human nociception more 
accurate, a system capable of responding to multiple stimuli 
is highly desired.

6.3  Collision Avoidance

Collision avoidance comprises a suite of strategies and 
mechanisms used by organisms to avoid physical contact 
with obstacles or objects in their environment [282, 283]. 
This involves sensory systems to detect potential collisions, 
neural processing to integrate and interpret sensory data, 
and motor responses to navigate around obstacles. Visual 
information is particularly significant, with humans rely-
ing on binocular vision to estimate distances and insects 
like locusts using movement detector neurons to detect 

Fig. 20  Collision avoidance with ASNs. a Working mechanism of collision avoidance of locusts.  Reproduced with permission from Ref. [284]. 
Copyright 2020, Springer Nature. b Spiking response of AVN. c AVN for meeting control system. b–c Reproduced with permission from Ref. 
[289]. Copyright 2021, American Chemical Society. d Spiking generation under different light intensities. e AVN for real-time collision detec-
tion. d–e Reproduced with permission from Ref. [259]. Copyright 2021, Springer Nature
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approaching objects (Fig. 20a). The behavior of movement 
detector neurons is largely governed by angular velocity 
and the size of looming objects [284–286]. More specifical, 
the lobula giant movement detector receives, onto a large 
dendritic fan, excitatory retinotopic inputs that convey, to a 
first approximation, the angular velocity of the approaching 
object. In addition, two dendritic fields arborize in distinct 
regions of the lobula and descending contralateral move-
ment detector receives phasic nonretinotopic, feedforward 
inhibition related to object size. Such collective excita-
tory and inhibitory input leads to a neuronal firing rate that 
increases, peaks, and decreases when a collision becomes 
imminent. Conventional vision chips with very-large-scale-
integration (VLSI) systems, such as silicon retinas and field-
programmable gate array (FPGA) circuits, can implement 
collision avoidance but face challenges in terms of power 
and area efficiency [287, 288]. An optional approach is to 
use AVNs that emulate the firing dynamics of movement 
detector neurons to perform collision avoidance. Recently, 
Pei and colleagues reported an AVN to facilitate the self-
regulation of speed during the meeting process in driver-
less vehicles [289]. When exposed to light, it exhibits an 
increased spiking frequency, indicating its high sensitivity 
to light (Fig. 20b). Additionally, it is responsive to a range of 
visible light wavelengths. These characteristics endorse the 
AVN to be utilized for collision avoidance in driverless cars 
at night, when the distance between vehicles can be evalu-
ated based on the received light intensity (Fig. 20c). During 
the meeting process, two driverless cars approach each other, 
the AVN perceives a higher light intensity when the distance 
between them decreases. This higher intensity triggers an 
increase in the ASN’s output frequency. Noted that the car’s 
speed is controlled by the difference between the maximum 
output frequency and the AVN’s real-time output during the 
meeting. Consequently, the vehicle reduces its speed safely. 
Once the meeting process ends, the light intensity perceived 
by the ASN decreases and the output spike frequency returns 
to its initial state, inducing the driverless car resumes its 
original speed.

Correspondingly, Wang et al. [259] fabricated a biomi-
metic compound eye with 20 × 20 AVN array, composed 
of Ag/few-layer black phosphorous nanosheets (NSs)-
CsPbBr3 perovskite quantum dots (QDs) heterostructure 
(FLBP–CsPbBr3)/indium tin oxide (ITO). The spiking 
frequency of AVNs can be finely adjusted by the light 
intensity, with an initial increase followed by a decrease, 

mimicking the spiking dynamics of movement detector neu-
rons (Fig. 20d). The light response of the AVNs is attributed 
to the significant enhancement of the surface potential in the 
FLBP–CsPbBr3 layer, as illumination on the  CsPbBr3 QDs 
film generates photocarriers. The photogenerated electrons 
can be readily transferred from  CsPbBr3 to FLBP through 
an internal electric field, leaving photo-induced holes in the 
valence band of the  CsPbBr3. To enable collision avoid-
ance, a robotic car platform was developed by integrating 
the AVNs with peripheral circuits (Fig. 20e). A threshold 
value for the spiking frequency is set to control the robot’s 
movement: the robot car will deflect to avoid imminent 
collision when the generated spiking frequency is larger 
than the threshold value. Although some groundbreaking 
developments have been reported, the application of ASNs 
for collision avoidance is still in its early stage. Creating a 
more biomimetic system demands a profound understanding 
of neural circuitry and behavior and development of elec-
tronic devices. Response time is a critical factor for col-
lision avoidance. Current neuromorphic systems operate 
at a time scale of seconds, which is much slower than the 
millisecond response time of biological systems. Moreover, 
relying solely on visual information to implement the colli-
sion avoidance is quite difficult because of the ever-changing 
environment. Incorporating other types of sensors such as 
distance detectors with visual sensors can provide a compre-
hensive and reliable collision detection system.

6.4  Artificial Neural Interfaces

Artificial neural interfaces are systems that establish a con-
nection between the biological nervous system and electrical 
devices or borrow biological ideas to replicate the neural 
pathway. A biological neural pathway includes many neu-
rons and synapses to translate the electrical and chemical 
signals, enabling functions such as sensory perception, 
processing, and motor responses. Thus, artificial neural 
interfaces offer solutions to restore lost sensory or motor 
functions, such as enabling amputees to control prosthetic 
limbs or helping patients with paralysis to interact with 
computers through brain-computer interfaces. As discussed 
above, ASNs can serve as an ideal component to realize 
artificial neural interfaces. Recently, Li et al. [290] devel-
oped a flexible crossmodal ASN based on high-performance 
 VO2 memristors and successfully mimic the behavior of the 
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human neural reflex system for human–machine interfaces 
(Fig. 21a). The ASN can concurrently encode the external 
thermal and pressure stimulus with spikes (Fig. 21b). The 
output spiking frequency is systematically studied, and a 
proportional relationship is established between the spiking 
frequency and applied stimulus (Fig. 21c). With this ASN, 
a flexible in-sensor encoding and the haptic-feedback sys-
tem was presented (Fig. 21d). Under various conditions, the 
robotic arm can be precisely controlled: when a weak pres-
sure is exerted, the robotic arm keeps still, while if a strong 
pressure or a high temperature is detected by the ASN, 
the robotic arm will grasp or loose the object (Fig. 21e). 
Such flexible spiking sensory-feedback hardware system 
effectively mimics human gripping and avoidance actions, 
demonstrating its promising application in human–machine 
interaction. However, the current artificial neural interfaces 
are superficial and not a patch on the biological counter-
part due to the limited understanding of the biological nerv-
ous systems. We can mimic the functionality of biological 

nervous systems but lack the capability of emulating their 
complexity of working mechanisms. Therefore, by collabo-
rating with neuroscientists to replicate the dynamics of bio-
logical neurons at the molecular level and using a bottom-
up strategy to duplicate the electrical and chemical signals 
transmission, we can finally accomplish artificial neural 
interfaces that are similar to the real neural pathway.

7  Conclusion and Perspectives

In this review, recent progress of ASNs, which pose key 
advantages over conventional ADC in respect of hardware 
cost and power consumption, is introduced and summarized. 
By emulating biological sensory neurons, ASNs can effi-
ciently detect and convert external information into spikes, 
showcasing significant potential in artificial intelligence, 
intelligent sensing, artificial prosthetics, and humanoid 
robotics. To date, numerous materials, devices, ASNs, and 

Fig. 21  Artificial neural interfaces with ASNs. a Biological and artificial neural reflex systems. b Spike response of ASN. c Systematic investi-
gation of spiking performance of ASN under various conditions. d Platform of flexible in-sensor encoding and haptic-feedback system. e Real-
time feedback of robotic arm under different stimuli. a–e Reproduced with permission from Ref. [290].  Copyright 2020, Springer Nature
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configurations have been proposed to realize tactile, visual, 
thermal, auditory, olfactory, gustatory, ionic, as well as mul-
timodal encoding, and several intriguing applications have 
been demonstrated. However, to fully leverage the benefits 
of ASNs, there are a myriad of concerns that need to be 
carefully examined at various levels (Fig. 22).

Device level: For the emerging neuromorphic devices 
that are used to construct ASNs, they should possess the 
following properties: CMOS compatibility for large-scale 
fabrication, low operation voltage/current for high energy 
efficiency, excellent uniformity and endurance for precise 
encoding, and environmental stability for reliable perfor-
mance. Although these emerging neuromorphic devices 
offer clear benefits over CMOS-based devices, none of 
them currently meet all the requirements necessary for 
commercializing ASNs. Diffusive memristors can operate 
at ultralow currents, but their significant variations from 
cycle to cycle and device to device greatly hamper their 
applications. Potential solutions such as interface engineer-
ing and structure design have been suggested to improve 
the uniformity by confining/localizing the formation and 
rupture of conducting filament. However, there is still a lot 
of room for optimization. Additionally, the materials used 
in diffusive memristors are not compatible with semicon-
ductor manufacturing processes. It is challenging to scale 
down and integrate them with other mature technologies. In 

contrast, Mott memristors demonstrate excellent uniform-
ity through device optimization such as inserting a buffer 
layer between the top electrode and dielectric layer or care-
fully tuning the stoichiometry of the Mott insulator. Small 
arrays of ASNs based on Mott memristors have also been 
displayed, but large-scale demonstrations are lacking due to 
their incompatibility with CMOS processes. Furthermore, 
the operating current of Mott memristors is relatively high 
(~ mA), resulting in higher power consumption. Changing 
the electrode or inserting a barrier layer between the oxide 
and electrode can effectively reduce the current to micro-
amperes, yet it remains uncompetitive with its rivals [159]. 
Exploring new approaches to lower the power consump-
tion of Mott memristors is essential. STLFETs are 100% 
compatible with current foundry processing, guaranteeing 
excellent uniformity and mass production. The device size 
of STLFETs is larger than memristors, which have a feature 
size of ~ 4  F2, but techniques like 3D integration or gate-all-
around (GAA) structures can greatly enhance density [291, 
292]. This makes STLFETs the most promising candidates 
for practical applications. However, the driving voltage of 
STL MOSFETs is higher (~ 4 V), which poses a potential 
barrier for low-power sensing. Possible solutions to reduce 
the driving voltage include reducing the gate length or using 
materials with narrower bandgaps. For instance, substituting 
Si (1.1 eV) with InGaAs (0.75 eV) can significantly decrease 

Fig. 22  Development roadmap of ASNs from device level to application level
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the operation voltage from 4.2 to 1.3 V [213]. 2D memtran-
sistors shows advantages in visual sensor because of the 
unique optical properties of 2D materials. Despite that, the 
large-area growth of 2D materials with high uniformity and 
quality is tough, which greatly restricts the fabrication of 2D 
memtransistors at the chip level. Although advanced tech-
nologies, for example, chemical vapor deposition (CVD), 
molecular beam epitaxy (MBE), have been employed to 
address this issue, a technique that can cover the benefits of 
cost, materials quality and uniformity is still lacking. Fur-
ther improve current fabrication technologies and develop 
novel synthetic techniques is highly required [145]. The 
ultimate goal of 2D memtransistors is to achieve a complete 
2D CMOS chip, which needs to integrate the memtransis-
tors with other peripheral circuits. Thus, there is still a long 
way due to processing, fabrication, and design constraints. 
Another common concern for memristors, STLFETs, and 2D 
memtransistors is thermal instability. Thermal fluctuations 
can affect the ion movement in memristors, the electron–hole 
pair generation rate and thermionic emission in STLFETs, 
and conductivity in 2D memtransistors. It is reported that 
element doping or materials design is helpful in mitigat-
ing thermal effects in memristors, but the thermal issues in 
diffusive memristors and 2D memtransistors have not been 
extensively explored and should be further examined.

ASN level: As noted above, ASNs typically include 
emerging neuromorphic devices and specialized sensors to 
perform both detection and conversion of external stimuli. 
When calculating the overall area of an ASN, the area of the 
sensor itself must be considered. In practice, the sensor area 
(approximately millimeters squared) is significantly larger 
than that of the emerging devices (approximately nanometers 
squared), which can be inefficient and costly. One potential 
solution to achieve higher compactness in ASN design is to 
develop a 2-in-1 device that integrates sensing and encoding 
function. This approach has been successfully implemented 
for visual encoding using STLFETs, but it has not been 
widely explored for other sensory modalities. Another possi-
ble way is to use advanced microfabrication processing. This 
allows the fabrication of sensors on a microscale or even 
nanoscale. In addition, current works are primarily focused 
on the ability to sense and generate spikes while ignoring 
the sensing performances. For instance, the dynamic range 
of ASNs is generally narrower than that of human percep-
tion. ATTNs struggle to detect subtle pressures, while the 
AVNs are difficult to finish the task of high and low light 

intensity detection. AANs have a limited range of 60–100 
decibels, whereas humans can detect sounds as low as 0 
decibels. AONs and AGNs is applicable for several types of 
stimuli, which is far behind its biological counterpart. This 
challenge can be possibly tackled by carefully matching the 
performance of sensors and artificial neuronal devices, mak-
ing the artificial neuronal devices fully respond to the whole 
dynamic range of sensors. Moreover, an efficient encoding 
process requires ASNs to operate with fast response times. 
The response time is largely determined by the sensor itself, 
as the working speed of the emerging devices is on the nano-
second scale, while the response delay of sensors can be on 
the millisecond or even second scale. It has been proved that 
the response time of the sensor can be enhanced by materi-
als design. The stability and repeatability of ASNs are cru-
cial for reliable long-term operation, but these aspects have 
not been extensively studied in previous works. Given the 
mature technology and development of various sensors, the 
stability and repeatability of ASNs are highly dependent on 
the emerging neuromorphic devices, which may exhibit high 
endurance but suffer from thermal instability. Enhancing 
the thermal stability of emerging devices can significantly 
improve the stability of ASNs. What’s more, there are many 
reports on ATTNs and AVNs, however, the development of 
other types of ASNs is insufficient.

Array level: To validate the feasibility of ASNs for real-
world applications, realizing their functionality at the array 
level is imperative. Small-scale arrays have been shown 
for tactile and visual encoding, but the sensor area remains 
as large as a square millimeter, which is not cost-effective 
[293]. The goal to achieve high-density and high-resolution 
ASN arrays can be realized if several issues are appropri-
ately solved. Firstly, crosstalk between neighboring sen-
sors can lead to unwanted signal propagation and errors 
in encoding. It can be mitigated by complex readout cir-
cuits, but may induce reduced reading speed and increased 
power consumption. Secondly, the use of massive resistors 
and capacitors in ASN arrays leads to significant thermal 
effect because of the IR drop, which degrades performance 
and causes encoding disturbances. A proper circuit design 
to avoid excessive heat dissipation is an alternative way to 
address this issue. Furthermore, multimodal functionality at 
the array level is yet to be shown. Two potential methods to 
achieve multimodal sensing are the integration of multiple 
sensors into a single cell or the detection of multiple stimuli 
using a single sensor. The former method requires complex 
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structure design, fabrication, and signal readout, which may 
hinder high-density array integration. The latter approach 
allows for high-density integration but poses challenges in 
decoupling multiple stimuli without crosstalk. Given the 
potential applications in neural prosthetics, artificial affer-
ent/efferent nerves, and wearable systems, the functionality 
of ASN array on flexible substrates should be investigated, 
which is rare at present.

System level: ASNs are capable of sensing and encoding 
information, but they cannot perform data processing, which 
is crucial for computing and decision-making. To complete 
the data collection, processing, and feedback loop, ASNs 
should be coupled systematically with neural networks and 
actuators. The encoded spikes produced by ASNs serve as 
input to the neural network, demanding a buffer circuit due 
to the inability to directly interface with the synaptic device. 
More importantly, the electrical properties of the synaptic 
device must align with the output of the ASNs, as the output 
voltage amplitudes of different devices vary significantly. 
For instance, diffusive memristor-based sensors have an out-
put amplitude below 1 V, while Mott memristor-based and 
STL FET-based sensors operate at 1 ~ 3 V and above 4 V, 
respectively. In some cases, an external amplifier or attenu-
ator circuit may be required to match the voltage levels. It 
should be pointed out that the interfacing circuits can add 
to the hardware footprint and power consumption, so they 
must be carefully designed. Considering ASNs collaborate 
with spike-based neural network to perform spatiotemporal 
computations, the development of new efficient algorithms 
for training the spike-based neural network remains an active 
research field because the well-established back-propagation 
algorithm used for deep neural networks is not applicable 
to spike-based neural networks. To maximize the utility of 
ASNs in a system context, long-term support from software 
tailored for neuromorphic computing is necessary. How-
ever, unlike traditional computing systems, which are built 
upon a well-defined hierarchy built on the concept of Turing 
completeness and the von Neumann architecture, there is no 
universally accepted system hierarchy or concept of com-
pleteness for neuromorphic computing [294].

Application level: ASNs provide an energy-efficient way 
for signal sensing and converting, which can be used in vari-
ous applications where sensors are indispensable. A typical 
scenario is intelligent autonomous systems [295]. Numer-
ous autonomous applications impose stringent limitations 
on the physical implementation of AI and machine learning 

for autonomous operations, including restrictions on energy 
or power consumption as well as requirements for real-time 
processing. Neuromorphic computing system with ASNs 
offers one path for resource-constrained intelligent auton-
omous systems. One challenge for neuromorphic autono-
mous systems is the limited availability of neuromorphic 
hardware. Though neuromorphic chips such as Intel’s Loihi, 
IBM’s TrueNorth, Tsinghua’s Tianjic have been developed, 
the hardware that can convert the external signals to spikes 
are quite limited, especially in tactile, olfactory, auditory, 
thermal and gustatory domain. With the ASNs, this issue can 
be well addressed and extend the applications of neuromor-
phic autonomous systems. In order to achieve the desired 
goal, several requirements of ASNs should be taken into 
account. First, the ASNs should support the resilient opera-
tion of autonomous systems considering the complexity of 
the work environment. Second, the response of ASNs should 
be fast to make sure the autonomous systems can process 
the signals in real time. Third, the ASNs should be capable 
of implementing the multimodal fusion, which is beneficial 
for the accurate interaction between the autonomous systems 
and environments. Forth, it is better for the ASNs to work 
with traditional sensors to harness their mutual advantages. 
Here, we illustrate the application of ASNs for autonomous 
systems. In reality, the requirements of ASNs varies with 
different applications.

Despite being in its infancy, studies on ASN have show-
cased immense promising for high energy-efficient sens-
ing and encoding. Collaborations between neuroscientists, 
device engineers, algorithm developers, software designers, 
and systems engineers can effectively address the challenges 
faced by ASNs. It is believed that these joint efforts not only 
have the potential to significantly advance the application of 
ASNs but also can propel the development of neuromorphic 
hardware and systems.
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