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 HIGHLIGHTS

• The light management strategy is introduced into two-dimensional Dion-Jacobson (2D DJ) perovskite and subsequently elucidated 
both experimentally and theoretically.

• The synthesis of surface-patterned  BDAPbBr4 microplates with high crystalline quality demonstrates the first reported instance of 
growing such 2D DJ-type perovskite microplates.

• The optimized device exhibits excellent photodetection performance under UV region. Moreover, this work represents the successful 
demonstration of  BDAPbBr4 perovskite for UV weak-light communication, imaging, and polarized light detection.

ABSTRACT Two-dimensional Dion-Jacobson (DJ) perovskite has garnered sig-
nificant attention due to its superior responsivity and operation stability. However, 
efforts are predominantly focused on discovering new organic spacer to synthesize 
novel perovskites, while material-form-associated light management, which is cru-
cial for enhancing the photodetector’s efficiency, is largely overlooked. Herein, we 
introduced surface light management strategy into DJ-type perovskite system by 
synthesizing surface-patterned  BDAPbBr4 (BPB, BDA =  NH3(CH2)4NH3) micro-
plates (MPs) using template-assisted space-confined method, which was further 
elucidated by theoretical optical simulation. By leveraging surface-patterned MPs 
to enhance light absorption, the BPB-based photodetectors (PDs) achieved remark-
able photoresponse in ultraviolet region, marked by a high on/off ratio (~ 5000), 
superior responsivity (2.24 A  W−1), along with large detectivity (~  1013 Jones) and 
low detection limit (68.7 nW  cm−2). Additionally, the PDs showcased superior light 
communication and imaging capabilities even under weak-light illumination. Nota-
bly, the anisotropic nature of the surface-patterned MPs conferred excellent polarization sensitivity to the PD. These results represented the 
first demonstration of BPB perovskite in weak-light communication and imaging, as well as in polarized light detection. Our findings offer 
valuable insights into enhancing photodetector performance and optoelectronic applications through surface light management strategies.
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1 Introduction

Nowadays, metal halide perovskites have emerged as key 
candidates for the development of high-performance opto-
electronic devices due to their exceptional properties, such 
as high defect tolerance, large optical absorption coefficient, 
and high carrier mobility-lifetime product [1–5]. These char-
acteristics make perovskites ideal for a wide range of appli-
cations, including solar cells, light-emitting diodes (LEDs), 
lasers, and photodetectors (PDs) [6–10]. To optimize the 
performance of perovskite optoelectronic devices, strate-
gies such as interface engineering, compositional engineer-
ing, additive engineering, surface passivation, and device 
architecture optimization [5, 11–14] have been reported. 
Besides these strategies, significant opportunities to improve 
efficiency and maximize photon extraction lie in effective 
light management. Effective light management in perovskite 
devices involves enhancing light absorption and minimizing 
reflection losses to ensure maximum conversion of incident 
light into electrical signals. Strategies such as incorporating 
nanostructures, using textured surfaces, and integrating pho-
tonic crystals have been employed to manipulate the optical 
path within the device, thereby increasing the interaction 
between light and the perovskite material [15–17]. For light 
management in solar cells, resonant structures offer a wave-
optics approach to exceed the limitations of light, which have 
been successfully incorporated in silicon and III-V materials 
for efficient thin solar cells [18, 19]. Recently, Feng et al. 
experimentally demonstrated a resonant perovskite solar 
cell through multiple guide-mode resonances by momen-
tum matching of waveguided modes and free-space light. 
By utilizing this light management strategy, they achieved 
an 18-nm band edge extension and 1.5 mA  cm−2 improve-
ment of the current [20]. Tailoring extrinsic optical proper-
ties through scattering structures, micro/nanostructured light 
outcouples, refractive index matching, optical microcavity 
effects, and surface plasmon structures is particularly ben-
eficial for perovskite LEDs. These strategies can be adjusted 
to maximize light extraction and enhance diode efficiency. 
A common strategy for extracting trapped photons in pla-
nar LEDs involves introducing light scattering or outcouple 
structures [21]. Zhang et al. featured hexagonal arrays of 
nano-domes serving as both the barrier layer and light out-
couple, and a titanium dioxide nanowire array embedded 
in the anodic alumina membranes (AAM), functioning as 

optical antennas [22]. They fabricated AAMs with differ-
ent nanostructure geometries to accommodate perovskite 
LEDs and discovered nearly double the efficiency of a planar 
control device. For perovskite PDs, surface light manage-
ment is essential, especially for perovskite single crystals 
(SCs), as a significant portion of incident light is typically 
reflected at the surface of perovskite SCs, leading to insuf-
ficient light absorption. Zhang et al. reported a method to 
prepare a pyramid-structured perovskite  MAPbX3 (X = I, Br) 
SCs surface with minimized light reflection and maximized 
incident light harvesting [16]. After optimizing, the textured 
SC-based PDs exhibited enhanced responsivity of 321 A 
 W−1 and external quantum efficiency (EQE) of 7191%, 
nearly two times higher than the control device. Recently, 
Liu et al. introduced an inverted pyramid-shaped structure 
on the surface of a  MAPbBr3 SC via in situ growth process, 
which reduced light reflection and enhanced light absorption 
[23]. Moreover, surface microstructure engineering through 
soft imprinting techniques in  MAPbBr3 and  MAPbCl3 for 
reducing light reflection and improving light absorption has 
been successfully developed to fabricate high-performance 
PDs [24, 25]. These studies highlight the importance and 
potential of light management strategies in significantly 
enhancing the optoelectronic performance of perovskites. 
However, previous researches have primarily focused on 
three-dimensional (3D) perovskites, with studies on two-
dimensional (2D) perovskites lagging significantly behind.

2D perovskites offer several advantages for high-perfor-
mance optoelectronic devices fabrication, including superior 
environment stability, reduced ionic migration, large exciton 
binding energy and anisotropic charge transport [26–28]. 
Classified by crystallographic definition, 2D perovskite 
could be divided into Ruddlesden-Popper (RP) and Dion-
Jacobson (DJ) structures [29]. Typically, the main difference 
is that DJ structures use diamine cations as interlayer spacer, 
while RP structures use monoamine ones. Generally, the RP-
type perovskite with organic–inorganic layers stacked by van 
der Waals interactions between monoammonium spacers is 
the most common 2D perovskite candidates for photodetec-
tion. However, the large van der Waals gaps between two 
monoammonium spacers would impede carrier transport and 
affect the structural stability of RP perovskites. Therefore, 
DJ-type perovskites offer advantages over RP-type perovs-
kites in terms of lattice stiffness, structural stability, and 
carrier transport, highlighting the great potential for their 
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use in developing high sensitivity PDs [30–32]. Recently, 
the impressive performance of DJ-type perovskites in opto-
electronic devices has led to a surge in research interest. For 
example, Shen et al. synthesized centimeter-sized  BDAPbI4 
and explored their charge-transport properties under X-ray 
excitation [33]. Later, Zhang et al. fabricated planar-type 
PDs by using  BDAPbI4 SCs, showcasing excellent response 
sensitive, including large linear dynamic range (LDR) of 
150 dB, high responsivity along with fast response speed and 
high operation stability [34]. Very recently, we fabricated 
devices based on micro/centimeter-sized  DPAPbBr4 SC and 
investigated their photoelectric properties under UV/X-ray 
excitation. The optimized PDs showed a high on/off ratio of 
4.89 ×  104, a large LDR of up to 154 dB, and demonstrated 
great potential in weak-light imaging and X-ray detection 
[35]. Nowadays, an increasing number of organic spacers 
are being discovered and used to synthesize new DJ-type 
perovskites SCs, e.g., 4AP (4-amidinopyridine) [36], 1,3-
BMACH (1,3-bis(aminomethyl)cyclohexane) [37], 3AMPY 
(3-(aminomethyl)pyridinium) [38], 3-MNPA (3-methylami-
nopropylamine) [39], DGA (dimethylbiguanide) [40], CYP 
(1-cyclohexylpiperazine) [41], NMPD (N-methylpropane-
1,3-diaminium) [42], and HIS (histammonium) [43]. Most 
studies focus on finding new organic spacers to synthesize 
novel DJ-type perovskites, enriching the DJ perovskite fam-
ily and enhancing our understanding of their optoelectronic 
properties. However, these perovskites primarily exist with 
planar-type structures, where a significant portion of inci-
dent light is typically reflected at the surface, resulting in 
insufficient light absorption within the crystal and ultimately 
leading to reduced performance in PDs. Additionally, the 
applications of DJ-type perovskites in UV weak-light condi-
tions, such as optical communication, imaging, and polar-
ized light detection, are not yet fully developed or system-
atically studied. To our knowledge, there are currently no 
reports on the simultaneous realization of light communica-
tion, imaging, and polarized light detection within a single 
device.

Motived by above consideration, we have successfully 
introduced light management strategy into 2D DJ-type per-
ovskite for the first time by synthesizing surface-patterned 
 BDAPbBr4 (BPB, BDA =  NH3(CH2)4NH3) MPs using 
template-assisted space-confined method, which is further 
elucidated through theoretical optical simulations. A thor-
ough analysis is performed to assess the morphology, crystal 
structure, and photophysical properties of these MPs. The 

findings showcase that the surface with well-patterned BPB 
MPs possesses remarkable attributes, such as high absorp-
tion in UV region, excellent crystal quality, and superior 
moisture and thermal stability. We fabricated detectors with 
both planar and patterned structures and compared their 
optoelectronic properties. The results show that the surface-
patterned devices exhibit superior performance, which is 
closely linked to their unique light management strategy. 
After further optimization, the patterned PDs exhibited 
outstanding detection capabilities, including a high on/off 
ratio of ~ 5000, large LDR = 134.13 dB, fast response speed 
(ms level), and low noise current of 1.4 fA/√Hz. Besides, 
these PDs showcase an obvious response even under weak-
light illumination, specifically achieving a notable detectiv-
ity (D*) of ~  1013 Jones and responsivity (R) of 2.24 A  W−1 
under 68.7 nW  cm−2 light illumination. These PDs exhibit 
excellent stability in moisture, thermal conditions, and 
operational performance. Importantly, these devices dem-
onstrate excellent weak-light communication and imaging 
capabilities, as well as remarkable polarization sensitivity. 
This research holds significant importance in introducing 
light management strategies into 2D perovskites and advanc-
ing their optoelectronic applications.

2  Experimental Section

2.1  Materials

All chemicals, including 1,4-Butanediamine Dihydrobro-
mide  (BDABr2, 98%, Aladdin), lead bromide  (PbBr2, > 98%, 
Aladdin), and Dimethyl sulfoxide (DMSO, 99.9%, Alfa 
Aesar), are used as received without any further purification.

2.2  Preparation of the Substrates

The glass substrate with the size of 15 mm × 15 mm was 
carefully cleaned with deionized water, acetone, and etha-
nol in the ultrasonic bath for 30 min before use. To fabri-
cate flat and patterned PDMS substrate. A commercial CD 
with the protective and printing layers are fully peeled off 
to reveal the clear nanochannels and cleaned with ethanol 
in the ultrasonic bath. Then, a mixture solution consisting 
of polydimethylsiloxanes (PDMS) and curing agent were 
uniformly coated on a piece of CD disk with exposed nano-
channels. After heating at 100 °C for 30 min, the patterned 



 Nano-Micro Lett.          (2025) 17:131   131  Page 4 of 15

https://doi.org/10.1007/s40820-024-01643-7© The authors

PDMS will be obtained by peeling from the CD. For flat 
PDMS, the CD was replaced by a flat, clean glass to prepare 
planar PDMS. The remaining procedures align with those 
previously mentioned.

2.3  Fabrication of the MPs and PDs

BPB MPs were grown by the template-assisted space-
confined method. Briefly,  BDABr2 and  PbBr2 with a molar 
ratio of 1:1 were dissolved in DMSO to prepare precur-
sor solution. Then, a few precursors solution was dropped 
onto a clean glass and covered with patterned or flat PDMS 
substrates. Then, it was pressed uniformly with a vertical 
pressure of ~ 10 kPa and then placed in an oven for 5 days 
at 40 °C. Finally, BPB MPs with patterned or flat surface 
could be obtained on glass after peeling off the upper 
PDMS. For the fabrication of planar devices with an Au/
BPB MPs/Au structure, the Au electrode was thermally 
evaporated onto the BPB MPs using a metal mask to create 
the photodetectors.

2.4  Material and Device Characterizations

The surface and cross-sectional morphology were observed 
by field emission scanning electron microscope (FE-SEM; 
JSM 6700F, Japan). The absorption spectrum was measured 
by UV–vis spectrophotometer (SHIMADZU mini 1280). 
Atomic force microscopy (AFM) and KPFM images were 
obtained with a Bruker Dimension Icon XR AFM. X-ray 
diffraction (XRD) patterns were collected using XRD, D8 
FOCUS X-ray diffraction. All the I-V and I-t curves were 
measured by Keysight B2912A Precision Sources/Measure 
Unit. A 405 nm laser and homogeneous light obtained by a 
Xenon arc lamp (Newport) and monochromator were used 
as light source with its intensity determined by a standard 
Si detector. All the devices were measured in an ambient 
atmosphere.

2.5  Optical Simulation

The optical simulations were established for studying the 
optical properties of the surface-patterned or flat struc-
tures with periodic boundary conditions in the x-direction. 
The model was simplified to a two-dimensional case, and 

Maxwell’s equations were discretized in the time domain 
using the finite-difference time-domain method to derive the 
update equations for the electric and magnetic fields. Peri-
odic boundary conditions were applied in the X-direction 
of the periodic structure, while a plane wave was used to 
illuminate the structure from above and the wavelength was 
405 nm, with a perfectly matched layer implemented below 
the structure to absorb the incident wave. The optical field 
distribution of the structure was then obtained through time-
domain iterations.

3  Results and Discussion

3.1  Surface‑Patterned MPs Growth

Due to the randomness and uncontrollability of perovskite 
nucleation and crystallization in the precursor solution, it is 
necessary to use a template constraint to strictly control the 
crystallization kinetics of the perovskite, thereby obtaining 
uniformly surface-patterned MPs. In this work, the surface-
patterned BPB MPs were synthesized by a simple template-
assisted space-confined crystallization method, shown in 
Fig. 1a. Briefly, we prepared a PDMS template with 1D 
nanochannels by replicating the grooves of a DVD disk 
using PDMS at first. Then, the pre-prepared perovskite pre-
cursor solution was dropped on a hydrophilic-treated glass 
substrate and immediately covered it with the PDMS tem-
plate. Finally, a uniform and constant pressure was applied 
to the system and it was then transferred to an oven to pro-
mote the growth of BPB MPs at 40 °C for 5 days. For con-
trol device, a flat PMDS was used to synthesize BPB MPs 
with flat surface. The crystal structure of BPB was first 
studied and is depicted in Fig. S1a–c, indicating the typi-
cal two-dimensional layered structure of BPB. Typically, 
 BDA2+ cation is sandwiched between adjacent inorganic 
 [PbBr6]4− polyhedral sheets, creating an alternating inor-
ganic–organic layered structure. Through Hirshfeld sur-
face analysis, the Hirshfeld  dnorm surface of BPB is shown 
in Fig. S1d, showcasing the strong N–H···Br hydrogen 
bonds on both ends between organic cations and inorganic 
framework. Additionally, to offer a clearer visualization 
of hydrogen bonding, the hydrogen bonds within BPB are 
provided in Fig. S1e. Moreover, BPB exhibits a 66.1% of 
H···Br interaction on the Hirshfeld surface, which is larger 
than previous reported  DPAPbBr4 (61.1%),  PeA2PbBr4 
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(32.6%),  HADPbBr4 (53.6%), (HIA)2AgBiBr8 (58.3%), 
 PMA2PbBr4 (33.4%), (BPEA)2PbI4 (22.2%), (4ABA)PbI4 
(59.7%) cations [35, 44–46], indicating the strong hydrogen 
bond within BPB perovskite (2D fingerprint map is shown 
in Fig. S1f) [35, 43]. Through the template-assisted space-
confined method, surface-patterned BPB MPs could be suc-
cessfully obtained. We systematically analyzed the mor-
phology and photoelectric properties of BPB MPs. The top 
scanning electron microscopy (SEM) images of as-grown 
patterned BPB MPs are shown in Figs. 1b and S2, revealing 
the successful preparation of the desired patterned perovs-
kite. The SEM indicates that BPB exhibits a nanochan-
nel surface with good uniformity over a large area (Fig. 
S2a, b) and the crystals show no significant grain bounda-
ries under magnified SEM obversion (Figs. S2c, d). The 
energy dispersive spectrometer (EDS) indicates that the 

elements Br and Pb are uniformly distributed on the whole 
MPs surface (Fig. S3). The uneven spots observed in the 
EDS mappings are primarily attributed to errors in micro-
area analysis, as scanning tiny regions within the sample 
can lead to irregularities in the elemental distribution. The 
cross-sectional SEM and its enlarged ones further reveal 
the well-patterned MPs and no grain boundaries or voids 
in whole bulk crystal (Figs. 1c and S4). Thanks to the high 
crystallization quality of MPs, no obvious layering phe-
nomenon is observed in the cross-sectional SEM. Besides, 
the patterned structure could be confirmed by AFM, in 
which the height of nanochannel is about 100 µm (Figs. 1d 
and S5). The above morphological analysis indicates the 
successful obtained BPB MPs of surface-patterned nano-
structures. The XRD patterns of both flat and patterned per-
ovskite reveal that BPB MPs exhibit excellent phase purity 

Fig. 1  a Structural illustration of the template-assisted space-confined crystallization method. b Top SEM, c cross-sectional SEM, d AFM, e 
XRD, and f absorption spectrum, and g photoconductivity measurement of surface-pattered BPB MPs
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with the diffraction peaks matching well with its simulated 
ones (Figs. 1e and S6). Additionally, the identical orienta-
tion observed between flat and patterned perovskites indi-
cates that the arrangement of patterned channels does not 
influence the crystal growth orientation, which is consistent 
with previous reports [16, 23]. The disordered crystalliza-
tion peaks observed in the XRD pattern are attributed to the 
randomly distributed perovskite film in some region, result-
ing from the fast and uncontrollable crystallization rate, 
particularly noticeable at the substrate edges. Moreover, 
the as-grown MPs display a good crystalline quality with 
the full-width at half-maximum (FWHM) of (002) plane 
calculated to be only 0.062° (inset Fig. 1e), comparable to 
flat ones (Fig. S6b) and some previous reported perovskite 
SC [47, 48], demonstrating the excellent crystal quality. 
The optical absorption of BPB MPs is given in Fig. 1f, 
revealing the high optical absorption at UV region with a 
clear absorption edge at about 415 nm. Furthermore, the 
band gap of BPB could be calculated to be 2.98 eV from 
the corresponding Tauc plot (inset Fig. 1f). To investigate 
the carrier transport property of BPB MPs, bias-depended 
photoconductivity measurement has been performed. The 
carrier mobility-lifetime product (μτ) can be calculated by 
fitting with Hecht equation [1]:

where I0, L, V, τ, and s represent the saturated photocurrent, 
thickness, voltage, the carrier lifetime, and recombination 
velocity, respectively. As shown in Fig. 1g, the μτ product 
of surface-patterned MPs is 3.4 ×  10–4  cm2  V−1, which is 
higher than flat ones (Fig. S7), revealing the more efficient 
carrier separation, transport, and collection. Considering 
that stability is crucial for future practical applications, we 
investigated the moisture and thermal stability of BPB. Sur-
prisingly, XRD patterns reveal that BPB MPs showed no 
significant phase decomposition even after being stored at 
70% humidity for 3 months (Fig. S8a). Moreover, the ther-
mal stability of BPB is assessed with thermogravimetric 
analysis (TGA) (Fig. S8b). There is no detectable mass loss 
until 310 °C, revealing the high thermal stability of BPB 
MPs. Above the temperature, it begins to decompose by 
losing organic portion of  BDABr2. The above results indi-
cate that the BPB MPs obtained through template-assisted 
space-confined method exhibit well-patterned surface, excel-
lent structural uniformity, high crystal quality, and superior 
moisture/thermal stability.

(1)I =
I0��V

L2

1 − exp
(

−
L2

��V

)

1 +
Ls

V�

3.2  Performance Comparation Between 
Surface‑Patterned and Flat MPs

Given that the high quality of BPB MPs confirmed through 
above characterization, along with their exceptional absorp-
tion and stability, we are motivated to fabricate PDs to fur-
ther explore their charge-transport properties under UV light 
excitation. We fabricated Au/BPB/Au devices using a vacuum 
deposition method with a shadow mask. The schematic illus-
tration and optical microscope image of the patterned PDs are 
shown in Figs. 2a and S9a, respectively. Similarly, as shown in 
Fig. S9b, the PDs based on flat-surface MPs are fabricated as 
control device to verify the feasibility of the light management 
strategy in surface-patterned structure. The active area of PDs 
is estimated to be 8.75 ×  10–6  cm2. The current–voltage curves 
(I - V) of both PDs were first measured under illumination and 
dark conditions with the results shown in Fig. 2b. Under dark 
condition, the suppressed ion migration in 2D perovskites ena-
bles both PDs to exhibit exceptional and comparable properties 
in suppressing leakage current, which is crucial for reducing 
noise current (inoise) and detecting weak signals. When illu-
minated under 405 nm laser, the surface-pattered PD shows a 
significantly higher photocurrent compared to flat ones. Fig-
ure 2c, d illustrates the light propagation processes, comparing 
a flat surface with normal geometry to a well-patterned surface 
with light management geometry. Compared to the patterned 
MPs, a lot of incident light may be reflected at their surface, 
whereas the well-patterned MPs could trap incident light within 
their nanochannels, thereby reducing reflection loss. For a more 
clearly comparation, optical simulations using finite difference 
time domain (FDTD) for both MPs were performed with the 
results shown in Fig. 2e, f. The optical field distribution over 
one optical cycle shows that patterned MPs exhibit a higher 
optical field, which can enhance optical absorption, promote 
photocarrier generation, and increase photocurrent. Addition-
ally, the surface-patterned MPs with periodic nanochannels are 
optically anisotropic, making it advantageous for polarized light 
detection, as will be detailed later.

3.3  Device Performance of Surface‑Patterned 
MPs‑Based PDs

In-depth theoretical analysis reveals that the surface-patterned 
PDs offer more significant advantages in photodetection. 
Subsequently, we conducted a thorough assessment of the 
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optoelectronic performance of surface-patterned PDs. Fig-
ure 3a depicts I—V characteristics of the PD measured in the 
dark and under 405 nm laser illumination at varying power 
densities. The results indicate that the photocurrent increases 
significantly with rising light intensity, resulting from the 
more generated carries at higher light intensity. Time domain 
photoresponse was also investigated under different light 
intensities with the results shown in Figs. 3b and S10. Under 
405 nm laser illumination at a power density of 349.7 mW 
 cm−2, the PD exhibits a high light current nearly  107 A and 
low dark current of 1.89 ×  10–11 A, yielding a high on/off ratio 
of 4790, which is an essential parameter for optoelectronic 

devices. Moreover, the PD demonstrates favorable on/off 
switching characteristics at a wide range of light intensities 
under 5 and 10 V bias, indicating the high operation stability 
(Fig. S10a, b). We measured the photo-response of the PD at 
different light intensities with the results shown in Fig. 3c. 
It can be seen that the photocurrent of the device shows a 
linear response from 6.87 ×  10–5 to 349.7 mW  cm−2. The pho-
toresponse linearity of a photodetector in a wide illumination 
range is important for practical applications, which could be 
described using LDR. The LDR of the device is calculated 
to be 134.13 dB corresponding to a ~ 7-magnitude dynamic 
range, by using following format [47]:

Fig. 2  a Structure schematic of the surface-patterned PDs. b Current comparation of BPB MPs with flat and patterned surface in dark (black 
line) and under illumination (red line). Illustration of light reflection and FDTD optical simulation under 405 nm light illumination on a flat c, e 
and patterned d, g BPB MPs. (Color figure online)
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where  Pup and  Plow are the maximum and minimum values 
of incident light intensity. It is noteworthy that the photore-
sponse within the measured range does not show significant 
deviation from linearity at either the minimum or maximum 
light intensities. Consequently, the LDR of the PD is not a 
saturated value. Based on these photocurrent measurements, 
the corresponding R and D* are calculated using following 
formats [35, 49]:

(2)LDR = 20 log
Pup

Plow

(3)R =

Jp − Jd

P

where Jp, Jd, P, S, and Idark represent the photocurrent den-
sity, dark current density, incident light density, effective 
area, and dark current, respectively.

The R and D* are presented in Fig. 3d, e, which show con-
sistent trend that the values increase as the illumination inten-
sity decreases, as more charge recombination is expected 
under high light intensity, which is a typical characteristic 
for a photoconductor. The highest R and D* are calculated 
to be 2.24 A  W−1 and 7.91 ×  1012 Jones at 68.7 nW  cm−2 
under 10 V bias, which is one of the highest among pervious 

(4)D∗
=

R
√

S
√

2qIdark

Fig. 3  a I-V curves of patterned PDs under 405 nm laser illumination with different light intensities. b I—t curve of patterned PDs under 349.7 
mW  cm−2 405 nm laser illumination at 10 V bias. c LDR, d R, e D*, f noise current, g detection limit, h response speed of patterned PDs under 
different bias. i R and D* comparations of our PD with previous reported DJ-type SC-based perovskite
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reported 2D DJ-type perovskite SCs-based PDs (Fig. 3i and 
Table S1). The noise current is crucial to the detection perfor-
mance of a PD, particularly for detection limit, and it could 
be calculated from dark current through Fourier transform. 
Figure S11 shows the long time dark current of the PD at 5 
and 10 V bias. The PD exhibits an ultra-low dark current 
with an average value of 0.447 pA at 10 V. The ultralow 
dark current can be attributed to the confinement of carriers 
within the multiple quantum wells structure of BBP, which 
is crucial for determining the photodetection performance 
of the PD [27]. Further, the noise current could be obtained 
with the results shown in Fig. 3f. The noise current of the PD 
is approximately 0.1–10 fA/√Hz, and such a low noise cur-
rent is expected to result in low detection limit. Meanwhile, 
Fig. 3g illustrates the response of the device under 68.7 nW 
 cm−2, demonstrating the excellent weak-light detection per-
formance. To evaluate the response speed of the PD, the 
photoresponse dynamics are characterized by measuring the 
rise time (tr) and fall time (td) during a typical photoresponse 
period, as depicted in Fig. 3h. The tr / td are 1.67/1.57 ms at 
5 V and 1.69 /1.71 ms at 10 V, along with a -3 dB cutoff fre-
quency of 645 and 590 Hz (Fig. S12), respectively. The fast 
response speed demonstrates the great potential of the PD 
for real-time detection and imaging. To access the detection 
performance of the PD in UV region, the wavelength depend-
ent R, D*, and EQE have been measured, as shown in Fig. 
S13. The EQE is calculated using the following formula [47]:

where h is Plank’s constant, c is the velocity of light, and 
k is the wavelength. The maximum R, D*, and EQE reach 
138.2 mA  W−1, 1.91 ×  1012 Jones, and 46.7% under 20 V, 
thereby demonstrating their exceptional sensitivity to UV 
radiation. Considering the importance of stability in practi-
cal applications, we have rigorously assessed the device’s 
photostability, thermal stability, and humidity resistance. As 
shown in Fig. S14a, the PD shows no obvious current deg-
radation even after continuous 405 nm laser illumination for 
100 min. Moreover, under modulated light illumination for 
~ 40 min, Fig. S14b indicates that the light and dark currents 
of the PD are relatively stable, with negligible fluctuations 
in dark current, underscoring its exceptional operational 
stability. Surprisingly, the PD exhibits ultra-stable photo-
current even after 2 months exposure to humid air (70% 
relative humidity) without encapsulation, as shown in Fig. 
S14c. Additionally, the device exhibits outstanding thermal 
stability. Figure S14d demonstrates that the current shows 

(5)EQE = R
hc

e�

no significant change after annealing in ambient conditions 
for 30 min at 150 °C. The preceding optoelectronic charac-
terization indicates that the surface-patterned BPB detec-
tors exhibit excellent ultraviolet detection capabilities and 
shows superior stability under light, thermal, and humidity 
conditions.

3.4  Photoelectric Applications of Surface‑Patterned 
MPs‑Based PDs

The aforementioned optoelectronic properties motivate us to 
explore the practical applications of surface-patterned BPB. 
Consequently, traditional optical communication and imaging 
were chosen as the practical application scenarios. In light 
communication, the process is primarily divided into three 
components: light modulation, signal conversion, and signal 
demodulation. In our case, the proof-of-concept demonstra-
tion is presented as follows: Firstly, the position numbers of 
the three letters "WHU" are converted into AMSII codes and 
modulated onto a 405 nm light source. Typically, W, H, and U 
are represented as 010111, 001000, and 010101, respectively, 
where high light intensity corresponds to “1” and low light 
intensity corresponds to “0.” Then, the signal is subsequently 
transmitted to the surface-patterned BPB PDs and converted 
into electrical signals with high and low levels. Finally, the 
electrical signals are demodulated back into letters to accu-
rately reproduce the complete “WHU” signal. The results of 
the light communication are depicted in Fig. 4b–d, illustrating 
that the surface-patterned BPB PDs exhibit exceptional light 
communication performance even under weak light condition. 
To demonstrate the imaging capability of the surface-pat-
terned BPB PDs, we designed a single-pixel imaging system, 
as illustrated in Fig. 4e. For this experiment, a “T”-shaped 
metal mask, controlled and moved by two stepping motors 
to allow continuous adjustments along the X- and Y-axes, 
is positioned between the 405 nm laser and the BPB PD. 
During imaging, the current of the BPB PD is measured and 
collected with a source meter (Keysight B2912A) under dif-
ferent light intensities. As illustrated in Fig. 4f, g, the images 
are exceptionally clear at weak light intensities of 2.9 and 
0.25 mW  cm−2, attributable to the high on/off ratio and rapid 
response of surface-patterned BPB PD. Importantly, even 
under 7.6 µW  cm−2 light illumination, the image exhibits clear 
distinguishability and is in perfect consistency with the “T”-
shaped metal mask. These results demonstrate the significant 
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Fig. 4  a Schematic diagram of the optical communication system based on patterned BPB PD. b–d Photoresponse characteristics of the pat-
terned BPB PD under modulated 405 nm light. e Schematic diagram of the imaging system. The imaging results of patterned BPB PD under 
405 nm laser illumination with light intensity of f 2.9 mW  cm−2, g 0.25 mW  cm−2, and h 7.6 µW  cm−2
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potential of surface-patterned BPB PDs for practically light 
communication and imaging even at weak light condition.

3.5  Polarized Light Detection of Surface‑Patterned 
MPs‑Based PDs

Polarized light detection plays a critical role in a range of 
fields, including polarized light communication, medical 
imaging, astronomical observation, and scientific research 
[50–52]. The surface-patterned microplates or nano/microw-
ire arrays usually exhibit optical anisotropy, which signifi-
cantly enhances their sensitivity to polarized light, and such 
prospects have been validated in previous reports [25, 53, 
54]. The highly anisotropic structure of surface-patterned 
BPB MPs positions them as promising candidates for 

polarization-sensitive PDs, and their excellent optoelectronic 
properties further enhance their ability to detect polarized 
light. The schematic illustration of polarized photodetection 
of patterned BPB PD is shown in Fig. 5a. In the experiment, 
a 365 nm unpolarized light source is employed, followed by 
a linear polarizer to convert it into linearly polarized light. 
The angle of the polarizer is then rotated to obtain linearly 
polarized light at different angles. The device’s response 
under continuously varying light polarization directions 
has been evaluated with the result illustrated in Fig. 5b. 
The polarization angle is varied in 30° increments, and the 
device exhibits a stable and rapid response to these varying 
polarization angles. Figure 4b illustrates the photocurrents 
of the surface-patterned BPB PD as a function of polariza-
tion direction. The relationship between the photocurrent 

Fig. 5  a Schematic illustration of the polarized photodetection of patterned BPB PD. b I  -  t curve at 10 V bias of patterned BPB PD under 
365 nm polarized light irradiation as a function of the rotation angle. c Photocurrent at 10 V bias of BPB detector as a function of the rotation 
angle. d Polar plot of photocurrent of patterned BPB PD at 10 V bias
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and the polarization angle is well-described by a sinusoi-
dal function and the light’s polarization direction is 0°; the 
photocurrent reaches a minimum value and increases to a 
maximum as the polarization angle increases to 90°. The 
anisotropy ratio (Imax/Imin) of the device is calculated to be 
1.05, which is larger than that of Si-based polarization PDs 
with the value of 0.5 and is comparable to other perovskite 
PDs, e.g., (4F-PEA)2PbBr4 (1.1) [55],  MAPbBr3 (0.84) [56], 
 BA2PbBr4 (0.73) [57],  CsPbBr3 (0.78) [58]. Moreover, the 
polar plot of the photocurrent for the surface-patterned BPB 
PD, as depicted in Fig. 5d, demonstrates a strong correlation 
with the polarization angle. The poor symmetry in the polar-
ization angle-dependent photocurrent (Fig. 5c) and polar 
plot (Fig. 5d) mainly caused by the inevitable dark current 
fluctuations, which could be improved through subsequent 
crystal and structure optimization in future. These findings 
suggest that the surface-patterned BPB MPs demonstrate 
significant potential for polarized light detection.

4  Conclusion

In conclusion, surface light management strategy is intro-
duced into 2D DJ-type perovskite and elucidated by theo-
retical optical simulation, for the first time. A facile tem-
plate-assisted space-confined method is used to synthesize 
surface-patterned BPB MPs to further elucidate the perfor-
mance improvement of light management strategy. The PDs 
based on surface-patterned BPB MPs show improved detec-
tion performance than flat ones. After optimization, the sur-
face-patterned BPB PDs exhibit remarkable photoresponse 
in the UV region, featuring a high on/off ratio of ~ 5000, a 
high responsivity of 2.24 A  W−1, along with a large detec-
tivity of ~  1013 Jones, low detection limit of 68.7 nW  cm−2, 
and fast response speed. Importantly, those PDs have shown 
excellent operation stability toward long-term, thermal, and 
humidity conditions. Furthermore, the PDs have exhibited 
outstanding light communication and imaging capability 
even under weak light conditions. Finally, the anisotropic 
properties of the surface-patterned MPs confer excellent 
polarization sensitivity to the PD, demonstrating signifi-
cant potential in polarized light detection. We make a break-
through by demonstrating that a single device can simultane-
ously perform light communication, imaging, and polarized 
light detection. These results represent the first demonstra-
tion of BPB perovskite in weak-light communication and 

imaging, as well as in polarized light detection. This work 
is significant in introducing light management strategies to 
perovskites and advancing device performance and opto-
electronic applications.
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