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HIGHLIGHTS

• Rational design of chlorine-suppressing catalysts based on mechanistic insights.

• Overview of recent advances in cutting-edge seawater electrolysis systems.

• Discussion of challenges and potential directions for direct seawater electrolysis enhancement.

ABSTRACT Seawater electrolysis offers a promising pathway to generate green 
hydrogen, which is crucial for the net-zero emission targets. Indirect seawater elec-
trolysis is severely limited by high energy demands and system complexity, while 
the direct seawater electrolysis bypasses pre-treatment, offering a simpler and more 
cost-effective solution. However, the chlorine evolution reaction and impurities in 
the seawater lead to severe corrosion and hinder electrolysis’s efficiency. Herein, we 
review recent advances in the rational design of chlorine-suppressive catalysts and 
integrated electrolysis systems architectures for chloride-induced corrosion, with 
simultaneous enhancement of Faradaic efficiency and reduction of electrolysis’s 
cost. Furthermore, promising directions are proposed for durable and efficient seawa-
ter electrolysis systems. This review provides perspectives for seawater electrolysis 
toward sustainable energy conversion and environmental protection. 
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1 Introduction

The renewable energy is experiencing rapid growth due to 
the global energy shortages and the environmental impact 
caused by fossil fuels [1–3]. The energy transitions are criti-
cal for alleviating energy crises, mitigating greenhouse gas 
emissions, safeguarding ecosystems, and promoting sustain-
able development [4]. Hydrogen is served as a clean and 
abundant energy carrier for energy storage and carbon diox-
ide emissions reduction [5, 6]. The demand of hydrogen is 
vigorously increasing due to energy demand and chemical 
reagent. The green hydrogen was generally defined as water 
electrolysis-derived hydrogen powered by renewable forces 
like wind and solar [7, 8], and it could generate minimal 
greenhouse gases during its production [9–11]. Therefore, 
the investment in renewable-powered water electrolysis 
technologies for green hydrogen production holds profound 
significance, as it drives the energy transition and supports 
carbon neutrality goals [11, 12]. However, water electroly-
sis, a key technology for clean energy generation, requires 
substantial freshwater resources. This raises concerns over 
the global distribution of freshwater and the exacerbation 
of water scarcity [13, 14]. In this context, the utilization of 
seawater for electrolysis presents a significant advantage by 
reducing the need for freshwater resources and leveraging 
the abundance of seawater. The seawater accounts for 96.5% 
of the Earth water and represented an almost inexhaustible 
resource and serves as a natural electrolyte, offering an ideal 
medium for the electrolysis process [15, 16].

There were two existing approaches for seawater elec-
trolysis including indirect and direct methods [17]. Indirect 
seawater electrolysis requires seawater desalination before 
hydrogen production [18]. This approach mitigates the inter-
ference of seawater complex components during electrolysis. 
After extensive research, indirect seawater electrolysis has 
become a well-established and widely adopted technology 
[19]. However, the inherent need for an additional desalina-
tion step complicates the system, and the process does not 
fully eliminate residual ions. These residual ions can lead to 
corrosion or scaling, which deteriorates the electrolyzer per-
formance by reducing efficiency and increasing maintenance 
requirements [20]. Moreover, desalination is energy-inten-
sive, and it could bring high costs for the construction and 
maintenance of the complex systems in large-scale applica-
tion [21–24]. In contrast, direct seawater electrolysis skips 

out the desalination stage, simplifying the hydrogen produc-
tion process with reduced energy consumption and lower 
equipment and operational costs [25–27]. Furthermore, the 
vast availability of seawater resources globally makes direct 
seawater electrolysis a more efficient solution, particularly 
beneficial for arid coastal regions [19].

However, the complex composition of seawater presents 
significant challenges for direct electrolysis [21]. During this 
process, sharp pH fluctuations could occur at the electrode 
surface with increasing local pH levels near the cathode, 
directly causing cations such as  Ca2+ and  Mg2+ to readily 
precipitate [28]. These precipitates accumulate on the elec-
trode and membrane surfaces, deactivating catalyst active 
sites and impairing catalytic efficiency [29]. Additionally, 
this fouling obstructs ion transport, reducing electrolyzer 
performance [30]. The presence of  Ca2+ and  Mg2+ also 
accelerates the corrosion, compromising the durability of the 
electrolyzer and associated components [31]. While direct 
seawater electrolysis circumvents desalination, pre-treating 
seawater by adding alkaline precipitants can mitigate pre-
cipitation and corrosion caused by these  Ca2+,  Mg2+ cati-
ons [32]. Furthermore, microfiltration of pretreated seawater 
effectively removes solid impurities and microorganisms, 
reducing the risks of flow channel physical blockages and 
catalyst poisoning [14]. This simplified treatment process 
enhances electrolysis efficiency and prolongs the operational 
lifespan of the system.

Another major challenge in direct seawater electrolysis 
is the competition between the oxygen evolution reaction 
(OER) and the chlorine evolution reaction ClER [14, 33–36]. 
Similar to freshwater electrolysis, seawater electrolysis 
involves two half-reactions: the cathodic hydrogen evolution 
reaction (HER) and the anodic OER, and the anodic OER 
has a standard thermodynamic potential of 1.23 V relative 
to the reversible hydrogen electrode (RHE) [37]. In practical 
applications, the relatively sluggish kinetics of the OER is 
the rate-determining step (RDS), thus constraining the over-
all efficiency of water electrolysis. The relevant electrode 
reactions are noted as following Eqs. (1–2) [38]:

The traditional OER typically follows two primary mech-
anisms: the adsorption-enhanced mechanism (AEM) and the 

(1)Acidic ∶ 2H2O → O2 + 4H+ + 4e− E� = 1.23V

(2)Alkaline ∶ 4OH−
→ O2 + 2H2O + 4e− E� = 0.40V
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lattice oxygen mechanism (LOM) [39–41]. In the AEM, the 
reaction proceeds through the adsorption of  OH−, forma-
tion of  OOH−, and the eventual release of  O2 (Fig. 1a). This 
process includes electron transfer between metal orbitals and 
an oxygen intermediate (O*), leading to a reduction in the 
oxidation state of the metal. This highlights the crucial role 
of the metal center in facilitating electron transfer.

In contrast, after the adsorption of  OH−, the LOM mecha-
nism promotes O–O bond formation via coupling lattice oxy-
gen atoms. This process circumvents electron transfer to the 
external circuit (Fig. 1b). The LOM is distinguished by the 
hybridization of oxygen non-bonding states, which plays a cru-
cial role in the transformation of peroxide  (O2

2−) into oxide 
 (O2−), highlighting the redox activity of oxygen atoms during 
OER [42].

In the traditional OER, the AEM is hindered by limited cat-
alytic activity due to scaling relationships, and the LOM faces 
instability from its fragile crystal structure. In contrast, the 
oxide pathway mechanism (OPM), as an emerging mechanism 
in the OER, facilitates direct O–O radical coupling without 
generating oxygen defects or additional intermediates, such as 
OOH [43, 44]. In this pathway, only O and OH act as inter-
mediates, leading to catalysts that typically exhibit enhanced 
activity and stability, as shown in Fig. 1c [45].

In the alkaline media, the reaction pathways for the AEM, 
LOM, and OPM in OER are listed as following Eqs. (3–14) 
[46]:

AEM:

(3)∗ + OH−
→

∗ OH + e−

(4)∗OH + OH−
→

∗ O + H2O ( l) + e−

LOM:

OPM:

where * represents the metal site, and  Ol denotes lattice oxy-
gen atom.

In summary, the OER plays a critical role in water elec-
trolysis. The OER involves a series of complex multi-elec-
tron and multi-proton transfer steps, necessitating multiple 
sequential chemical reactions on the surface of the catalyst. 
This inherent complexity involving multi-electron and multi-
step reactions leads to sluggish OER kinetics, thus requiring 
significant energy input to drive the reaction. In contrast, 
the HER involves a simpler electron transfer mechanism, 

(5)∗O + OH−
→

∗ OOH + e−

(6)∗OOH + OH−
→

∗ +O2(g) + H2O ( l) + e−

(7)∗OlH + OH−
→

∗ Ol + H2O ( l) + e−

(8)∗Ol + OH−
→

∗ OlOH + e−

(9)∗OlOH + OH−
→

∗ OlO + H2O + e−

(10)∗OlO →
∗ +O2

(11)∗ + OH−
→

∗ OlH + e−

(12)∗ + OH−
→

∗ O + H2O + e−

(13)∗O + OH−
→

∗ OO+e−

(14)2 ∗OO → 2∗ + O2(g) + 2e−

Fig. 1  Three types of reaction mechanisms of OER. a Process of AEM involving the adsorption of  OH− without the participation of lattice oxy-
gen in the reaction. b Process of LOM involving the participation of lattice oxygen in the reaction. c Process of OPM involving the direct cou-
pling of oxygen radicals, leading to the formation of  O2 without the generation of oxygen vacancies or the need for additional intermediates [45]
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typically needing only a single electron transfer step to pro-
duce hydrogen, with substantially lower energy requirements 
[47–49]. Consequently, accelerating OER kinetics remains 
a central challenge in improving the overall performance of 
water electrolysis technology.

In direct seawater electrolysis, the abundance of  Cl− and 
scarcity of  OH− makes the ClER more favorable versus 
OER, enabling the ClER as a major competing side reac-
tion for OER [50, 51]. Similar to OER and HER, the reaction 
pathways and products of ClER are influenced by factors 
such as the pH of seawater, reaction temperature, and the 
applied potential. The relevant reactions (Eqs. 15–17) are 
as follows [52]:

In direct seawater electrolysis, the ClER can yield either 
chlorine gas or hypochlorite. Hypochlorite production is 
usually pH-dependent process, while formation of chlorine 
gas  (Cl2) is independent of pH [53]. As depicted in the Pour-
baix plot (Fig. 2a), the OER is more thermodynamically 
favorable than the ClER across a broad pH range [54]. Under 
the conditions of high pH, the potential difference between 
OER and ClER can reach up to 480 mV [14]. However, the 
sluggish kinetics of the four-electron transfer process in the 
OER increases its overpotential, diminishing its thermody-
namic advantage in practical electrolysis [55–58]. Particu-
larly, the narrow kinetic gap between OER and ClER with 
0.13 eV makes ClER a significant competitive reaction in 
acidic environments. To elucidate the rate-determining step 
(RDS) of the OER, kinetic isotope effect (KIE) studies can 
be employed. By comparing the reaction rates of  H2O and 
 D2O in the OER process, the step involving the transfer of 
a proton (or deuteron) can be identified as the RDS [59, 
60]. Specifically, a significant KIE would indicate that pro-
ton transfer is the RDS, providing insights into the role of 
the metal center in facilitating electron and proton transfer. 
Additionally, electrochemical techniques such as cyclic vol-
tammetry (CV) and linear sweep voltammetry (LSV) can 
be used to probe the electron transfer kinetics at the catalyst 
surface, offering direct evidence of the RDS and the intrin-
sic activity of the catalyst [61]. Additionally, the lack of 

(15)2Cl− → Cl2 + 2e− E� = 1.36V

(16)Acidic ∶ Cl− + H2O → HClO + H+ + 2e−

(17)Alkaline ∶ Cl− + 2OH−
→ ClO− + H2O + 2e−

buffering ions in OER results in a localized drop of pH near 
the anode surface with aggravated overpotential and low effi-
ciency [62, 63]. At high current density, the frequency and 
intensity of ClER may surpass OER, further undermining 
the desired OER dominance in the electrolysis [64].

Furthermore, the products of ClER including  Cl2 and 
hypochlorite ions  (ClO−) are highly oxidizing and corrosive 
to catalysts and metal components within the electrolyzer, as 
shown in Fig. 2b. These substances rapidly cause the deg-
radation of catalytic activity, leading to a significant decline 
in the performance [65]. The corrosive nature of  Cl2 and 
 ClO− also accelerates the degradation of metal components, 
causing both physical and chemical damage of flow plates 
[66, 67], which compromises the mechanical stability and 
chemical durability of the electrolyzer [68]. The degradation 
from ClER not only reduces the energy conversion efficiency 
but also increases the likelihood of unexpected electrolyzer 
failure, leading to higher maintenance costs and opera-
tional downtime. In the long term, the ClER poses a signifi-
cant threat to the commercial viability and environmental 
safety of direct seawater electrolysis. Thus, it is essential 

Fig. 2  a Plot of electrode potential versus pH in 0.5 M NaCl aqueous 
solution [14]. b Fundamental issues faced by direct seawater electrol-
ysis in hydrogen production [69]
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for improving the stability and economic feasibility of this 
technology to develop effective strategies to suppress ClER 
and protect electrolyzers from  Cl2 and  ClO−.

In the context of globalization, the escalating energy 
demand and worsening environmental challenges have 
underscored the critical need for clean and sustainable 
energy solutions. Direct seawater electrolysis harnesses 
abundant marine resources to produce green hydrogen and 
is emerging as a pivotal pathway for energy transition. How-
ever, practical implementation of this technology encounters 
significant challenges, particularly in mitigating the detri-
mental effects of ClER on electrolysis efficiency and equip-
ment integrity [70–73].

This review provides an in-depth analysis of recent 
advancements in electrode materials and seawater electrol-
ysis systems, focusing on strategies to suppress the ClER 
and outlining future directions. The article first summarizes 
innovations in chlorine-suppressing electrode materials. 
Advances in material design, including electronic structure 
regulation, interfacial engineering, and local  OH− enrich-
ment, have greatly enhanced the OER selectivity of elec-
trodes. These strategies enable the OER to occur at lower 
overpotential and effectively minimize ClER. Furthermore, 
the review paper explores the concept and architectures of 
novel electrolysis systems. Membrane improvement tech-
nologies and the configurations of the reactor have suc-
cessfully addressed issues related to  Cl−-induced corrosion 
and undesirable side reactions in the seawater. Specifically, 
the optimized design of anion exchange membrane (AEM) 
electrolyzers enhances  OH− transport selectivity, thereby 
mitigating  Cl− corrosion and improving system durability. 
Moreover, emerging systems such as self-powered seawa-
ter electrolysis, forward osmosis-driven electrolysis, and 
phase-transition-driven electrolysis exhibit potential to lower 
energy consumption and boost Faradaic efficiency (FE) by 
incorporating renewable energy sources and novel mass 
transfer mechanisms.

This comprehensive discussion provides deep insights for 
current direct seawater electrolysis technology and future 
perspectives. As advancements in materials science, electro-
chemical technology, and system design continue, the com-
mercial viability of direct seawater electrolysis is expected to 
improve, leading to a transformative shift toward a sustain-
able global energy framework.

2  Chlorine Suppression Strategies

The high concentration of  Cl− in the seawater tends to form 
deposits on the electrode surface, which diminishes the 
density of active sites and subsequently impairs the overall 
efficiency of the electrolysis process [74, 75]. Additionally, 
the occurrence of ClER produces highly reactive chlorine 
gas  (Cl2), which interacts with electrode materials, caus-
ing oxidation and corrosion. The  Cl− undergoes electron 
transfer reactions at the electrode surface, resulting in the 
generation of  Cl2. During this process, the  Cl− loses elec-
trons and becomes oxidized, which leads to the consumption 
of material from the electrode surface, causing both physi-
cal and chemical damage to the electrode [71]. In marine 
environments, the high concentration of  Cl− can accumulate 
on the electrode surface, potentially creating localized cor-
rosive conditions that accelerate electrode degradation [71, 
76]. This chlorine evolution not only depletes the electrode 
materials but may also result in the formation of a passi-
vation layer, further compromising the performance of the 
electrode [77, 78]. Thus, it is imperative to design catalysts 
that are both highly efficient and resistant to seawater corro-
sion for improving electrolysis performance and advancing 
the commercial viability of seawater-based hydrogen pro-
duction [79].

This review summarized three widely adopted catalyst 
design strategies to suppress the ClER, as illustrated in 
Fig. 3, (1) enhancement of OER selectivity: the catalytic 
activity toward the OER can be optimized through the regu-
lation of electronic structure, construction of a highly selec-
tive interface, and enrichment of OH⁻, and the occurrence of 
ClER could be minimized; (2) construction of  Cl− blocking 
layer: the likelihood of ClER is significantly reduced when 
the contact between  Cl− ions and active sites is inhibited, 
which can be achieved through the construction of a protec-
tive layer, the incorporation of electrolyte additives, and the 
introduction of intercalation materials; (3) in situ consump-
tion of chlorine species: this approach prevents the accu-
mulation of chlorine species  (Cl− and  Cl2) on the electrode 
surface, thereby mitigating continuous catalyst degradation.

The detection of  Cl− and other intermediates is crucial for 
the effective implementation of chlorine suppression strate-
gies. Spectroscopic techniques play a pivotal role in elucidat-
ing these intermediates in the seawater electrolysis process 
[80]. Figure 4 presents an overview of four spectroscopic 



 Nano-Micro Lett.          (2025) 17:113   113  Page 6 of 29

https://doi.org/10.1007/s40820-025-01653-z© The authors

methods, including Raman and in situ infrared (IR) spec-
troscopy, employed to identify  Cl− and related intermediates, 
as well as to characterize their bonding states with preci-
sion. Zhou et al. employed in situ Raman spectroscopy to 
detect the presence of  Cl− on the material surface before 
reconstruction. Notably, the characteristic  Cl− peak disap-
peared after reconstruction, indicating that the reconstructed 
NiFeCo(OH) compound exhibits a chlorine-repellent prop-
erty [81]. Similarly, X-ray photoelectron spectroscopy (XPS) 
was employed by Qiao et al. to investigate the  Cl− species on 
the surface of electrode material, thereby exploring its OER 
selectivity [82]. In situ IR was employed to detect the *OH 
intermediate during the reaction process, further enabling 
the detection of local pH changes [83]. The substantial gen-
eration of *OH on the material surface significantly inhibited 
 Cl− adsorption and promoted the OER by strengthening the 
M-OH bond. Fourier transform extended X-ray absorption 
fine structure (EXAFS) enables precise observation of the 
adsorption states of intermediates during direct seawater 
electrolysis. By comparing the bond strengths between 
active sites and  Cl− or  OH−, the catalytic chlorine suppres-
sion effect of the electrode can be predicted [84].

2.1  Enhancement of OER Selectivity

In direct seawater electrolysis, the OER and ClER are 
severely competing due to the high concentration of 
 Cl− ions. The catalysis primarily acted as the bridge of elec-
tron transfer connecting adsorbates and active sites. How to 
ensure the massive engagement of active sites selectively 
catalyzing the OER pathway rather than ClER at the given 
potential is the key for  Cl2 reduction. The superior OER 
selectivity allowed a desired high current density achieved 
at a lower overpotential, effectively suppressing the ClER 
and reducing energy consumption of the electrolysis [85]. 
In this section, we outlined three key strategies for superior 
OER catalyst design: electronic structures regulation, high-
selectivity interfaces construction, and local  OH− concentra-
tion enrichment.

The catalysts electronic structure was served as the 
bridge between material structure and its catalytic func-
tionality, highly influential to absorbent adsorption, acti-
vation, and downstream conversion [86–89]. By modulat-
ing the electronic structure of the catalyst, it is possible 
to optimize reactant adsorption strength and effectively 

Fig. 3  Three key strategies for catalyst design for chlorine suppression at different reaction stages
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lower the energy barrier for RDS from kinetic perspective 
[90]. The increased electron density for active sites pro-
motes the activation of reactant molecules through strong 
electron coupling effects [91]. This electronic structure 
promotes charge transfer between the catalyst and reac-
tants, thus promoting efficient reactant activation [92]. The 
synergistic effect of these improvements, which enables 
optimal adsorption of reactants and their activation, sig-
nificantly enhances the catalytic efficiency and selectivity. 
Pan et al. prepared porous  NiCo2O4 nanowires with oxy-
gen vacancies and surface-doped Fe atom using a rapid 
quenching method [93]. This method, which effectively 
modulated the electronic structure and surface properties 
of the catalyst, introduced a high concentration of oxygen 
vacancies, providing more active sites for the OER pro-
cess. The Fe-doped catalyst exhibited strong electronic 
coupling effects (Fig. 5a), highlighting the critical role 
of Fe doping in modulating the electronic state and struc-
ture. The catalyst demonstrated similar overpotential of 
258 mV in freshwater and 293 mV in seawater at a current 
density of 10 mA  cm−2, indicating that Fe doping effec-
tively suppressed the ClER during seawater electrolysis 

by altering the electronic structure. The Cr is regarded 
as an ideal corrosion inhibitor in the seawater due to its 
unique electronic configuration  (t3

2g  e0g) [94]. Leveraging 
this property, Huang et al. proposed a work function engi-
neering strategy by doping vein-like Cr into  CoxP, achiev-
ing electronic coupling and charge density redistribution 
[95]. This doping facilitated efficient electron transfer 
between Cr-CoxP and adsorbed oxygen, effectively lower-
ing the energy barrier of the rate-determining step of the 
OER. When applied to seawater electrolysis, this catalyst 
achieved nearly 100% FE for both HER and OER, with no 
hypochlorite detected in the electrolyte, demonstrating its 
excellent OER selectivity.

The adsorption and desorption of reactants can be pre-
cisely controlled by highly selective interfaces, which are 
engineered through tailored surface structures and the 
chemical compositions of the catalyst. These interfaces 
selectively facilitate desired reaction pathways while 
inhibiting side reactions [96, 97]. By constructing such 
interfaces, the spatial distribution and density of active 
sites can be finely regulated, ensuring efficient interaction 
between reactants and catalytic sites [98]. For instance, Li 

Fig. 4  Spectroscopic techniques for detecting chlorine species in direct seawater electrolysis
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et al. developed a bilayer heterostructure of graphdiyne/
RhOx/graphdiyne (GDY/RhOx/GDY) on  RhOx nanocrys-
tals [99]. This heterostructure created sp-hybrid Car-
bon–Oxygen–Rhodium bilayer intercalation interfaces, 
which provided abundant active sites at the sp-hybrid 
Carbon–Oxygen–Rhodium (sp-C ~ O-Rh) junctions. As 
depicted in Fig. 5b, these interfaces exhibited superior 
OER catalytic activity in seawater electrolysis. Similarly, 
 MnOx, a non-precious metal-based catalyst, demonstrated 
excellent OER selectivity under acidic conditions and is 
among the few catalysts capable of maintaining moderate 
stability in such environments [100]. Based on this, Koper 
et al. [101] deposited  MnOx onto  IrOx and evaluated the 
catalytic behavior of this interface. As shown in Fig. 5c, 
the three-electrode system ClER selectivity dramatically 
decreased from 86% to less than 7% in the presence of 
30 mM  Cl−, highlighting that the introduction of  MnOx 
significantly enhanced OER selectivity.

The OER selectivity enhancement can also be achieved 
through the enrichment of  OH− at the surface of the cata-
lyst. The OER typically follows a multi-step proton-cou-
pled electron transfer mechanism, while ClER involves 

the oxidation of  Cl−. The presence of  OH− stabilizes 
OER intermediates and facilitates the preferred OER 
pathway [102]. Moreover, by increasing the concentra-
tion of  OH−, the availability of  Cl− is decreased, which 
in turn lowers the energy barrier for the OER reaction and 
makes it more thermodynamically favorable [103]. Wang 
et al. demonstrated this principle using a novel  CoNiSe2 
catalyst, incorporating a  SeO4

2− space-charge layer. As 
shown in Fig. 5d, finite element simulations indicated 
that  OH− concentration on the catalyst surface exceeded 
that of  Cl−, suggesting selective  OH− enrichment [104]. 
This high concentration of surface  OH− reduced energy 
barriers for deselenization and dehydrogenation, facili-
tating rapid catalyst reconstruction and the formation of 
highly active Co-NiOOH, which significantly boosted 
OER performance. Ling et al. [82] proposed an alter-
native approach to  OH− enrichment by incorporating 
a Lewis acid layer on the catalyst surface, promoting 
water molecule dissociation and capturing in situ gen-
erated  OH− (Fig. 5e). This localized alkalinity effec-
tively inhibited chlorination on the surface of catalyst. 
Additionally, the introduction of  Cr2O3 created an acidic 

Fig. 5  a Modulation of the electronic structure of porous  NiCo2O4 nanowires by Fe doping [93]. b Construction of GDY/RhOx/GDY hetero-
structures to provide highly selective interfaces [99]. c Introduction of  MnOx interfaces to improve OER selectivity [101]. d Finite element simu-
lations of  OH− enrichment by  SeO4

2− space-charged layers [104]. e  Cr2O3 modulation of localized microenvironment for seawater electrolysis 
[82]
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microenvironment that enriched  OH−, thermodynami-
cally favoring the OER. As demonstrated through den-
sity functional theory (DFT) simulations (Fig. 5e), the 
energy barrier for water dissociation of  Cr2O3 was sig-
nificantly lower than that of CoO under identical potential 
conditions.

The OER selectivity enhancement of catalysts is an 
effective approach to suppress the ClER, serving as a 
robust chlorine suppression strategy. However, it is insuf-
ficient to rely solely on the intrinsic selectivity of active 
sites, as  Cl− intrusion can irreversibly deactivate these 
sites, leading to significant economic losses in industrial-
scale water electrolysis. Thus, it is imperative to develop 
novel strategies that prevent  Cl− from interacting with 
active sites to mitigate catalyst degradation and ensure 
sustained operational efficiency.

2.2  Construction of  Cl− Blocking Layer

Construction of  Cl− blocking layer on the electrode surface 
is another effective strategy to suppress the ClER. This inhi-
bition mitigates corrosion and reduces the incidence of the 
ClER, thereby promoting the OER and enhancing overall 
electrolysis efficiency [70, 105]. Furthermore, this barrier 
layer can decelerate the degradation of catalytic active sites, 
facilitating the long-term stable operation of the electroly-
sis system at elevated current densities. Subsequently, three 
primary methods for constructing the  Cl− blocking layer are 
investigated: the development of protective layers, the adop-
tion of electrolyte additives, and the introduction of special-
ized insertion materials.

In seawater electrolysis, catalyst reconstruction is a 
prominent phenomenon, and understanding the true cata-
lytic active sites is essential for comprehending the catalytic 
mechanism [106]. Deng et al. have extensively investigated 
the reconstruction behavior of the NiMoFe/NM catalyst dur-
ing seawater electrolysis using in situ Raman spectroscopy 
[107]. At 1.34 V, the characteristic peaks of α-Ni(OH)2 in 
the Raman spectrum disappear, replaced by new peaks at 
476 and 554  cm−1, corresponding to the Eg bending vibra-
tions and  A1g stretching vibrations of NiIII-O in γ-NiOOH, 
respectively. As the voltage increases to 1.52 V, the intensity 
of the γ-NiOOH peaks strengthens, signifying the catalyst 
surface has stabilized, and the OER progresses steadily. 
Upon reducing the voltage to 1.23 V, the γ-NiOOH peaks 

revert to α-Ni(OH)2 within 2 h, confirming the dynamic 
reversibility of the active species. This catalyst reconstruc-
tion not only highlights its structural evolution during the 
OER but also offers valuable insights into mitigating ClER 
in seawater electrolysis. Wang et al. employed atomic layer 
deposition (ALD) to incorporate an ultra-thin amorphous 
 MoO3 layer into a bead-like CoO array systematically 
arranged on a three-dimensional carbon cloth, thereby cre-
ating a catalyst with a cowpea-like architecture. The struc-
tural schematic is illustrated in Fig. 6a [108]. As shown 
in Fig. 6a, the precise modulation of CoO surfaces with 
 MoO3 effectively reduces the overpotential and enhances 
the interfacial reactivity. This modulation allows for precise 
control over the formation of *O and *OOH. It optimizes 
reaction pathways and accelerates the kinetics of the OER. 
Additionally, the  MoO3 layer serves as an effective barrier 
against  Cl− ion penetration at the catalytic interface, and 
the stable, reconstructed CoMo-LDH layer provides further 
chloride ion rejection through electrostatic repulsion, thus 
enabling selective oxidation in the seawater. DFT simula-
tions were conducted to assess the migration energy barrier 
of  Cl− within the catalyst before and after the introduction 
of the  MoO3 layer, as shown in Fig. 6b. The results indi-
cated that the  MoO3 layer effectively obstructs  Cl− from 
reaching the catalytically active interface. Furthermore, 
the stable CoMo-layered double hydroxide (LDH) formed 
via the reconstruction of the  MoO3 layer repels  Cl− ions 
through electrostatic interactions, thereby significantly 
mitigating corrosion and the ClER. Apart from  MoO3, the 
use of other physical barrier layers can also effectively sup-
press the influence of chlorine. In the study by Yang et al., 
 V2O3 was coupled with Pt-Ni3N. The  V2O3 layer, due to its 
Lewis acid properties, adsorbs excess  OH− ions. This creates 
a local, highly alkaline microenvironment on the electro-
catalyst surface [109]. The  V2O3 protective layer not only 
reduces  Cl−-induced corrosion of catalytic active sites but 
also limits the interaction between metal cations (e.g.,  Ca2+ 
and  Mg2+) and  OH− in seawater. This helps to decrease the 
formation of insoluble precipitates. Hao et al. constructed a 
protective layer composed of  MoOx and  POx on the surface 
of Mo-NiP@NF electrodes using a mild electroless plating 
technique [110]. The coexistence of  POx

δ− and  MoOx
δ− ions 

on the electrode surface generates an electrostatic repulsion 
effect, effectively protecting the electrode material from cor-
rosion by  Cl−. This ensures the stability and durability of 
the Mo-NiP@NF electrodes in harsh marine environments. 
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In addition to directly constructing a protective layer dur-
ing synthesis, in situ transformation to generate a protective 
layer represents a viable strategy for forming the  Cl− bar-
rier. This method enables dynamic barrier formation during 
the reaction process, adapting to fluctuating conditions and 
thereby more effectively inhibiting chloride ion contact with 
the active sites. Tang et al. reported an in situ carbon–oxy-
gen anion autoconversion mechanism that transformed 
Nickel–Iron oxalate (NiFe-C2O4) into carbonate [12]. This 
spontaneous and efficient transformation effectively shielded 
catalyst active sites from  Cl− erosion. During this conver-
sion, NiFe-C2O4 reorganized into a relatively stable con-
figuration, and the released  CO3

2− ions repel  Cl− and pro-
moted the formation of high valence state for active sites. 

This mechanism not only enhances the OER activity of the 
catalyst but also substantially improves its stability. Notably, 
its performance in the relevant literature is commendably 
high, as presented in Fig. 6c.

The incorporation of electrolyte additives in direct sea-
water electrolysis could mitigate corrosion against ClER. 
These additives either form stable complexes with  Cl− or 
generate a protective layer on the electrode surface via physi-
cal and chemical interactions, thereby effectively preventing 
 Cl− from accessing catalytically active sites. Additionally, 
certain additives can enhance the electrochemical stabil-
ity of the electrolyte and minimize side reactions, thus 
improving overall electrolysis efficiency and stability [111]. 
Among these additives, phosphate ions  (PO4

3−) exhibit high 

Fig. 6  a Schematic diagram of  Cl− transfer blocking by  MoO3 protective layer [108]. b Reaction energy barriers of  Cl− in the catalyst before 
and after the introduction of  MoO3 protective layer [108]. c Mechanism of in situ carbon–oxygen anion self-transformation for the transforma-
tion of NiFe oxalate to carbonate [12]. d Mechanism of blocking of  Cl− transfer by  Na3PO4 additives [112]. e Radial distribution function g(r) 
of Ni-Cl and the chloride ion concentration function c(r) as a function of the distance from the electrode, with and without the addition of 0.5 
mol  Na3PO4 [112]. f NiFe-LDH introduces  CO3

2− intercalation to block  Cl− transfer [119]. g Schematic representation of HSAB principle and 
adsorption energies for  OH− and  Cl− [121]
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electrochemical stability and substantial electrostatic poten-
tial, allowing them to interact with water through hydrogen 
bonding to create a “semipermeable layer” on the surface of 
the electrode [112]. This layer effectively repelled  Cl− while 
minimally impeded the diffusion of  OH−. The abundant 
hydrogen bonding between  PO4

3− and water molecules 
facilitates OH⁻ transport, enabling easier diffusion through 
the semipermeable layer formed by  PO4

3−. In contrast, the 
 Cl− is a weak hydrogen-bonding acceptor, and the Coulomb 
repulsion between  PO4

3− and  Cl− predominates leaded to 
effective inhibition of  Cl− within the layer, as illustrated in 
Fig. 6d [112]. The addition of  Na3PO4 to the electrolyte sig-
nificantly reduces  Cl− concentrations of approximately 50% 
within the thicknesses of 4 Å and of approximately 30% for 
thicknesses of 10 Å, as shown in Fig. 6e. It supported the 
effectiveness of  PO4

3− in diminishing  Cl− adsorption and 
alleviating electrode corrosion. Similarly, the inclusion of 
sulfate ions  (SO4

2−) in the electrolyte effectively mitigates 
the corrosive impact of  Cl− at the anode. When sulfate was 
employed as an additive,  SO4

2− preferentially adsorbed onto 
the anode surface, forming a negatively charged protective 
layer. This negatively charged layer induced electrostatic 
repulsion force to prevent  Cl− from the anode, thereby sig-
nificantly enhancing corrosion resistance [113]. Further-
more, due to the ideal ion potential of  CrO4

2−, its addition as 
an additive can significantly repel  Cl− ions near the catalyst, 
thereby enhancing the corrosion resistance of the catalyst 
[114].  Cr6+ has fully unoccupied d-orbitals and can accept 
electrons from Ni atoms, which improves the catalytic per-
formance for OER. The introduction of  CrO4

2− simultane-
ously enhances the activity and stability of electrode materi-
als in the seawater electrolysis process.

The Nickel–Iron-layered double hydroxides (NiFe-LDHs) 
have demonstrated significant OER activity in the freshwater 
electrolysis [115]. However, pure LDH encounter challenges 
such as high onset potentials, limited intrinsic conductivity, 
and weak  OH− selective adsorption capacity. These limita-
tions could bring a high overpotential under high current 
density conditions [116, 117], necessitating improvements 
in corrosion resistance [118]. To address these issues, the 
introduction of intercalation materials could modify the sur-
face properties of the catalyst and facilitates the formation 
of a protective layer against  Cl− interaction with active sites. 
Lu et al. successfully synthesized a cost-effective and scal-
able carbonate-intercalated NiFe-LDH catalyst through etch-
ing hydrolysis and ion exchange [119]. The incorporation 

of carbonates effectively diminished  Cl− adsorption on the 
catalyst surface, preventing the interaction between metal 
atoms and  Cl− ions, thereby suppressing the corrosive effects 
of  Cl− on the anode and significantly improving catalytic 
stability, as illustrated in Fig. 6f. According to Pearson’s 
Hard and Soft Acids and Bases (HSAB) principle, harder 
acids preferentially bind to harder bases [120]. Zhou et al. 
introduced the  (W2O7)2− anion as an intercalation layer in 
NiFe-LDH to regulate the oxidation states of nickel and 
iron. The incorporation of  W6+ increased the Lewis acid-
ity of NiFe-LDH, which subsequently favored binding to 
 OH−, thereby forming a barrier that inhibits  Cl− transfer. As 
shown in Fig. 6g, this NiFe-LDH with  (W2O7)2− intercala-
tion exhibited exceptional resistance to chlorine interference 
and demonstrated enhanced corrosion resistance due to its 
 OH− barrier structure [121]. Additionally, owing to their 
high charge density, small size, and unique trigonal planar 
structure,  CO3

2− establishes strong electrostatic interactions 
with the positively charged host layers of LDH. By interca-
lating  CO3

2− into the CoFe-Ci nanosheets, Feng et al. not 
only enhanced the structural stability but also reduced the 
interlayer spacing [122]. This narrowing of the interlayer 
effectively prevents  Cl− ions from displacing carbonate 
ions through cation exchange, thereby preserving the lay-
ered structure during seawater electrolysis and significantly 
improving the stress resistance of the electrocatalyst.

The introduction of chlorine suppression protective layers 
has become a prominent area of research in direct seawater 
electrolysis, providing local protection against the corrosion 
of catalytic active sites by  Cl−. However, the omnipresence 
of  Cl− in the seawater leads to the inevitability of instances 
where it can inflict irreversible damage on the equipment. 
Therefore, it warrants thoughtful consideration to address 
the challenge of unimpeded  Cl− during seawater electrolysis 
and to explore methods for integrating the chlorine chem-
istry of seawater with other industrial processes to generate 
high-value-added products.

2.3  In Situ Consumption of Chlorine Species

Although various strategies have been implemented to 
enhance the OER selectivity and establish  Cl− blocking lay-
ers to mitigate ClER, these approaches are not entirely effec-
tive in preventing the ClER. During seawater electrolysis, 
the  Cl− can still infiltrate the catalyst layer, leading to direct 
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contact with the metal bipolar plate, and subsequently bring 
the corrosion [123, 124]. Furthermore, while the amount of 
 Cl2 is relatively low, its corrosive impact on industrial-scale 
equipment of seawater electrolysis over extended periods is 
significant and cannot be ignored [125, 126]. Consequently, 
the in situ consumption of chlorine species  (Cl− or  Cl2) dur-
ing direct seawater electrolysis is a critical challenge that 
warrants further investigation and targeted research.

To address this issue, Lu et  al. [127] proposed a 
 Cl− immobilization strategy by uniformly integrating Ag 
nanoparticles into the NiFe-LDH catalysts surface. The 
embedded Ag reacted with free  Cl− to form insoluble AgCl, 
effectively immobilizing the  Cl− ions. This approach reduces 
the amount of free  Cl− species and also repels remaining 
 Cl− ions through strong co-ionic repulsion between sur-
face chlorine atoms on AgCl and free  Cl−, as illustrated in 
Fig. 7a. Figure 7b describes the molecular dynamics (MD) 
simulations of  NixFeyOOH interactions with AgCl, revealing 
 Cl− initially drawn toward the  NixFeyOOH surface driven 
by electrostatic forces. However, exposed chlorine atoms 
on AgCl exert strong repulsion on  Cl− anions, particularly 
those within 3 Å of the surface. This in situ immobiliza-
tion and repulsion strategy significantly enhanced the cor-
rosion resistance. It achieved significant improvement with 
stable operation for over 5000 h at a current density of 
400 mA  cm−2 for advancing seawater electrolysis technol-
ogy. In addition to immobilizing  Cl−, direct consumption of 
 Cl− is another effective approach to mitigate its corrosive 
effects. Wu et al. developed the  NiCo2O4 nanocones with 
high curvature, which effectively enrich the concentration 
of  OH− and  Cl− ions from seawater [128]. These ions could 
serve as feedstocks for synthesizing α,α-dichloroketones, 
with the nanocone ion enrichment effect validated by finite 
element simulations (Fig. 7c). In this process, the  Cl− under-
goes electrooxidation to form the Cl· radicals; then, it 
attacked the α-carbon of alkynes to generate vinyl radicals, 
followed by further transformations as shown in Fig. 7d. 
This method reduces  Cl−-induced corrosion and also gen-
erates high-value-added pharmaceutical products.

Beyond mitigating the corrosion of the electrolyzer by 
consuming  Cl−, the  Cl2 produced during ClER also poses 
a significant corrosion risk. As the formation of  Cl2 is una-
voidable, developing strategies for its in situ depletion to 
minimize corrosive effects is a critical research focus. While 
the  Cl2 is often considered an undesirable by-product in the 
seawater electrolysis for hydrogen and oxygen generation, it 

has a pivotal role in chlorohydrin synthesis technology [78, 
129]. Specifically, the gaseous  Cl2 could react with water 
into HClO and it could break carbon–carbon double bonds 
of ethylene and transform into 2-chloroethanol, as illustrated 
in Fig. 7e. Qiao et al. leveraged this process by integrating 
seawater electrolysis with the electro-oxidation of ethyl-
ene, achieving a FE of 68% for 2-chloroethanol production 
[130]. This approach generated  H2 under acidic conditions 
and also produced high-value 2-chloroethanol (Fig. 7f). This 
work offers a pioneering idea for in situ  Cl2 consumption 
strategies to mitigate the corrosion of electrolyzer. Simi-
larly, Sun et al. demonstrated that  Cl2 generated at the anode 
can be transformed in situ into HCl, chlorinated polymers, 
and precursors for bleaching agents. At the same time, the 
elevated local pH during hydrogen production at the cath-
ode facilitates  CO2 fixation [131]. This idea promoted  Cl2 
in situ consumption and simultaneously integrated hydrogen 
production and  CO2 fixation, aligning with current initia-
tives toward “carbon neutrality” and “carbon peaking” goals 
[132].

The in situ consumption of chlorine species plays a piv-
otal role in mitigating chloride-induced chemical corrosion. 
Moreover, by integrating this process with other industrial 
reactions, it facilitates the generation of higher-value prod-
ucts such as alcohols and ketones. This idea could drive the 
transformation of harmful chlorine species into a beneficial 
outcome with enhanced overall efficiency and derived high-
value-added products.

To address the challenge of the ClER in direct seawater 
electrolysis, recent researches focused on developing catalyst 
design for higher FE and suppress the  Cl2 formation. There 
have been promoted strategies including electronic structures 
regulation, interface engineering, local  OH− concentration 
adjustment, and protective layers construction against ClER. 
However, complete ClER suppression still remains challeng-
ing, emphasizing the need for in situ chlorine depletion to 
reduce corrosion and convert chlorine species into value-added 
products. The chlorine suppression strategy necessitates a pro-
found comprehension of the underlying scientific principles 
governing existing materials and their interfacial dynamics. 
Concurrently, attention could be paid into the development 
of advanced system architectures for optimized  Cl− manage-
ment and utilization, which is another effective pathway to 
well optimize the efficiency, stability, and economic viability 
of direct seawater electrolysis.
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3  Seawater Electrolysis Systems

The advancements in seawater electrolysis catalysts highlight 
hydrogen energy potential as a sustainable alternative to fos-
sil fuels. Beyond the critical need to develop catalysts that 
mitigate the ClER, other cations and impurities present fur-
ther obstacles to the electrolysis process. Consequently, the 
development of seawater electrolysis systems has emerged 
as a prominent focus. The anion exchange membrane (AEM) 
electrolysis system exhibits significant potential for seawater 
electrolysis. It could operate in alkaline conditions and utilize 

cheaper non-precious metal catalysts and hold potentials for 
seamlessly integrating with renewable energy sources. This 
section highlights low-temperature, high-efficiency AEM sea-
water electrolysis systems and further summarizes emerging 
technologies over the past five years. The designing principles 
of these advanced systems, emphasizing their pivotal roles and 
advantages in direct seawater electrolysis. This review aims at 
offering insights to advance the development and application 
of direct seawater electrolysis technologies.

Fig. 7  a Schematic representation of the effect of chloride ion immobilization strategies on chloride ion corrosion protection [127]. b MD simu-
lation of the amount of  Cl− and  OH− versus the distance between the exposed surfaces of  NixFeyOOH and AgCl-Cl [127]. c Finite element simu-
lation of the electric field and the distribution of  Cl− and  OH−. over the surface of the catalysts [128]. d Schematic representation of the elec-
trolysis of seawater for the synthesis of α,α -dichloroketones by electrolysis of seawater [128]. e Schematic diagram of the current chlor-alkali 
process and the electrochemical process of ethylene to dichloroethanol [130]. f Schematic diagram of a proton exchange membrane electrolyzer 
[130]
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3.1  Anion Exchange Membrane Electrolyzer

As an emerging technology, the AEM electrolyzer offers a 
promising pathway for advancing seawater electrolysis sys-
tems [11, 133]. Similar to traditional electrolyzers function, its 
mechanism involves the reduction of water molecules at the 
cathode, leading to the production of the  H2 and the  OH− ions 
(Eq. 18). The  OH− ions are transported through the AEM to 
the anode, where they participate in an oxidation reaction to 
generate the  O2 (Eq. 19).

The AEM electrolyzer operates in an alkaline environ-
ment at the membrane interface, typically operating at low-
concentration alkaline electrolytes. The seawater electrolysis 
mechanism is illustrated in Fig. 8a [134]. However, unlike 
freshwater electrolysis, seawater electrolysis presents extra 
challenges for AEM electrolyzers due to the high  Cl− con-
tent, which poses significant corrosion risks. To mitigate 
this, the design of AEM electrolyzers prioritizes the optimi-
zation of  OH− transport by employing electrode materials 
with high anionic and electronic conductivity, adjusting the 
operating conditions (e.g., maintaining an alkaline environ-
ment), and improving the structure of the AEM, thereby 
minimizing the  Cl− and other cations exchanging with  OH−. 
This targeted approach effectively restricts  Cl− permeation 
through the membrane, enhancing the resistance of the 
electrolyzer to  Cl−-induced corrosion, particularly in high-
salinity environments, thus improving process stability and 
longevity [135].

In contrast, the proton exchange membrane (PEM) elec-
trolyzers [136, 137], which conduct protons, are more vul-
nerable to corrosion in chloride-rich environments due to 
potential  Cl− infiltration that compromises membrane integ-
rity [138]. The PEM electrolyzers operating under acidic 
conditions require noble metal catalysts, which significantly 
increase operational costs [139–141]. The alkaline electro-
lyzers, on the other hand, are well-established and widely 
utilized due to their cost-effective nature compared to the 
PEM systems. They support OER in alkaline environments 
by leveraging the greater potential difference between OER 
and ClER at elevated pH levels, thereby enhancing the OER 
selectivity [142, 143]. However, their reliance on concen-
trated alkaline solutions accelerates the corrosion of the 

(18)2H2O + 2e− → H2 + 2OH−

(19)4OH− − 4e− → O2 + 2H2O

equipment, especially during start-stop cycles, and presents 
integration challenges with intermittent renewable energy 
sources [144].

Similarly operating in alkaline conditions, the AEM elec-
trolyzers exhibit enhanced OER selectivity during seawater 
electrolysis, as the AEM selectively conducts the OH⁻ ions, 
preventing the passage of other ions [145]. Moreover, they 
exhibit rapid responsiveness to fluctuating input power, 
quickly modulating the electrolysis rate to adapt to the 
intermittent and variable nature of renewable energy sources 
such as wind and solar power [146]. The alkaline environ-
ment enables the use of cost-effective, non-precious metal 
catalysts, distinguishing AEM electrolyzers from PEM elec-
trolyzers [147–149]. This adaptability allows AEM electro-
lyzers to efficiently scale up under dynamic energy inputs, 
maintaining high stability and energy conversion efficiency. 
Specifically, AEM electrolyzers can achieve nearly 100% 
Faradaic efficiency with non-precious metal catalysts [150], 
which is comparable to or even surpasses the performance 
of PEM electrolyzers that rely on more expensive precious 
metal catalysts. Moreover, studies have shown that certain 
non-precious metal catalysts in AEM electrolyzers demon-
strate superior stability, maintaining over 95% of their initial 
activity after continuous operation for over 5000 h [151], 
whereas PEM electrolyzers may experience significant per-
formance degradation due to corrosion under similar condi-
tions [152]. Additionally, AEM electrolyzers exhibit 10–15% 
higher energy conversion efficiency compared to PEM elec-
trolyzers, which translates to reduced energy consumption 
and lower operational costs in practical applications [153]. 
These advantages make AEM electrolyzers a more sustain-
able and economically viable option for large-scale hydrogen 
production from seawater. Their reduced start-stop losses 
minimize mechanical stress and system wear during frequent 
adjustments, translating into lower maintenance costs [154]. 
Additionally, the utilization of non-precious metal catalysts 
further decreases operational expenses. These attributes 
enable AEM electrolyzers to enhance energy efficiency and 
significantly lower operating costs when integrated with 
renewable energy systems, highlighting their potential for 
sustainable energy conversion. Wang et al. indicates that, 
compared to traditional alkaline water electrolysis, inte-
grating AEM electrolyzers with renewable energy systems 
can reduce energy consumption by 40%–50% [68]. This 
enhancement in energy efficiency is primarily due to the 
effective control of overpotentials for hydrogen and oxygen 
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during electrolysis. The baseline levelized cost of hydrogen 
(LCOH) for AEM electrolyzers is estimated to be $5.79 per 
kilogram, with an optimal current density of 1.38 A  cm−2, 
balancing stability and performance to achieve the lowest 
LCOH [155]. Furthermore, Lu et al. employed a NiFeBa-
LDH catalyst for AEM seawater electrolysis, achieving an 
OER selectivity exceeding 99% in alkaline saline solutions. 
Under simulated industrial conditions, the electrolyzer dem-
onstrated stable operation for 100 h at 400 mA  cm−2, 55 °C, 
and ambient pressure, delivering a cell voltage of 1.98 V and 
an energy consumption as low as 4.7 kWh N  m−3  H2 [151]. 
By effectively addressing the challenges faced by both PEM 
and conventional alkaline electrolyzers in direct seawater 
electrolysis, the AEM electrolyzers offer an economical, 
flexible, and scalable solution. These advantages position 
AEM electrolyzers as a highly promising technology for 
clean energy conversion and broader utilization.

As a promising candidate for direct seawater electroly-
sis, the AEM electrolyzer presents significant application 
potential. However, it encounters numerous technical chal-
lenges in achieving commercial viability. A critical issue is 
the selective permeability of the AEM, which is essential for 
screening ions and preventing cations from permeating the 
cathode. Insufficient selectivity may result in the deposition 
or passivation of metal hydroxides, thereby impairing the 
functionality of active sites (Fig. 8b) [156]. Despite the high 
costs associated with PEM water electrolysis devices, they 
serve as an excellent example of superior ion-selective per-
meability [157]. The PEM electrolyzer maintains an optimal 
pH environment for HER due to the high concentration of H⁺ 
ions facilitated by the membrane. As depicted in Fig. 8c, this 
membrane serves as an effective filtration barrier, isolating 
the cathode from seawater impurities and protecting it from 
detrimental interference, which enhances the efficiency and 
stability of the electrolysis process [77].

Fig. 8  a Schematic diagram of hydrogen production in an AEM water electrolyzer [134]. b Possible degradation mechanism of the electrolyzer 
caused by impurities [156]. c Inhibition of catalyst deactivation by highly selective permeable membranes [77]. d Construction of a selective 
protective layer blocking the contact of impurities with the catalyst [77]
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During seawater electrolysis, the ClER occurs at the 
anode of AEM electrolyzers, leading to severe electrode 
corrosion, while the cathode, despite lacking competitive 
reactions with HER, still faces challenges from  Cl2 corrosion 
[79]. The long-term stability of the system during seawater 
electrolysis can be significantly enhanced by incorporating 
a selective barrier layer on the catalyst, such as  MnOx[101], 
Cr(OH)3[158], or graphite shells [159]. The presence of a 
selective barrier layer can restrict the involvement of unde-
sired  Cl− in chemical reactions at the anode. Similarly, this 
principle can be applied to protect the cathode from corro-
sion caused by  Cl− during seawater electrolysis, as well as 
preventing the agglomeration of impurity ions and the poi-
soning of the catalyst (Fig. 8d). However, this strategy may 
be limited by mass transfer efficiency and requires further 
optimization to ensure a high-performance electrolysis pro-
cess. Moreover, although AEM electrolyzers are designed 
to minimize start-stop losses, frequent cycling and power 
adjustments can still induce wear on the system. Despite 
their relatively low maintenance costs, additional optimiza-
tion is necessary to mitigate potential losses and improve 
the operational efficiency and longevity of the electrolyzer.

3.2  Novel Seawater Electrolysis Systems

Although AEM electrolyzers demonstrate significant advan-
tages in seawater electrolysis, such as high adaptability and 
the use of non-precious metal catalysts, they still confront 
persistent challenges including  Cl− permeation and cati-
onic corrosion, which hinder their broader application in 
cost-effective and sustainable hydrogen production [31, 70]. 
To overcome these limitations, researchers are developing 
innovative chlorine-free, energy-efficient seawater elec-
trolysis technologies aimed at mitigating  Cl− interference 
and cationic corrosion while minimizing energy consump-
tion, thereby enhancing overall electrolysis efficiency and 
economic feasibility. This section reviewed several emerg-
ing seawater electrolysis systems over the past five years, 
including self-powered seawater electrolysis systems, for-
ward osmosis seawater electrolysis systems, phase-transi-
tion-driven seawater electrolysis systems, pH-asymmetric 
seawater electrolysis systems, and dual-cation exchange 
membrane seawater electrolysis systems, as shown in Fig. 9.

Understanding these advancements sheds light on the 
progress made in seawater electrolysis technology. It also 
emphasizes their role in achieving economically viable 
and sustainable hydrogen production, which is crucial for 
advancing the hydrogen economy.

3.2.1  Self‑Powered Seawater Electrolysis System

Qiu et al. pioneered a self-powered hybrid seawater elec-
trolysis technology by integrating solar cells, introducing an 
innovative approach to convert marine resources into clean 
hydrogen fuel and simultaneously removing  N2H4 pollutants 
from the wastewater [160]. Coupling seawater electrolysis 
with the hydrazine oxidation reaction (HzOR) leverages the 
lower thermodynamic potential of HzOR, enabling hydrogen 
production at a reduced cell voltage. This method offers two 
primary advantages. Firstly, since the potential of HzOR is 
significantly lower than that of chlorine oxidation, it effec-
tively avoids chlorine chemistry issues. This minimizes the 
generation of hazardous chlorine compounds. Importantly, 
it does not compromise electrolysis current or hydrogen 
production efficiency [161, 162]. Secondly, this approach 
bypasses energy-intensive OERs, reducing external power 
requirements and facilitating integration with solar cells. 
Additionally, electrocatalytic HzOR efficiently removes 
hydrazine from industrial wastewater without the need for 
extra oxidants or complex separation processes, enhancing 
the environmental sustainability of the system and economic 
viability [163].

The core of self-powered electrolysis lies in coupling 
the electrolysis process with solar cells to achieve energy 
autonomy (Fig.  10a). By incorporating a low-voltage 
hydrazine fuel cell or solar cell, the system utilizes solar 
power during periods of adequate sunlight, reducing reli-
ance on external power grids. The solar cell not only pow-
ers the electrolysis but also stores energy through water 
splitting or hydrazine degradation, enabling continuous 
hydrogen production during low solar conditions. This 
integration significantly improves the system energy effi-
ciency, with reduced energy consumption by 40% ~ 50% 
compared to conventional alkaline water electrolysis 
and reduced carbon emissions by over 90% compared to 
hydrogen production via natural gas reforming [16, 164]. 
However, the efficiency and sustainability of self-powered 



Nano-Micro Lett.          (2025) 17:113  Page 17 of 29   113 

systems are critically dependent on the performance and 
durability of the solar cells. Furthermore, the complex 
design and maintenance of self-powered systems require 
precise coordination among all components and their 
adaptability to varied environmental conditions to main-
tain consistent operational stability.

3.2.2  Forward Osmosis Seawater Electrolysis System

In comparison with self-powered seawater electrolysis sys-
tems, the forward osmosis seawater electrolysis (FOSE) sys-
tem offers a streamlined alternative to self-powered seawater 
electrolysis, employing a semipermeable cellulose acetate 
membrane to mitigate chlorination reactions in the seawater. 
This design harnesses a concentration gradient to drive water 
molecules from a saline source (brine or seawater) into a 
more concentrated electrolyte, with the gradient maintained 
by the dissociation of water molecules, balancing the rates of 
inflow (forward osmosis) and outflow (water splitting) [165].

As illustrated in Fig. 10b, the system integrated an acetate 
cellulose semipermeable membrane within the electrolyzer 
to partition the 0.8 M NaPi (Pi, phosphate) internal electro-
lyte from the external 0.6 M NaCl solution, establishing a 
0.2 M concentration gradient conducive to the electrochemi-
cal water-splitting process. This configuration sustained a 
nearly constant salt concentration in the external solution, 
providing stable osmotic pressure. During electrolysis, the 
decomposition of water into  H2 and  O2 drove the outward 
flow of water, perpetuating the concentration gradient that 
continuously drew water molecules from the saline source 
via forward osmosis, supplying purified water for subsequent 
splitting [165].

The FOSE system facilitates a balanced and continuous 
inflow and outflow of water molecules, enabling HER and 
OER to achieve unit FE while preventing  Cl− permeation, 
thereby averting ClER-induced corrosion in direct seawater 
electrolysis. Operating with conventional, stable electrodes, 
the system efficiently separates water from saline sources at 
high current densities, eliminating the need for additional 
purification and desalination processes. The FOSE system 

Fig. 9  Recent advances in seawater electrolysis systems over the past five years
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Fig. 10  a Schematic diagram of a self-powered hydrogen production system by integrating a hybrid seawater electrolyzer into a low-pressure 
direct hydrazine fuel cell (DHzFC) or a solar cell [160]. b Schematic diagram of FOSE electrolysis system composition and structural principle 
[165]. c Schematic diagram of the migration mechanism and migration process of water purification based on the liquid–vapor-liquid phase tran-
sition [27]. d Design scheme of a pH-asymmetric electrolyzer for the  Na+ exchange membrane [167]. e Schematic of CEM three-compartment 
electrolyzer structure [69]
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thus provides a simplified pathway for selective hydrogen 
and oxygen generation from saline water, minimizing energy 
efficiency losses. However, while the composition of the 
FOSE system is relatively straightforward, its long-term sta-
bility and durability in practical applications require further 
validation through extensive testing.

3.2.3  Phase‑Transition‑Driven Seawater Electrolysis 
System

In the FOSE system, although the hydrophobic semi-
permeable membrane was engineered to block impurity 
ions from migrating from seawater to the electrolyte, sig-
nificant ion cross-diffusion still occurs, indicating poor 
ion selectivity [122, 166]. This necessitates the use of a 
neutral electrolyte to maintain membrane stability, which 
sacrifices the performance of the electrolysis. In contrast, 
the phase-transition-driven seawater electrolysis system 
developed by Xie et al. employed a hydrophobic polyte-
trafluoroethylene (PTFE) membrane as the gas pathway 
interface, coupled with a concentrated KOH solution as 
a self-wetting electrolyte (SDE). This setup leveraged a 
liquid–gas–liquid phase transition for mass transfer, sig-
nificantly enhancing the efficiency of the electrolysis. The 
perfluorinated structure of the PTFE membrane imparted 
low surface energy, establishing a superhydrophobic bar-
rier that effectively suppressed seawater and ion permea-
tion, leading to more stable and efficient long-term elec-
trolysis performance [27].

During operation, the pressure difference of the water 
vapor between the seawater and the SDE-driven electroly-
sis cell propels the spontaneous gasification of the seawater. 
Water vapor diffused through the specially designed short 
gas passage in the membrane to the SDE side, where it was 
absorbed and re-liquefied, producing pure water directly at 
the seawater source and achieving complete ion blocking. 
This continuous water consumption by electrolysis sustained 
the vapor pressure differential across interfaces. When the 
migration rate of water matched with the electrolysis rate, a 
new thermodynamic equilibrium was established between 
the seawater and the SDE, perpetuating a stable “liquid-air-
liquid” phase change process that supplied freshwater for 
electrolysis, as depicted in Fig. 10c.

The integration of the PTFE hydrophobic mem-
brane effectively prevents the seawater and impurity ion 

permeation, enhances self-sufficiency by minimizing 
dependency on external water sources via the SDE, and sub-
stantially reduces energy losses through a precisely designed 
liquid-gas-liquid phase transition mass transfer mechanism. 
It includes strategic membrane material selection, optimized 
electrolyte configuration, and advanced mass transfer pro-
cess regulation. These factors work together to enhance the 
efficiency of hydrogen generation. They also improve the 
overall stability of the system. PTFE membranes initially 
exhibit high performance due to their excellent hydropho-
bicity and resistance to contamination. However, there is a 
potential risk of membrane wetting and fouling during pro-
longed operation. This risk necessitates thorough evaluation 
to ensure that the complex chemistry of seawater does not 
gradually degrade membrane performance.

3.2.4  pH‑Asymmetric Seawater Electrolysis System

Li et al. developed a pH-asymmetric electrolysis system, 
which is similar to phase-transition-driven seawater elec-
trolysis using selective permeable membrane technology, 
effectively reduces the voltage of the electrolysis, and 
enhances efficiency by exploiting the chemical potential 
differences between electrolytes with varying pH values. 
Unlike the design of the hydrophobic PTFE membrane in 
phase-transition-driven systems, this system operates by 
separating the electrolyzer chambers using a  Na+ exchange 
membrane, which selectively allows Na⁺ ions to pass while 
blocking  Cl− and other ions [167]. This maintains pH 
asymmetry between the chambers and also avoids the issue 
of PTFE membrane wetting during long-term operation. 
As depicted in Fig. 10d [168], the cathode chamber is cir-
culated with NaCl solution or natural seawater, while the 
anode chamber uses NaOH solution. At the cathode, water 
dissociates more efficiently into  H+ and  OH− at lower pH, 
whereas the high pH facilitates the combination of dis-
sociated  H+ and  OH− to form water at the anode, thus 
promoting continuous water splitting.

The advantages of this pH-asymmetric electrolysis lie 
in its significant reduction of energy consumption and 
enhancement of efficiency by utilizing chemical poten-
tial gradients, allowing operation at lower voltages and 
minimizing energy input. The  Na+ exchange membrane 
effectively mitigates  Cl−-induced corrosion and side reac-
tions. Furthermore, it reduces the precipitation of ions like 
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 Ca2+ and  Mg2+ at the anode, preventing the blockage of 
active sites. This design preserves the active surface of 
the electrode, leading to an increase in the FE. It also sig-
nificantly reduces energy consumption and maintenance 
costs during seawater electrolysis for hydrogen production. 
Although the pH-asymmetric electrolysis system features a 
relatively simple design, practical implementation requires 
more sophisticated system integration and optimization 
to adapt to diverse seawater conditions and operational 
environments.

3.2.5  Dual‑Cation Exchange Membrane Seawater 
Electrolysis System

Although  Na+ exchange membranes effectively inhibit 
 Cl− migration from seawater to the electrolyte, the pre-
cipitation of  Mg2+ and  Ca2+ still constrains their practi-
cal application in pH-asymmetric seawater electrolyzers 
[169]. To overcome this limitation, Cui et al. developed a 
dual-cation exchange membrane (DCEM) three-compart-
ment electrolyzer, incorporating a recirculating electrolyte 
system to facilitate continuous hydrogen production. This 
configuration employs monovalent selective DCEMs to 
maintain ionic neutrality during electrolysis, effectively 
mitigating interference from  Mg2+,  Ca2+, and  Cl− ions 
[69].

As illustrated in Fig. 10e, the electrolyzer is structured 
with an anode, cathode, and intermediate chamber, and each 
component is separated by specialized dual-cation exchange 
membranes. In Fig. 10e, the areas designated as 2 and 4 both 
correspond to nickel foam electrodes, and the area marked 
as 3 is a bipolar membrane. The nickel foam electrodes and 
the bipolar membrane together form the anode and cath-
ode chambers of the electrolytic cell. The anode chamber 
circulates seawater or an electrolyte-containing solution, 
while the cathode chamber employs an alkaline solution. 
Under electric current, water dissociates in the cathode 
chamber, generating  H2 and  OH−; the  H2 is collected, and 
 OH− migrates through the exchange membrane to the inter-
mediate or anode chamber. In the anode chamber, water mol-
ecules undergo oxidation, forming  O2 and  H+, which then 
combine with  OH− to reform water, maintaining the ionic 
equilibrium. The self-circulating mechanism of the system 

stabilizes electrolyte concentration and pH, ensuring con-
tinuous and stable electrolysis.

Compared to conventional single-membrane systems, the 
DCEM electrolyzer enhances the efficiency and stability of 
the electrolysis by optimizing ion selectivity and transport 
process, improving water and ion management, minimiz-
ing water loss and side reactions, and thus boosting energy 
conversion efficiency. However, the complexity of the three-
compartment system may necessitate regular maintenance 
and monitoring to ensure long-term stability, potentially 
increasing operational complexity and maintenance costs.

To effectively utilize abundant seawater resources, elec-
trolytic systems have been the focus of extensive research 
in recent years. Among these, AEM electrolyzers, charac-
terized by their alkaline operating conditions and compat-
ibility with non-precious metal catalysts, exhibit a strong 
synergy with renewable energy sources. This synergy ena-
bles precise regulation of fluctuating energy inputs, enhanc-
ing energy efficiency, and expanding their applicability in 
seawater electrolysis. However, they still face challenges, 
particularly the need for improved corrosion resistance to 
 Cl− and reduced energy consumption. Recent advance-
ments in seawater electrolysis systems incorporate inno-
vative membrane technologies and reactor designs, effec-
tively mitigating  Cl−-induced corrosion and side reactions. 
Self-powered seawater electrolysis systems achieve energy 
autonomy while effectively eliminating  N2H4 pollutants and 
suppressing chlorine production; however, their complex 
system design presents significant challenges. To address 
this issue, researchers have developed the forward osmo-
sis seawater electrolysis system that simplifies design but 
is constrained by limitations in membrane ion selectivity. 
Additionally, the phase-transition-driven seawater electroly-
sis system utilizes a PTFE hydrophobic membrane to inhibit 
ion permeation effectively, though concerns arise regarding 
membrane wetting and potential performance degradation 
during prolonged operation. To enhance efficiency, the  Na+ 
cation exchange membrane system has been engineered to 
leverage chemical potential differences, yet its anti-fouling 
capabilities remain limited. To further mitigate fouling from 
cation precipitation in seawater, the dual-cation exchange 
membrane seawater electrolysis system has been introduced, 
which not only suppresses chlorine production but also dem-
onstrates improved resistance to fouling.
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4  Conclusion and Outlook

Recent advance aimed at improving the efficiency and sta-
bility of seawater electrolysis, including the development 
of novel catalytic materials, the use of electrolyte additives, 
and the optimized membrane designs. Among various elec-
trolyzer technologies, AEM electrolyzers stand out due to 
their utilization of cost-effective catalytic materials and com-
patibility with renewable energy sources. However, AEM 
systems are still susceptible to  Cl− corrosion, necessitating 
the development of advanced seawater electrolysis systems, 
such as self-powered, forward osmosis, and phase-transition-
driven systems. These innovative designs not only suppress 
 Cl− corrosion and side reactions but also offer new strategies 
for enhancing electrolysis efficiency and reducing energy 
consumption.

Significant progress has been made in the development 
of efficient seawater electrolysis technologies. However, 
to ensure the viability of this approach, a comprehensive 
assessment of the economic and environmental impacts 
of large-scale seawater electrolysis is essential, including 
potential ecological damage and the energy required for sea-
water desalination. Recent research on direct seawater elec-
trolysis has often overshadowed these practical considera-
tions, leading to misallocation of resources and potentially 
delaying more feasible and direct green hydrogen solutions. 
Crucially, a thorough evaluation of the technical and eco-
nomic feasibility of direct seawater electrolysis compared 
to traditional seawater desalination-based hydrogen produc-
tion is required, particularly in terms of the energy savings 
and cost implications associated with seawater desalination. 
The focus should be on improving the overall efficiency and 
durability of the electrolysis system, rather than solely on 
the direct use of seawater. As the field continues to advance, 
achieving sustainable and cost-effective large-scale hydro-
gen production will necessitate a balanced approach that 
integrates both scientific innovation and practical implemen-
tation. To accomplish this, several challenges need to be 
overcome to ensure the viability of this approach:

1. Construction of Chloride-Utilizing Catalysts:  Cl− ions 
are widely recognized as the predominant contributors 
to the degradation of electrocatalyst active sites. Never-
theless, strategically leveraging  Cl− ions from seawater 
to enhance OER activity could pave a transformative 
pathway for future catalyst design. Qiao et al. exploited 

the auxiliary role of  Cl− ions to drive the transfer of 
active sites from Ru to Mn, forming a negatively charged 
hydroxyl (*OH) layer on the Mn surface, which shielded 
the catalyst from  Cl−-induced corrosion [83]. This strat-
egy transforms  Cl− ions from a harmful agent into a pro-
moter of OER performance. The development of multi-
component catalysts with multiple active sites, each 
capable of interacting with  Cl− ions at distinct locations 
to facilitate active site conversion, presents extensive 
application potential.

2. Catalysts engineering aligning with novel systems: 
Designing high-performance catalytic materials tailored 
for innovative systems could achieve multiple critical 
objectives. For instance, a recent design by Xie et al. 
of an Fe–Ni(OH)2/NF catalyst facilitated the chemical 
reduction of [Fe(CN)6]3−, leading to oxygen evolution 
[106]. This approach spatially and temporally decouples 
the HER and OER, with mitigating  Cl−-induced corro-
sion, and they also addressed the high-voltage demands 
and gas purity challenges. The use of high-efficiency 
catalytic materials accelerates electrolysis kinetics, and 
when integrated with advanced system architectures, it 
further reduces the required electrolysis voltage due to 
the enhanced conductivity and optimized mass transfer 
of reactants and products. This synergy enhances overall 
efficiency and reduces energy consumption, paving the 
way for more economical and environmentally sustain-
able seawater electrolysis technologies.

3. Application of novel electrolyte additives: Although 
current additives, including sulfate and phosphate com-
pounds, partially mitigate chloride-induced corrosion, 
cation-induced corrosion remains a challenge. Thus, 
designing new electrolyte additives capable of inhibit-
ing cation-induced damage is vital for enhancing system 
stability and performance. As new electrolyte additives, 
hard Lewis acid materials are capable of dissociate water 
molecules and effectively sequester  OH−, thereby gener-
ating a localized alkaline microenvironment around cat-
alyst [82]. This microenvironment significantly enhances 
the HER kinetics at the cathode and simultaneously pre-
vents the formation of insoluble precipitates that result 
from the interaction between cations (e.g.,  Mg2+ and 
 Ca2+) and  OH−. The deployment of such advanced addi-
tives will be a pivotal direction for the future of seawater 
electrolysis.

4. Advancements in ion-selective and stabilizing mem-
branes: The manufacturing of membranes with high ion 
selectivity and exceptional chemical stability is impera-
tive for the sustained and efficient operation of direct 
seawater electrolysis systems. The high ion selectivity 
in membranes requires the presence of ion-conducting 
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channels with precise dimensions and chemical proper-
ties that selectively permit the passage of  OH− against 
 Cl−. These channels are typically covered with func-
tional groups, including sulfonic acid, carboxylic acid, 
or quaternary ammonium groups, embedded within 
the membrane matrix [170]. The highly cross-linked 
polymer network could enhance the chemical stability 
of the membrane [171], ensuring durability in alkaline 
conditions and resistance to corrosive substances in sea-
water. If the membrane structure cannot simultaneously 
achieve high ion selectivity and stability, the incorporat-
ing reinforcements such as carbon fibers, glass fibers, 
alumina, or silica nanoparticles, etc., could enhance sta-
bility [172]. These reinforcements, uniformly dispersed 
within the polymer matrix, bolster the overall perfor-
mance of the membrane.

These strategies collectively highlight the pathway toward 
overcoming existing challenges and enhancing the perfor-
mance, stability, and commercial viability of direct seawater 
electrolysis systems.
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