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S1 Experimental Section 

S1.1 Preparation of Oxygen-enriched Crumpled Graphene 

Oxygen-enriched crumpled graphene (OECG) was synthesized according to our 

previous report [S1].  

S1.2 Materials Characterization 

The crystal structures of the obtained samples were characterized by XRD 

(PANalytical Empyrean) with Cu Kα radiation (λ = 1.54056 Å). The microscopic 

morphologies were characterized using field-emission scanning electron microscopy 

(FE-SEM, Hitachi S-4800) and transmission electron microscopy (TEM, JEOL JEM-

ARM300F). The X-ray photoelectron spectroscopy (XPS) data were collected on a 

PerkinElmer spectrometer (PHI 550) with the Al-Kα (1486.6 eV) as X-ray source. 

Thermogravimetric/differential scanning calorimetry (TG/DSC) data were collected 

on a NETZSCH (STA 409 PC) thermal analyzer under air atmosphere at a 

temperature ramp of 5 ℃ min–1. 

S1.3 Electrochemical Measurement 

All the half-cell tests were performed in three-electrode Swagelok cell setup, where 

free-standing activated carbon (AC) films were employed as a counter electrode and 

Ag/AgCl electrode (Sat. KCl) served as the reference electrode. AC was purchased by 
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KurarayTM. AC counter electrodes were prepared by mixing AC, Ketjen Black and 

PTFE (mass ratio of 8:1:1), with a mass loading of about 20 mg cm–2. The aqueous 13 

m LiAc were employed as the electrolytes. The OECG working electrode was 

prepared by mixing OECG, Ketjen Black, and carboxymethylcellulose 

(CMC)/styrene–butadiene rubber (SBR) (CMC/SBR = 2:1) binder with a mass ratio 

of 8:1:1 in water, where the homogeneous slurry was then casted onto the carbon fiber 

paper (CFP), followed by drying at 60 ℃ for 12 h under vacuum. NbWO electrode 

was prepared by mixing NbWO, CNT, and CMC/SBR with a mass ratio of 8:1:1. It is 

worthwhile mentioning that NbWO and CNT (mass ratio = 8:1) were first ball-milled 

with moderate absolute ethanol at 400 rpm for 2 h. The obtained powder was then 

dried in air at 80 ℃ overnight. The active mass loading of NbWO electrode is about 

1.5 mg cm–2. We also employed polytetrafluoethylene (PTFE) as the binder to prepare 

the free-standing films of the working electrodes for the ex situ XPS, XRD, and thick 

electrode measurements. Aluminum and titanium rods were used as negative 

electrode and positive electrode current collectors, respectively. Filter paper was used 

as the separator. The electrolyte was purged by N2 for 30 minutes before use, and the 

cell was assembled in a simply equipped nitrogen glovebox. Cyclic voltammetry (CV) 

was carried out on an EC-Lab VMP300 multichannel workstation at various rates. 

The second cycle of CVs was used for kinetic analysis. Galvanostatic charge-

discharge (GCD) measurements were conducted on a LAND CT2001A cell test 

instrument.  

Electrolyte conductivity (σ, S cm–1) of electrolytes was calculated from the 

electrochemical impedance spectroscopy (EIS) on a Biologic EC-Lab VMP300 with a 

frequency range of 100 kHz to 100 Hz at 25 ℃. The test cell consisted of two parallel 

titanium rod electrodes on either side of a Φ0.5 × 0.1 cm (rradius × l) electrolyte 

reservoir. The uncompensated resistance (R, Ω) from the Nyquist plot was assumed to 

be dominated by electrolyte resistance and used to calculate conductivity. 

σ= l/R∙S                    (S1) 

S=πrradius
2                   (S2) 

The specific energy density (E, Wh kg−1) and power density (P, W kg−1) of the ALIC 

can be obtained as follows [S2, S3]: 

             (S3) 

P = E/Δt                (S4) 

Δt = t2 – t1               (S5) 

where I is the current density normalized by the total active mass in both electrodes 

(A g−1), and t1 and t2 are the start and end time during the discharge process (h), U is 

the voltage (V). 
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S1.4 Molecular Dynamics (MD) Simulations 

Molecular dynamics (MD) simulations were performed for 1 m LiAc and 13 m LiAc 

electrolytes, in order to examine the composition of the hydration shell of cations. 

Relevant data for the systems can be found in Table S1. The OPLS-AA force field is 

chosen for its ability to accurately simulate liquid phase systems [S4-S7]. The MD 

computer simulation process is a combination of three steps. The first step is energy 

minimization. When packmol [S8] is used to fill a certain percentage of molecules 

into a cubic box with periodic boundary conditions in all three Cartesian directions, it 

will produce some unreasonable contact between molecules, and the system energy is 

in a higher state. Therefore, we pass the first step to minimizing the energy of the 

system. The conjugate gradient algorithm is used to minimize energy and the 

tolerance is set to 10 kJ mol−1 nm−1. The second step is the equilibrium phase. In order 

to achieve the lowest energy isomer state of each molecule in the system, we perform 

a single annealing method in the NVT ensemble. The temperature is maintained by 

the Velocity-rescale thermostat with a time constant of 0.1 ps [S9]. First, the system is 

heated to 500 K in 30 ps, then keep the temperature for 10 ps, and finally cooled to 

298.15 K in 2 ns. The final step is the production phase. The production simulations 

are performed in the NPT ensemble at constant pressure and constant temperature. 

The temperature is maintained by the Velocity-rescale thermostat at 298.15 K for all 

other systems with a time constant of 0.1 ps. A constant pressure of 1 bar is controlled 

by the Parrinello–Rahman barostat [S10, S11] with a coupling constant of 2 ps. 

Electrostatic interactions are treated using the Particle -Mesh-Ewald (PME) method 

[S12, S13] with the Fourier spacing of 0.118 nm and 0.9 nm real-space cut-off. The 

visualization of the molecular structures (see Fig. 1) was realized utilizing the non-

commercial Visual Molecular Dynamics (VMD) software [S14]. 

S2 Supplementary Figures 

 

Fig. S1 SEM image of NbWO 
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Fig. S2 First GCD curves of NbWO electrode in 1 m and 13 m LiAc electrolytes 

 

Fig. S3 Ex situ XPS spectra of NbWO electrode at different charges of state 

https://link.springer.com/40820


Nano-Micro Letters 

S5/S9 
 

 

Fig. S4 (a) Typical charge/discharge profiles of NbWO for Li-ion storage. (b) Ex situ 

XRD patterns of NbWO electrode at selected charge of state in (a). (c) Angle range of 

the XRD patterns over the (001) and (190) diffraction peaks 

 

Fig. S5 Electrochemical behaviors of OECG positive electrode in 1 m and 13 m LiAc 

electrolytes. (a) Typical CV curves at 2 mV s−1. (b) Typical GCD curve at 200 mA 

g−1 

Obviously, OECG electrode exhibits a reversible adsorption/desorption behavior with 

Ac− in 13 m LiAc electrolyte with the potential window of 0-0.9 V vs. Ag/AgCl. 

However, in 1 m LiAc electrolyte, it doesn’t work well in the same potential window. 
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Fig. S6 Electrochemical performance of OECG positive electrode in 13 m LiAc 

electrolyte. (a) Rate performance. (b) Cycling stability at 2 A g−1 

OECG possesses high reversible capacity of about 53.3 mAh g−1 at a current density 

of 200 mA g−1. The capacity still retains 24.0 mAh g−1 even at 15 A g−1. After 20,000 

cycles, the capacity retention is about 96% at 2 A g−1. 

 

Fig. S7 GCD curves of the negative electrode and positive electrode vs. Ag/AgCl 

reference electrode, along with the voltage profile of the OECG//NbWO ALIC at a 

current density of 0.2 A g−1 

Table S1 Numbers of ions and solvent molecules in the investigated simulation 

electrolytes 

Electrolytes Li+ Ac− H2O 

1 m LiAc 20 20 1110 

13 m LiAc 260 260 1110 
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Table S2 Physical properties of the electrolytes at 25 ℃ 

Electrolytes Salt molar fraction 

(%) 

Density from MD 

(g cm−3) 

Viscosity from 

MD (mPa s) 

Conductivity 

(mS cm−1) 

1 m LiAc 1.8 0.99 0.5 94.6 

13 m LiAc 19.0 1.18 9.5 65.5 

 

Table S3 Cycling performance compared with other aqueous and non-aqueous LICs 

reported in the literatures 

References Negative electrode Positive electrode Cycling  

No. 

Capacity retention 

(100%) 

This work Nb18W16O93 OECG 50000 100 

[S15](aq.) V2O5 nanosheets Carbon fibers 10000 90 

[S16](aq.) AC CoO@PPy 20000 91.5 

[S17](aq.) Grapehen/carbon 

fiber 

Co−Ni−S/carbon 

fiber 

20000 82.2 

[S18] T-Nb2O5@C AC 1000 75 

[S19] Ti2CTx Na2Fe2(SO4)3 100 100 

[S20] TiC N-doped porous 

carbon 

5000 82 

[S21] NbN PANI-derived 

carbon 

15000 95 

[S22] Hard carbon AC 10000 82 

(aq.) Aqueous LICs 
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