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Ti3C2Tx Composite Aerogels Enable Pressure 
Sensors for Dialect Speech Recognition Assisted 
by Deep Learning
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HIGHLIGHTS

• Emphasized the innovation in both the material design and methodology between the sensing performance and mechanical properties.

• The composite aerogel pressure sensors exhibited low hysteresis (13.69%), wide detection range (6.25 Pa-1200 kPa), and cyclic 
stability to acquire stable and accurate pronunciation signals.

• Over 6888 and 4158 pronunciation signals were collected by the pressure sensor and utilized for training the convolutional neural 
network model, allowing for accurate recognition of six dialects (96.2% accuracy) and seven words (96.6% accuracy).

ABSTRACT Wearable pressure sensors 
capable of adhering comfortably to the 
skin hold great promise in sound detection. 
However, current intelligent speech assistants 
based on pressure sensors can only recognize 
standard languages, which hampers effective 
communication for non-standard language 
people. Here, we prepare an ultralight  Ti3C2Tx 
MXene/chitosan/polyvinylidene difluoride 
composite aerogel with a detection range of 
6.25 Pa-1200 kPa, rapid response/recovery 
time, and low hysteresis (13.69%). The 
wearable aerogel pressure sensor can detect 
speech information through the throat muscle vibrations without any interference, allowing for accurate recognition of six dialects (96.2% 
accuracy) and seven different words (96.6% accuracy) with the assistance of convolutional neural networks. This work represents a significant 
step forward in silent speech recognition for human–machine interaction and physiological signal monitoring.
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1 Introduction

Spoken recognition as a branch of speech recognition 
can assist people with language barriers as well as 
human–computer interactions to express ideas and give 
instructions. The present spoken recognition involves 
the detection of sound waves directly, including spectral 
analysis, extraction and comparison of acoustic features, and 
acoustic texture analysis [1–3]. However, the direct detection 
approach is susceptible to interference by the transmission 
media, ambient noise, and the physiological state of the 
speakers. Speech recognition through mechanical sensors 
can avoid these defects by detecting the vibration of throat 
muscles based on the anatomical foundation of the throat 
during vocalization [4–7].

Wearable pressure sensors that can convert throat 
vibrations into visualized electrical signals have received 
widespread attention in detecting speech information [8–11]. 
Initially, speech recognition was mainly implemented by 
comparing the waveforms of electrical signals of throat 
vibrations captured using pressure sensors or tactile 
sensors [12, 13]. In addition, the pressure sensor can 
detect vibrations within the throat muscles and distinguish 
different pronunciations by simple signal processing, such 
as calculating the slope of signal peaks and comparing peak 
widths [14]. With the advancement of artificial intelligence 
(AI) technology, machine learning was introduced to 
build models for training and recognition of different 
pronunciations, particularly the combination of pressure 
sensors and machine learning [15–20]. Convolutional neural 
network (CNN) and support vector machine have frequently 
been introduced to identify the collected pronunciation 
signal for speech recognition [8, 21]. However, pressure 
sensors for speech recognition are currently restricted to 
identifying standard languages, which hampers effective 
communication for dialect speakers [5, 22]. For tone 
languages, the differences between dialect pronunciations 
are tone and pitch, which are generated by the throat muscles 
controlling the movement of the hyoid bone and cartilage. 
The elevation or depression of voice pitch is closely related 
to the contraction and relaxation of the throat muscles. The 
primary challenge in dialect recognition through pressure 
sensors with narrow-detection range and hysteresis lies in 
the difficulty in capturing the subtle and rapid vibrations of 
throat muscles during the vocalization process [23]. These 

factors place stringent demands on the pressure-sensing 
performance, such as low detection limit, high stability, and 
hysteresis characteristics.

To fulfill the requirements for speech recognition, 
 Ti3C2Tx MXene has emerged as a promising candidate 
for wearable pressure sensors due to its adjustable layer 
spacing and superior conductivity [24–26]. However, pure 
 Ti3C2Tx typically suffers from mechanical brittleness and 
oxidization, rendering it susceptible to collapse during 
repeated cycles [27]. To prevent sensitivity degradation 
under mechanical stimuli, compositing  Ti3C2Tx layers with 
a nanostructured polymer matrix offers enhanced specific 
surface area and more contact points [28]. An aerogel 
structure with high porosity is essential for creating efficient 
electrical connections and increasing the compressibility 
of the sensor layer [29], resulting in changes in electrical 
conductivity when exposed to external pressure. Chitosan 
(CS), as a polysaccharide biopolymer, may substantially 
increase the degree of freedom in molecular movement, 
ultimately improving flexibility by forming robust hydrogen 
bonding between the biopolymer and  Ti3C2Tx [30, 31]. 
Polyvinylidene difluoride (PVDF) short fibers, serving as a 
reinforcing phase, improve the durability of the aerogel by 
providing reversible deformation under high pressure as well 
[32–35]. Compared to the widely used conductive aerogel 
for pressure sensor, this polymer fibers reinforcement 
aerogel outperforms conductive aerogel by leveraging low 
density, excellent reversible deformation under high pressure 
for wide detection range, as well as low detection limit 
attributed to low compression modulus for the acquisition 
of small signals during speech recognition. Therefore, 
compositing polymers into  Ti3C2Tx-based aerogels is a 
feasible approach to achieving wearable pressure sensors 
with enhanced sensitivity and mechanical stability.

Herein, we have fabricated wearable pressure sensors 
based on the laminar-like aerogel structure of  Ti3C2Tx 
MXene/CS/PVDF composites (Fig. 1a). A CNN algorithm 
is adopted to manage the sensing information acquired by 
pressure sensors, leading to accurate dialect recognition 
(96.2% for six dialects and 96.6% for seven common 
vocabularies) that can satisfy the communication demand 
for dialect-speaking people (Fig. 1b). This work propels the 
development of pressure sensors for dialect recognition.
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2  Experimental

2.1  Preparation of  Ti3C2Tx MXene Nanosheet

Ti3C2Tx MXene nanosheets were synthesized by less vio-
lently etching the  Ti3AlC2 (Jilin 11 Technology Co., Ltd., 
China) utilizing LiF/HCl mixed solution for removing 
the Al layer from the MAX phase. First, 2 g LiF (Alad-
din, > 99.99%) was slowly dissolved in 80 mL 12 M HCl 
(Xilong Scientific Co., Ltd.) in a Teflon lining with vigor-
ous stirring for 15 min at room temperature. 2 g  Ti3AlC2 
was then gradually added into the above mixed solution and 
reacted at 45 °C of water bath for 24 h. After etching, the 
resultant mixture was repeatedly centrifuged for 8 min at 
8000 rpm until the pH of the supernatant reached 6 ~ 7. The 
clay mixture was ultrasonically dispersed in an ice bath at 
350 W for 1 h. Finally,  Ti3C2Tx MXene nanosheets were 
obtained by centrifugation at 10,000 rpm for 10 min.

2.2  Preparation of PVDF Fibrous Membrane

PVDF fibrous membranes were prepared by solution electro-
spinning. The electrospinning precursor solution was 8 wt% 

PVDF (Solef 6010, Solvay S.A) in DMF and acetone mixture 
(7/3, w/w) and placed in 10 mL syringes with a 19 g blunt 
needle and controlled by programmed syringe pumps with 
0.8 mL  h–1 feed rate. 16 kV high voltage was provided by a 
high voltage power supply with a nozzle-to-collector distance 
of 18 cm. In the electrospinning process, the environment 
humidity and temperature were fixed at 58 ± 2%, 20 °C.

2.3  Preparation of MX/CS/PVDF Aerogels

0.5 g above PVDF fibrous membrane was put into 500 mL 
deionized water and broken into suspension by a high-speed 
blender for 10 min. Then, 2.5 g CS (Aladdin, degree of dea-
cetylation ≥ 75%) and 5 mL acetic acid (Xilong Scientific Co., 
Ltd., > 99.5%) were dissolved in the above mixture. After stirring 
for 20 min, the different weight of  Ti3C2Tx MXene nanosheet 
was added into CS/PVDF suspension, and the weight ratios of 
 Ti3C2Tx and CS were 0.5/1, 1/1, 1.5/1, 2/1, respectively.

Homogeneous aerogel precursor solutions were obtained 
by ultrasound treatment for 20 min. Then, 8 mL aerogel 
precursor was injected into 4 × 4 × 4  cm3 Teflon mold and 
was directly frozen from the bottom by liquid nitrogen. 
Subsequently, the mixture was freeze-dried in a vacuum 

Fig. 1  a Schematic preparation of MX/CS/PVDF aerogel. b Wearable  Ti3C2Tx-based aerogel pressure sensor for dialect speech recognition
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lyophilizer (Beijing Biocool Co., Ltd., FD-1A-50) for 16 h. 
Herein, the sample was defined as MX/CS/PVDF-x (x = 0.5, 
1, 1.5, 2), where x was represented as the ratio between 
 Ti3C2Tx MXene and CS.

2.4  Characterizations

The morphology of  Ti3C2Tx MXene nanosheet, PVDF 
fibrous membrane, and MX/CS/PVDF-x (x = 0.5, 1, 1.5, 
2) was observed by scanning electron microscopes (SEM, 
Hitachi TM4000Plus and FESEM, JEOL JSM-7900F) with 
an acceleration voltage of 5 kV. The morphology of  Ti3C2Tx 
MXene was observed by transmission electron microscopy 
(TEM; JEM 2100 F) with an acceleration voltage of 200 kV. 
The surface properties were determined by an atomic force 
microscope (AFM, CSPM5500). The chemical components 
and structure over a range of 4000–400  cm−1 were measured 
by a Fourier-transform infrared spectroscopy spectrometer 
(FTIR, Nicolet iS10). The crystalline structures were 
characterized by wide-angle X-ray diffraction (XRD, Rigaku 
D/Max 2550) in the 2θ range from 3° to 50° with Cu Kα 
radiation (λ = 1.5418 Å). The scanning rate was 5°  min−1. 
The chemical composition of the  Ti3C2Tx-based aerogel 
surfaces was examined by X-ray photoelectron spectroscopy 
(XPS, ESCALAB 250) with an X-ray source (Al Kα 
hυ = 1486.6 eV). The Raman spectra from 100 to 2000  cm−1 
were analyzed using a 632 nm laser by a Raman confocal 
micro-spectrometer (LabRAM HR Evolution, Horiba, France). 
The specific surface area and pore size distribution were 
measured by nitrogen adsorption/desorption isotherms through 
Brunauer–Emmett–Teller (BET, Autosorb-iQ-C).

Pressure-sensing performances: The different pressure con-
ditions were achieved by a digital force gauge (M5-5, Mark10), 
electrodynamic measuring table (ESM303, Mark10) and 
compression testing machine with TRAPEZIUM X pressure 
acquired software (AGS-X 500 N, Shimadzu, Japan). The real-
time current change of the sensor was measured by connect-
ing the digital multimeter (Keithley DMM7510) with 0.1 V 
DC voltage provided by a DC power supply (DPS-305BM). 
The response  (RI) was defined as relative current change (ΔI/
I0), where ΔI represents the change of the current between 
the loading pressure state and the initial state. Additionally, 
the sensitivity (S) of the pressure sensor was defined as δRI/
Δp, where p refers to the intensity of pressure. The electrical 

hysteresis was defined as ratio of the area beneath ΔI/I0 curves 
under loading and unloading.

where  Sloading and  Sunloading represent the integral area of 
the ΔI/I0 and pressure curves under pressure loading and 
unloading, respectively.

2.5  Finite Element Simulation of the Stress 
Distribution

The COMSOL Multiphysics software was utilized to con-
duct the finite element (FE) simulation. For simulating the 
stress distribution, the “Solid mechanics” module, coupled 
with the “Stationary” study, was employed. First, we build 
the geometric model of the pressure sensor. The laminated 
aerogel was set to be six rectangles with 4 mm width and 
0.005 mm height, and the applied force was distributed 
on a semicircle given a non-deformable metal material 
with a radius of 1 mm. Moreover, six contact pair nodes 
were set between the stress loaded object and the aero-
gel top surface layer, the aerogel lamellae, respectively. 
Subsequently, the left and right boundaries of the aerogel 
lamellae were set as fixed constraint node and the mesh 
was constructed on the models by Free Triangular feature 
node. Ultimately, the computation was executed to acquire 
the distribution of the stress for aerogel when subjected to 
different pressures.

3  Results and Discussion

3.1  Preparation and Characterization of MX/CS/PVDF 
Aerogels

The fabrication process of  Ti3C2Tx MXene/CS/PVDF 
(MX/CS/PVDF) composites aerogels is displayed 
in Fig.  S1. The monolithic  Ti3C2Tx (lattice stripe 
spacing: ~ 0.251 nm, Fig. S2), CS, and PVDF fibers (Fig. 
S3a) suspension were mixed uniformly followed by freeze-
drying to yield an aerogel (Fig. S3b). SEM images of the 
interconnected and lamellar-structure aerogel (Fig. 2a) 
revealed the evolution of MX/CS/PVDF-x aerogel 
morphology with increased  Ti3C2Tx concentrations. 

(1)Hysteresis(%) =
Sunloading − Sloading

Sloading
× 100%
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MX/CS/PVDF-0.5 showed a tighter structure with less 
space between the lamellae. The space became wider 
and the structure evolved more loosely in MX/CS/
PVDF-1. However, higher  Ti3C2Tx content resulted in 
the congregating and compact structure of the aerogel, 
because of the strong intermolecular forces between 
 Ti3C2Tx nanosheets. SEM and elemental mapping images 
of MX/CS/PVDF lamellae indicated that  Ti3C2Tx were 
evenly distributed in aerogel due to the strong hydrogen 
bond between CS and  Ti3C2Tx. The PVDF short fibers 
were randomly distributed within the aerogel, locating 
between the layers of the aerogel sheet, embedded within 
the aerogel lamellae, and on the surface of the aerogel 

lamellae (Figs. S4-S6). The AFM images proved the 
evolution of aerogel surface roughness and morphology 
with increased  Ti3C2Tx concentrations (Fig. S7).

The structure of MX/CS/PVDF aerogels was characterized 
by XRD, Raman, FTIR, and XPS. The XRD pattern showed 
that the (002) peak shifted toward the low-angle direction 
and a decrease in intensity, indicating expanded layer 
spacing of the  Ti3C2Tx layer caused by the addition of CS 
and PVDF nanofibers (Figs. 2b and S8). The  A1g, relevant 
to the out-of-plane vibration of Ti and C atoms, shifted 
from 151 to 194  cm−1 and the cell surface unit deformed 
in Confocal Raman spectroscopy (Fig. 2c) [36]. The robust 
hydrogen bonding between CS and  Ti3C2Tx was confirmed 

Fig. 2  Characterization of MX/CS/PVDF aerogels. a SEM images of the cross-section morphologies. b XRD patterns and c Raman spectra 
of  Ti3C2Tx nanosheet and MX/CS/PVDF aerogels. d FTIR spectra of  Ti3C2Tx nanosheet, CS/PVDF, and MX/CS/PVDF-1 aerogel. e O 1s XPS 
spectra of  Ti3C2Tx nanosheet, MX/CS/PVDF aerogels. f  N2 adsorption–desorption isotherms of MX/CS/PVDF aerogels. g Photograph of an 
ultra-lightweight aerogel cut into 2 × 2  cm2 pieces placed on the taraxacum mongolicum
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Table 1  Comparison of the density and maximum stress between the prepared conductive aerogel in this article and previous articles

Density (mg  cm−3) Maximum stress (kPa) Material References

66.3  ~ 89.4 (100 cycles) MXene@carboxylated carbon tube/carboxymethyl chitosan [57]
10.3  ~ 58 Polyimide/carbon tube [58]
25  ~ 49.8 MXene/aramid nanofibers [59]
10  ~ 1.2 Polysiloxane cross-linked MXene [60]
50  ~ 40 Sodium alginate/MXene/polydimethylsiloxane [61]
17 Graphene oxide/dopamine/polyaniline [62]
7–20.7  ~ 30 MXene/chitosan [63]
14.67 Polypyrrole/cellulose acetate [64]
13.3  ~ 30 Alkali lignin/carbon nanofiber [65]
11.2 Poly(3,4-ethylenedioxythiophene):polystyrene sulfonic acid/carbon nanofiber [66]
6.7 Carbon nanofiber-Graphene oxide/glucose-kaolin carbon [67]
25.6  ~ 22.5 (3000 cycles) R-graphene oxide/polyimide [68]
8.16  ~ 75 (300 cycles) Graphene oxide/hydroxypropyl methyl cellulose [69]
20.54  ~ 800 (100 cycles) Polyacrylonitrile nanofibers/polyvinyl alcohol/carbon tube/hydrophobic octa-

decylamine functionalized r-graphene oxide
[70]

12.6–26.5 FeS2/carbon tube [71]
7.48  ~ 6 (100 cycles) Carbon nanofiber/carbon tube/MXene [72]
12 AgNWAs/carboxymethyl cellulose [73]
42.7  ~ 50 Chitosan/carbon tube [74]
260 MXene/carbon nanofiber/thermoplastic urethane [75]
200–300 Carbon tube [76]
228  ~ 800 (1000 cycles) Graphene armor [77]
6.86  ~ 108 (100 

cycles)/1769.5 (1 cycle)
Ti3C2Tx MXene/chitosan/polyvinylidene difluoride This work

Fig. 3  Piezoresistive effect of MX/CS/PVDF aerogel pressure sensor. a Schematic of the pressure sensor under different load pressures. 
b Illustration of MX/CS/PVDF lamellae deformation states and the electron transport process under different pressures. c Compressing 
deformation mechanism of MX/CS/PVDF-1 pressure sensor explained by FE simulation. The color contours represent the microscopic strain of 
the aerogel structure during the deformation process
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by broadening and blue shift of peaks around 2240  cm−1 
of MX/CS/PVDF-1 compared to  Ti3C2Tx and CS/PVDF 
aerogel (Fig. 2d) [37]. Moreover, the vibration peaks of 
Ti–O, -NH, -CF2, and β phase could be observed in the 
FTIR spectra, indicating the successful preparation of MX/
CS/PVDF aerogel [38]. The chemical states and bonding 
configurations were revealed by XPS patterns (Fig. 2e). The 
O 1s peak showed that the oxidation of  Ti3C2Tx was retard 
as a result of the formation of hydrogen bonds between 
 Ti3C2Tx, CS, and PVDF. The involvement of CS and PVDF 
reduced the peak area of the  TiO2 phase. However, an 
excessive amount of  Ti3C2Tx increased the oxidation process 
due to the exposure of susceptible oxidation groups [39].

The MX/CS/PVDF-x aerogel had a high specific surface 
area of 25.025  m2  g−1 (Fig. 2f inset) and ultralow density 
(ρ < 6.86 mg  cm−3) of MX/CS/PVDF-1, which could be 
placed on the surface of the taraxacum mongolicum with-
out deformation (Fig. 2g). The  N2 adsorption/desorption 
isotherms of MX/CS/PVDF-x exhibited a representative 
H3 hysteresis loop and II isotherms (Fig. 2f), indicating 
that the adsorption of  Ti3C2Tx-based aerogel occurred as 
a multilayer reversible adsorption process on the surface of 
mesoporous or macroporous [40–42]. Moreover, the inflec-
tion point was located near the monolayer adsorption and the 
multilayer absorption was developed with P/P0 increasing. 
The limit equilibrium adsorption value cannot be observed 
from the isotherm due to the endless absorption layers.

The stable mechanical properties of MX/CS/PVDF were 
demonstrated by repeated compression–relaxation tests (Fig. 
S9a-c). Compared with  Ti3C2Tx MXene/CS aerogel (Fig. 
S9d-f), the MX/CS/PVDF aerogel exhibited elasticity that 
could fully recover to the original state as the load pressure 
(35.39 -1769.5 kPa) was removed. The durability of MX/
CS/PVDF-1 revealed almost no attenuation of the ultimate 
stress during 100 cycles of repeated compression–relaxa-
tion. In contrast to  Ti3C2Tx MXene/CS, the addition of 
PVDF short fibers served as reinforced phase remarkably 
enhanced the durability and mechanical stability of aerogel. 
When suffering high pressure, the reinforced phase buffered 
and dispersed most of the stresses, prevented irreversible 
deformation and prevented damage to the conductive path-
ways of the substrate materials. The MX/CS/PVDF aerogel 
exhibited extraordinary performances such as lightweight 
and mechanical properties compared with conductive aero-
gel in previous work (Table 1).

3.2  Pressure‑Sensing Performance

The pressure sensor was fabricated by fixing the copper 
wires as electrodes on the top and bottom surfaces of the 
MX/CS/PVDF aerogel and then simply encapsulated with 
waterproof and flexible polyurethane (PU) with 14 μm 
thickness (Fig. S10). The effect of the encapsulation layer 
thickness and sensitive materials thickness on the sensing 
performance was investigated in Supporting Information 
(Figs. S11-S14). Figure  3a demonstrates the strain 
behavior where the top thin lamellae of MX/CS/PVDF 
were bent and deformed under ultralow applied pressure, 
while the inner  Ti3C2Tx nanosheets become closer. When 
the load pressure increased, the top thin lamellae and 
the bottom of MX/CS/PVDF underwent deformations. 
Therefore, the conductive pathway of MX/CS/PVDF 
aerogel increased with an accelerated electron transport 
rate, resulting in a larger relative current (Fig. 3b). The 
sharp increase in conductive pathways was contributed 
by the deformations of  Ti3C2Tx-based lamellae and the 
increase in contact area of MX/CS/PVDF lamellae. As 
the load pressure continued to increase, MX/CS/PVDF 
lamellae stopped deforming. The contact area between the 
lamellae expanded until full contact was established and 
conducting pathways were no longer increased, while the 
electron transport rate reached maximum.

To illustrate the working mechanism of the MX/CS/PVDF 
aerogel-based pressure sensor, finite element simulations 
were conducted to calculate the stress distribution during the 
loading process (Fig. 3c). By applying a small load pressure, 
the stress was distributed throughout the top aerogel 
lamellae, causing a fraction of the aerogel to deform when 
it came into contact with one another. The stress distribution 
range and the contact area between the aerogel lamellae both 
grew with increasing load pressure. This process of change 
aligned with the actual situation.

The sensing performances of MX/CS/PVDF aerogel 
were measured under various levels of pressure. MX/CS/
PVDF-1 exhibited the highest sensitivity in the pressure 
range of 0–1200 kPa (Fig. 4a). The mechanism was that the 
sensitivity of the pressure sensor was primarily associated 
with the number of conductive pathways inside the aerogel 
before and after pressure loading and unloading, and the 
number of conductive pathways of the MX/CS/PVDF-x 
sensor was determined by the content of  Ti3C2Tx nanosheets 
and specific surface area. Owing to low  Ti3C2Tx content 
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and specific surface area, a sufficient number of conductive 
pathways could not be established inside MX/CS/PVDF-
0.5 aerogel, and the conductive pathways did not change 
much even after loading pressure (Fig. S15a). For MX/CS/
PVDF-1.5 and MX/CS/PVDF-2, due to the excessively 
high  Ti3C2Tx content and the reduced specific surface area, 
sufficient conductive pathways were already established 
within the aerogel without pressure loading being received, 
so that the number of conductive pathways did not change 
much when pressure loading was applied (Fig. S15c, d).

With load pressure continuously increasing from 265 Pa 
to 1200  kPa, the relative current intensity gradually 
increased, allowing for effectively distinguishing different 
levels of load pressure (Figs. 4b and S16). The sensitivity 
ratio for MX/CS/PVDF-1 was 0.11  kPa−1 in the range of 
0–106 kPa (Fig. S15b). As applied pressure increased from 
106 to 400 kPa, the sensitivity decreased to 0.055  kPa−1, 
and when the pressure was higher than 400  kPa, the 
sensitivity was decreased to 0.022  kPa−1. Therefore, the 
sensing performance of MX/CS/PVDF-1 with the optimal 
output signal would be explored under different input load 

Fig. 4  Pressure-sensing performances of MX/CS/PVDF-1 aerogel pressure sensor. a Response-pressure curves of MX/CS/PVDF with different 
 Ti3C2Tx concentrations. b Relative current changes under load pressure of 265 Pa-1200 kPa. c The I-V curves of the MX/CS/PVDF-1 sensor 
under different load pressures. d Response and recovery time at a pressure of 17.69 kPa. e The variation of I-t curves with different running 
frequencies load pressure. f Instantaneous response of I-t and P–t curves. g Durability test under 6000 loading/unloading cycles at a pressure of 
22.12 kPa, inset shows the enlarged curve for the first seven cycles and last seven cycles. h Performance comparison of piezoresistive sensors
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pressures. Figure 4c illustrates the excellent linear relation 
of the current–voltage (I-V) curves from -0.3 to 0.3 V under 
various load pressures from 0 to 1728 kPa. It indicated 
that the ohmic contacts were formed between the MX/CS/
PVDF-1 sensing layer and Cu electrodes [43]. Notably, 
as the load pressure increased, the slope of the I-V curves 
became steepen, indicating a decrease in device resistance 
and a subsequent rise in current.

This MX/CS/PVDF-1-based pressure sensor exhibited a 
rapid response/recovery time of 72 ms under 17.69 kPa load 
pressure (Fig. 4d). MX/CS/PVDF-1 emerged with extraordi-
nary stability and distinguishable response signal at different 
frequencies from 0.1 to 0.75 Hz (Fig. 4e), from 0.54 Hz to 
1.96 and 2.47 Hz (Fig. S17). The low hysteresis of 13.69% 
is demonstrated in Fig. S18 and further confirmed by the 
output current change signal and the consistency of the input 
load pressure and current signals during pressure loading 
and unloading (Fig. 4f). Additionally, little attenuation and 
a nearly identical relative current change were observed dur-
ing 6000 cycle tests at 22.12 kPa pressure. The identical 
current amplitude of the initial and end states proved the 

durability (Fig. 4g). The long-term stability of the MX/CS/
PVDF-1 pressure sensor was confirmed by the consistency 
of the initial current and the relative current change under 
15.91 kPa over a period of one month (Fig. S19). The ini-
tial current was stable for 31 days and the relative current 
response to pressure had no significant attenuation. MX/CS/
PVDF-1 pressure sensors demonstrated superior stability 
under varying ambient humidity and temperature, and it was 
discussed extensively in Supporting Information (Fig. S20).

The pressure sensor can detect a low load pressure of 
6.25 Pa (Fig. S21). It attributed to an ultralow compression 
modulus of 0.234 kPa of MX/CS/PVDF-1 that deformed 
under ultralow load stress and generated visual electrical 
signals (Fig. S12a). There was a factor responsible for this 
instance that the elongated chain structure was formed in 
aerogel by hydrogen bonding between chitosan and  Ti3C2Tx 
for the increased freedom degree of molecular movement. 
Moreover, the pressure sensor demonstrated a revisable 
deformation under high pressure due to the introduction 
of PVDF short fibers which ensured the reversible output 
response signals under wide detection range (Fig. S22a-c). 

Fig. 5  Real-time monitoring of human physiological signals using the piezoresistive sensor. a Relative current change of finger bending angle 
from 0 to 30, 45, 60, 90 degrees. b Real-time recording of the heartbeat waveform. c Real-time recording of the wrist pulse waveform (The inset 
illustrates the enlarged view of the pulse vibration waveform). d Detection of human physiological signals when the MX/CS/PVDF-1 was fixed 
on the throat of a 24-years-old volunteer: e Cough, and f Say “MXene”
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Taken together, the detection ranges of the MX/CS/PVDF-1 
outperformed previously reported aerogel-based pressure 
sensors, with a low detection limit of 6.25 Pa, maximum 
detection range of 1200 kPa, and excellent stability (Fig. 4h) 
[44–56]. The effect of PVDF fibers length and the laminated 
structure or random structure on the sensing performance 
was further investigated in Supporting Information (Figs. 
S22-S24).

To further evaluate the practical feasibility, a MX/CS/
PVDF-1 pressure sensor was placed on the joints and vocal 
cords of the human body to detect human physiological 
signals. It was observed that the action and physiological 

state of the human body could be distinguished by 
comparing the output signal shape and intensity of the curves 
in Fig. 5. The pressure sensor can effectively distinguish 
items weighing from 100 mg (22.6 Pa) to 20 g (1.48 kPa) 
and bending angles in the range from 0° to 90° (Figs. S25a 
and 5a). The output signal intensity varied significantly 
when the volunteers pressed manually between the relative 
low-pressure range and high-pressure range (Fig. S25b). 
The heartbeat and the pulse, as an important physiological 
signals of the human body, was detected by attaching to 
the chest and wrist of a 24-year-old volunteer (Fig. 5b, c). 
The periodic and stable wrist pulse with a regular beating 

Fig. 6  Dialect speech recognition assisted by deep learning. a Pressure sensor was fixed on the throat for speech recognition. b Continuous 
current signal images generated by seven vocabularies in six Chinese dialects. c Confusion matrix of the CNN algorithm for six different 
Chinese dialects. d Confusion matrix of the CNN algorithm for seven words in different Chinese dialects
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of 108 beats per minute was illustrated, where three faint 
characteristic peaks percussion wave (P), tidal wave (T), 
and diastolic wave (D) of the human pulse could be clearly 
distinguished (Fig.  5c). Furthermore, human actions 
including swallowing, yawning, and coughing could be 
precisely detected when the sensor was placed on the throat 
(Figs. 5c, e, and S25c, d). Meanwhile, it can accurately 
capture the throat vibration during human pronunciation, 
which showed significant differences in waveforms of 
“Wearable,” “Sensor,” and “MXene” (Fig. 5f and S25e, f).

3.3  Dialect Speech Recognition Based on MX/CS/
PVDF‑1 Pressure Sensor

For non-standard language people, it is extremely compli-
cated to communicate with the natives using standard lan-
guage when they need to hospitalize out-of-town or migrant 
work. The same dialect shares similar spoken speed, sylla-
bles, and pitches, and therefore, generates specific electrical 
signal waveforms, which can be effectively distinguished 
between dialects. When saying the same word in different 
dialects, there are similarities in both syllables and pronun-
ciation patterns for the same language (Fig. S26). The MX/
CS/PVDF-1-based pressure sensor demonstrated low detec-
tion limit (6.25 Pa), wide detection range (~ 1200 kPa), and 
low hysteresis (13.69%) that superior the previous pressure 
sensor for speech recognition and could acquire stable sig-
nals (Table S1).

To satisfy the demand for dialect speech recognition, the 
MX/CS/PVDF-1 based pressure sensor was fixed on the 
throat of six dialect speakers from Nantong, Liaocheng, 
Jiutai, Shuozhou, Xi’an, and Hefei. The selected dialects 
were representative and were primarily associated with 
geographic distribution from each of the six provinces in 
the eastern, northern, central, western, and southern parts 
of mainland China. To further improve the accuracy of 
identification, the dialects with similar pronunciation such 
as Hefei and Nantong dialects belonging to the Mandarin 
of Jianghuai, Shuozhou, and Xi’an dialects belonging to 
the Central Plains Mandarin were selected. Moreover, 
the sensing signals were obtained for further training and 
recognition when the dialect speakers spoke seven daily 
instructional words such as “stop,” “sleep,” “turn left,” 
“turn right,” “eat,” “drink,” and “go home.” Deep learning 
algorithms are employed for dialect speech recognition 

to achieve precise categorization and dialect recognition 
(Fig.  6a). Convolutional neural networks (CNNs), a 
translation invariant classification algorithm based on 
sophisticated mathematical theory, are widely utilized to 
mimic the cognitive learning ability of the human brain for 
image processing and categorization. Here, we developed 
a CNN algorithm with an 11-layer network for accurate 
classification of dialect types and the common vocabulary 
in the different dialects (Fig. S27). Over 6888 and 4158 
vocalization vibration signals on the throat were collected 
by the sensor for training a CNN model to identify 7 
vocabularies and 6 Chinese dialects, respectively (Fig. 6b).

The filtered processed electric signals are presented to the 
input layer and then perform feature extraction across four 
convolutional layers. The model can be partitioned into four 
parts, and each portion contains at least one convolutional 
layer and one maximum pooling layer (MP). The effect of 
MP is to simplify the complexity, compress the eigenvalues, 
and reduce the computational effort. Additionally, the con-
volutional layer is followed by a batch normalization layer 
for reducing the covariance drift in the model and improving 
the stability of the model. Three fully connected layers uti-
lized for the final prediction follow the four parts. It should 
be noted that the dropout layer in the fully connected layer 
serves to reduce overfitting by ignoring half of the hidden 
nodes. The activation function used after MP is the ReLU.

The deep learning model based on the CNN algorithm 
was split into two processes. The first process was model 
training, where the image size was set as 64 × 64 and the 
batch size was 512. The loss value started to converge after 
6 epochs, and the accuracy of the training set reached 100% 
after 16 loss values. Eventually, the accuracy of the test set 
reached 96.2% and 96.6% for six Chinese dialects and seven 
words in different dialects (Fig. 6c, d).

4  Conclusion

Here, we have fabricated MX/CS/PVDF-based pressure 
sensors with ultralight density and remarkable durability 
for dialect recognition. The elaborately designed MX/CS/
PVDF-1-based pressure sensor exhibited rapid response/
recovery time (< 72 ms) and a low detection limit (6.25 Pa), 
allowing for the detection of slight vibrations in the throat. 
During the process of dialectal speech recognition, over 
6888 and 4158 vocalization vibration signals on the throat 
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were obtained by saying 7 vocabularies and 6 Chinese dia-
lects for training a CNN model. The recognition accuracy 
of dialect pronunciation information was 96.6% and 96.2%, 
respectively. This high-performance pressure sensor can 
have a significant role in human–machine interaction and 
health monitoring in the future to express instructions and 
acquire physiological information.
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