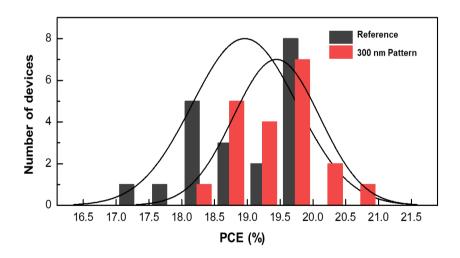
Supporting Information for

Moth-eye Structured Polydimethylsiloxane Films for High-efficiency Perovskite Solar Cells

Min-cheol Kim^{1, 2,#}, Segeun Jang ^{3,#}, Jiwoo Choi^{1, 2}, Seong Min Kang^{4,*}, Mansoo Choi^{1, 2,*}

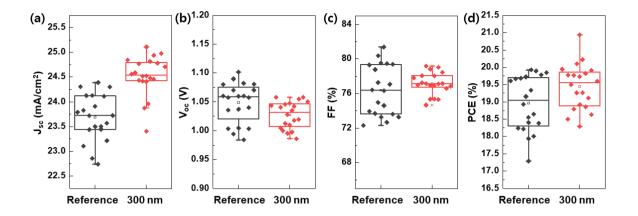
¹Global Frontier Center for Multiscale Energy Systems, Seoul National University, Seoul 151-744, Korea

²Department of Mechanical and Aerospace Engineering, Seoul National University, Seoul 151-744, Korea


³Department of Mechanical Engineering, Hanbat National University, Daejeon 34158, Korea

⁴Department of Mechanical Engineering, Chungnam National University, Daejeon 34134, Korea

*Min-cheol Kim and Segeun Jang contribute equally to this work


*Corresponding authors. E-mail: smkang@cnu.ac.kr (Seong Min Kang); mchoi@snu.ar.kr (Mansoo Choi)

Supplementary Figures

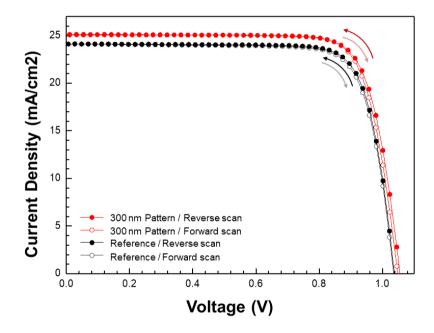


Fig. S1 The PCE distribution histogram of the perovskite solar cell with and without motheye PDMS pads for 20 devices

Nano-Micro Letters

Fig. S2 Photovoltaic parameters (**a** J_{sc} , **b** V_{oc} , **c** FF, **d** PCE) distribution box chart of the perovskite solar cell with and without moth-eye PDMS pads for 20 devices

Fig. S3 Comparison of hysteresis behavior for the perovskite solar cell with and without moth-eye PDMS pads by measuring reverse and forward scan of *J-V* curves