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HIGHLIGHTS

• A novel multifunctional carbon foam with nanoscale chiral magnetic heterostructures is constructed, in which the interconnection 
network provides strong conduction loss.

• The interfacial polarization loss induced by the FeNi-carbon interfaces is confirmed by the density functional theory calculations, 
and the magnetic pinning and coupling effects are revealed by the micromagnetic simulation.

• The composite foam exhibits an ultrabroad effective absorption bandwidth (EAB) of 14 GHz and a C-band EAB of 4 GHz, achieving 
the full C-band coverage.

ABSTRACT The construction of carbon nano-
coil (CNC)-based chiral-dielectric-magnetic trinity 
composites is considered as a promising approach 
to achieve excellent low-frequency microwave 
absorption. However, it is still challenging to further 
enhance the low frequency microwave absorption 
and elucidate the related loss mechanisms. Herein, 
the chiral CNCs are first synthesized on a three-
dimensional (3D) carbon foam and then combined 
with the FeNi/NiFe2O4 nanoparticles to form a 
novel chiral-dielectric-magnetic trinity foam. The 
3D porous CNC-carbon foam network provides 
excellent impedance matching and strong conduction loss. The formation of the FeNi-carbon interfaces induces interfacial polarization loss, 
which is confirmed by the density functional theory calculations. Further permeability analysis and the micromagnetic simulation indicate that the 
nanoscale chiral magnetic heterostructures achieve magnetic pinning and coupling effects, which enhance the magnetic anisotropy and magnetic loss 
capability. Owing to the synergistic effect between dielectricity, chirality, and magnetism, the trinity composite foam exhibits excellent microwave 
absorption performance with an ultrabroad effective absorption bandwidth (EAB) of 14 GHz and a minimum reflection of loss less than − 50 dB. 
More importantly, the C-band EAB of the foam is extended to 4 GHz, achieving the full C-band coverage. This study provides further guidelines 
for the microstructure design of the chiral-dielectric-magnetic trinity composites to achieve broadband microwave absorption.
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1 Introduction

Electronic devices and systems based on the fifth-genera-
tion (5G) technologies bring great convenience to daily life. 
However, the electromagnetic wave interference/radiation is 
also becoming a potential threat [1–3]. Multitudinous micro-
wave absorption materials with excellent absorption perfor-
mance have been developed, most of which exhibit wide 
effective absorption bandwidth (EAB) in the high microwave 
frequency region (10–18 GHz) [4–7]. Nevertheless, the 5G 
technologies signals fall in the low microwave frequency 
region (2–10 GHz), especially in the C-band (4–8 GHz). 
Therefore, further expanding the low frequency absorption 
bandwidth of the microwave absorption materials is critical 
but remains challenging.

It is anticipated that magnetic materials with superior 
natural resonance [8] and exchange resonance [9] would be 
effective in achieving excellent low-frequency microwave 
absorption, owing to their strong magnetic loss ability. 
However, it is difficult to further improve the magnetic loss 
ability of the magnetic materials due to the Snoke’s limit 
[10]. Geometric regulation, particularly the construction 
of magnetic anisotropic assemblies, is an efficient strategy 
for promoting the Snoke’s limit. For example, Che et al. 
designed the nonsymmetric hammer-shaped Fe/Fe3O4@
SiO2 composite, achieving strong magnetic loss ability [11]. 
The nonsymmetric distribution of the magnetic components 
is beneficial to enhance the magnetic anisotropy, which fur-
ther promotes the Snoke’s limit. Moreover, the magnetic ani-
sotropy is also affected by the compositional discrepancy of 
the magnetic components. Magnetic heterostructures, espe-
cially at the nanoscale, have great potential for enhancing the 
magnetic anisotropy. Wang et al. constructed the ferromag-
netic/antiferromagnetic heterostructures, confirming that 
magnetic pinning effect induced by the interfacial magnetic 
bias improves the magnetic anisotropy and low frequency 
permeability [12]. Therefore, achieving the nonsymmet-
ric distribution of the nanoscale magnetic heterostructures 
could be an effective strategy to promote the Snoke’s limit. 
Furthermore, the high density of the magnetic materials 
results in a high filling ratio in the absorbers, which is dis-
advantageous for their applications. It is also important to 
combine magnetic materials with a lightweight dielectric 
material that can simultaneously achieve strong magnetic 
loss and low density.

Carbon nanocoils (CNCs) have been considered as a kind 
of versatile nanomaterial in many fields [13–27]. Com-
pared to other carbon materials such as graphene, carbon 
nanotubes and carbon nanofibers, the CNCs have moder-
ate conductivity, which is beneficial for adjusting imped-
ance matching. The point-to-point contact between CNCs 
also prevents them from aggregation to form a uniformly 
dispersed composite. More importantly, the CNCs possess 
obvious 3D helical morphology, which provides the excel-
lent chiral template for magnetic components. The nanoscale 
line diameter and the helical structure of the CNCs could 
contribute to the confined space synthesis of the magnetic 
heterostructures. Besides, the unique chiral morphology of 
the CNCs could also give rise to the nonsymmetric distribu-
tion of the magnetic heterostructures. Therefore, the CNCs 
are considered as the excellent template materials for con-
struction of the chiral magnetic absorbers. Although vari-
ous magnetic/CNC composites, including  Fe3O4/Al2O3/CNC 
[28], FeCo@FeCo2O4/CNC [29], and CoNi/CNC [30], have 
been developed and achieved excellent microwave absorp-
tion performance, the EAB in the low frequency range still 
requires further extension. The internal mechanisms of 
enhanced magnetic loss also remain to be investigated. In 
addition, most of the current magnetic/CNC composites 
are in the form of powder, which require additional support 
matrix and exhibit narrow band impedance matching. It is 
believed that the three-dimensional (3D) porous structures 
such as foams and aerogels tend to broaden the impedance 
matching range [31–33]. In the porous structures, the pres-
ence of air reduces the permittivity, which contributes to 
the excellent impedance matching. Meanwhile, the efficient 
interconnected networks ensure the conduction loss and 
avoid the agglomeration. Therefore, if the chiral magnetic 
units are uniformly arranged in a 3D porous interconnected 
network, the microwave absorption performance would be 
improved significantly.

In this work, the chiral CNCs are first synthesized on a 
three-dimensional (3D) carbon foam and then combined 
with the FeNi/NiFe2O4 nanoparticles to form a novel chi-
ral-dielectric-magnetic trinity foam via chemical vapor 
deposition (CVD) and solvothermal reactions. The porous 
CNC-carbon foam skeleton forms an 3D interconnected 
conductive network. The nanoscale FeNi/NiFe2O4 magnetic 
heterostructures, in which the FeNi acts as the ferromag-
netic component while the  NiFe2O4 acts as the ferrimagnetic 
component, are uniformly synthesized on the chiral CNC. 
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The FeNi/carbon interfaces contribute to the interfacial 
polarization loss. Meanwhile, the formation and nonsym-
metric distribution of the nanoscale magnetic heterostruc-
tures lead to the magnetic pinning and coupling effect, which 
promotes the Snoke’s limit and increases the magnetic loss. 
With the synergistic effect between chirality, magnetism and 
dielectricity, the composite carbon foam exhibits superior 
microwave absorption performance in both low and high 
frequencies.

2  Experimental Section

2.1  Materials

Deionized water,  ethanol ,  and nickel  ni t rate 
(Ni(NO3)2·6H2O) were purchased from Tianjin Kermel 
Chemical Reagent Co., Ltd. Ferrous sulfate  (FeSO4·7H2O) 
and hexamethylenetetramine (HMT) were purchased from 
Shanghai Sinopharm Chemical Reagent Co., Ltd. Melamine 
foam was provided by Shanghai Junhua Hightech Materials 
Co., Ltd. All chemical reagents were of analytical grade and 
were used without further purification.

2.2  Preparation of CF, CCF, FCF, and FCCF 
Composites

2.2.1  Preparation of Carbon Foam (CF)

The carbon foam samples were obtained through the car-
bonization of the melamine foams. Typically, the melamine 
foams were placed in a tube furnace (BTF-1200C-III-S, 
Anhui BEQ) under an Ar atmosphere of 492.5 sccm. The 
foam samples were heated to 700 °C at a heating rate of 
5 °C  min−1 and then carbonized at 700 °C for two hours. 
Finally, the carbon foams were collected and labeled as CF.

2.2.2  Preparation of Carbon Nanocoil/Carbon Foam 
(CCF) Composites

As shown in Fig. 1, the CNC/CF composites were pre-
pared by the CVD process. Briefly, the Fe-Sn–O catalyst 
was prepared according to our previous research [34, 35] 
and dispersed in ethanol. The as-prepared CF samples were 
immersed in the Fe-Sn–O catalyst dispersion and dried at 

60 °C for 2 h. Then, the CF samples coated with catalyst 
were placed in the tube furnace under 563.2 sccm Ar atmos-
phere. Finally, the CNCs were synthesized on the CF sam-
ples with the introduction of additional 23.24 sccm  C2H2 
gases at 710 °C and the CNC/CF (denoted as CCF) com-
posites were obtained.

2.2.3  Preparation of FeNi@NiFe2O4@CNC/CF (FCCF) 
and FeNi@NiFe2O4/CF (FCF) Composites

Generally, 2 mmol Ni(NO3)2·6H2O, 1 mmol  FeSO4·7H2O, 
and 4 mmol HMT were added into 40 mL mixed solvent 
of ethanol and deionized water (volume ratio was 1:1). 
The mixture was then stirred for 20 min to form the pre-
cursor solution. The as-prepared CCF composites were 
functionalized by the plasma treatment for 10 min. The 
functionalized CCF composites and the precursor solution 
were transferred into a 50-mL Teflon-lined autoclave and 
then subjected to a solvothermal reaction at 100 °C for 
10 h. After the reaction, the FeNi@NiFe2O4@CNC/CF 
precursors were washed with deionized water and dried 
at 60 °C overnight. According to our previous research 
[29], an annealing temperature of 700 °C is chosen to 
ensure the formation of the FeNi/NiFe2O4 magnetic het-
erostructures. Finally, the FeNi@NiFe2O4@CNC/CF pre-
cursors were annealed at 700 °C for 2 h under 492.5 sccm 
Ar atmosphere to prepare the FeNi@NiFe2O4@CNC/CF 
composites, labeled as FCCF-1. Repeatedly, the precursor 
solutions were used at 1.5 times and twice the concentra-
tion to prepare two other FeNi@NiFe2O4@CNC/CF com-
posites, denoted as FCCF-2 and FCCF-3, respectively. All 
other conditions remained unchanged. For comparison, 
the FeNi@NiFe2O4/CF composites (denoted as FCF) were 
also prepared by changing the CCF composites as pure 
CF samples. All other conditions were kept unchanged.

2.3  Characterization

Morphological and microstructural information of the sam-
ples was obtained using a field emission scanning electron 
microscopy (SEM, SEM5000, CIQTEK Co., Ltd.) and 
a transmission electron microscopy (TEM, JEM F-200, 
JEOL). X-ray diffraction (XRD, Lab XRD-7000 s) with 
a Cu Kα radiation source was used to characterize the 
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crystal structure of the composites. Raman spectroscopy 
(Finder930, Zolix) was used to study the chemical states of 
the composites. The magnetic properties of the samples were 
obtained using a vibrating sample magnetometer (VSM, 
LakeShore 7400S). The electromagnetic parameters were 
measured using a vector network analysis (VNA, Keysight 
E5080B) in the frequency range of 1–18 GHz. The com-
posites were cut into a coaxial ring shape with an external 
diameter of 7.00 mm, an internal diameter of 3.04 mm and 
a thickness of 2.0 mm. The prepared coaxial ring samples 
were then used directly for the measurement of the electro-
magnetic parameters without any supporting matrix.

3  Results and Discussion

3.1  Morphology and Structure Information 
of the Samples

The microstructures and morphologies of the as-prepared 
samples are depicted in the SEM images (Figs. 2 and S1). 
The initial CF sample exhibits a typical 3D interconnect-
ing network formed by the carbon fibers with the diameter 
of about 5 μm (Figs. 2a and S1a). It is considered that the 
3D interconnective skeleton has been successfully estab-
lished by the carbon foam. As shown in Fig. 2b, c, lots of 
CNCs grow uniformly on the carbon foam skeleton after 
the CVD process. The CF-CNC structures form a denser 

interconnection network, which further enhances the elec-
tron transfer capability of the composite. In addition, the 
formation of the CF-CNC structures also improves the 
specific surface area of the composite, which gives rise to 
the multiple scattering of the microwave. In Fig. 2d, it is 
observed that the CNCs exhibit an obvious chiral helical 
morphology, which provide the excellent chiral templates for 
the fabrication of the chiral magnetic structures. Moreover, 
the helical diameter of the synthesized CNCs varies from 
100 to 500 nm, which is beneficial for the construction of 
the multi-scale composite. It is believed that the multi-scale 
composites tend to achieve multi-band absorption effect, 
which is beneficial for further expanding the EAB of the 
absorbers. Figure 2e shows that the 3D interconnection 
network could be well maintained during the solvothermal 
reaction and the annealing treatment. Furthermore, the FeNi-
based magnetic nanoparticles are synthesized uniformly 
on the surface of the CNCs, forming the chiral magnetic 
structures (Fig. 2f–h). Furthermore, it is also observed in 
Fig. 2f–h that the growth density and size of the FeNi-based 
nanoparticles increase gradually as the concentration of the 
precursor solution rises. However, without the CNCs, the 
FeNi-based particles would grow on the carbon fiber skel-
eton directly with a diameter of around 200–500 nm, which 
tend to aggregate with each other (Fig. S1b–d). Therefore, 
it is reasonable to conclude that the curved surface and the 
small line diameter endow the CNCs with the confinement 
effect, which not only contributes to the formation of the 

Fig. 1  Schematic illustration of synthesis process for the CCF and FCCF samples
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nanoscale FeNi-based particles, but also prevents the nano-
particles from aggregation.

The morphology and structural information of the FeNi@
CNC units in the FCCF-2 sample are further shown in the 
TEM images (Fig. 3a–d). The FeNi@CNC unit shows an 
obvious chiral structure with the uniform distribution of the 
FeNi-based nanoparticles (Fig. 3a, b), which is consistent 
with the SEM results. Besides, the HR-TEM image of the 
internal part of the nanoparticle (Fig. 3c) exhibits the lattice 
fringes with an interplanar spacing of 0.29 nm, correspond-
ing to the (220) crystal plane of  NiFe2O4. The relatively 
blurred lattice fringes reveal the weak crystallinity of the 
 NiFe2O4. It could therefore be surmised that additional reac-
tions may occur during the annealing treatment, resulting 
in the destruction of the lattice structure of the  NiFe2O4. 
Furthermore, the HR-TEM image of the nanoparticle surface 
(Fig. 3d) shows a lattice fringe with an interplanar spacing of 
0.20 nm, corresponding to the (111) crystal plane of FeNi. 
Moreover, another crystalline structure is also observed in 
Fig. 3d. The interplanar spacing is measured as 0.34 nm, 
corresponding to the (002) crystal plane of graphite carbon. 
Therefore, during the annealing treatment, the  NiFe2O4 is 
partially reduced to the metal FeNi by the carbon due to the 
carburization effect [36], resulting in the formation of the 
FeNi/NiFe2O4 magnetic heterostructure and the metal–car-
bon heterointerface. The Raman spectra of the samples 
were tested to confirm this conclusion. As shown in Fig. 3e, 
the CF and CCF samples do not exhibit any peak in the 
0–1000  cm−1 region. For the FCCF and FCF composites, 

the introduction of the FeNi-based particles results in the 
appearance of three main peaks appearing at 480, 570, and 
683  cm−1, which correspond to the  T2g(1),  T2g(2), and  A1g 
vibrational modes of the  NiFe2O4 [37, 38]. The Raman 
results further confirm the existence of the  NiFe2O4 in the 
FeNi-based particles, which is consistent with the TEM 
images. Moreover, the XRD patterns of the FCCF and FCF 
samples (Fig. 3f) provide further structural information 
of the FeNi-based particles. It is observed that the FCCF 
and FCF samples exhibit three obvious diffraction peaks at 
44.1°, 51.4°, and 75.7°, corresponding to the (111), (020), 
and (022) crystal planes of the metal FeNi (JCPDS No. 
96-152-4834). The sharp diffraction peaks indicate that the 
metal FeNi possesses good crystallinity, which is consistent 
with Fig. 3d. It is also worth noting that the XRD patterns do 
not exhibit any characteristic peak of the  NiFe2O4, confirm-
ing that the  NiFe2O4 in the FeNi-based particles possesses 
weak crystallinity (Fig. 3c). In addition, a prominent peak 
at 25.6° appears in the XRD pattern of the FCCF-2 sample, 
corresponding to the (002) crystal plane of graphitic carbon. 
It is confirmed that the synthesis of the CNCs improves the 
electron transfer capability of the carbon-based network. As 
illustrated in Fig. S2a, b, the XRD and Raman spectra of 
the FCCF-1 and FCCF-3 samples exhibit a high degree of 
consistency with the XRD and Raman spectra of the FCCF-2 
sample, indicating that the FeNi/NiFe2O4 magnetic hetero-
structures are also synthesized in the FCCF-1 and FCCF-3 
samples. In a word, the 3D interconnection network with 
the chiral magnetic units has been successfully established, 

Fig. 2  SEM images of a CF sample, b–d CCF sample, e, f FCCF-1 sample, g FCCF-2 sample, and h FCCF-3 sample
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exhibiting excellent electron transfer capability and a multi-
tude of FeNi/NiFe2O4 magnetic heterostructures.

Impedance matching (Z) is considered the primary fac-
tor for excellent microwave absorbers, since the Z repre-
sents the ability of microwaves to enter the interior of the 
absorber [39–42]. The Z value is calculated according to 
the following formula [43–47]:

where Zin and Z0 refer to the input impedance of the micro-
wave absorber and the free space, respectively; f repre-
sents the frequency of microwave; d is the thickness of the 

(1)Z =
Zin

Z0
=

�
�
�
�
�

�r

�r

�
�
�
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microwave absorber; and c stands for the velocity of light. It 
is observed in the formula that the Z value is closely related 
to the complex permittivity ( �r = �� − j��� ) and permeability 
( �r = �� − j��� ), in which the real parts ( �′ and �′ ) refer to the 
electric and magnetic energy storage capacities, while the 
imaginary parts ( �′′ and �′′ ) represent the energy dissipation 
capacities [48, 49]. Thus, the electromagnetic parameters 
of the samples are tested (Fig. S3) and the Z values of the 
samples are further calculated (Figs. 3g-j and S4). Generally, 
a Z value of 1 means that all the microwaves could enter the 
interior of the absorber without reflection. Accordingly, a Z 
value between 0.8 and 1.2 (close to 1) is essential to produce 
superior microwave absorbers. In Fig. 3g, h, the impedance 
matching of the CF and CCF is poor due to their inadequate 
or excessive permittivity value. For the FCF sample, the 

Fig. 3  a, b TEM and c, d HRTEM images of the FCCF-2 composites; e Raman spectra of the CF, CCF, FCF, and FCCF-2 composites; f XRD 
patterns of the FCF and FCCF-2 composites; Impedance matching contour maps of g CF, h CCF, i FCF, and j FCCF-2 samples
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introduction of the FeNi/NiFe2O4 particles modulates the 
permittivity, which promotes the impedance matching in 
some degree (Fig. 3i). Furthermore, Figs. 3j and S4 illus-
trate that the impedance matching of the FCCF composites is 
greatly promoted by the introduction of the CNCs and FeNi/
NiFe2O4 nanoparticles. Among the samples, the FCCF-2 
exhibits the optimal impedance matching. Therefore, it is 
concluded that the CNCs and FeNi-based nanoparticles 
effectively collaborate with each other in permittivity modu-
lation, contributing to good impedance matching.

3.2  Microwave Absorption Performance 
and Multifunctional Properties of the Samples

The RL value is the most used index for evaluating the 
microwave absorption performance of absorbers. Accord-
ing to the transmission line theory, the formula for calcu-
lating the RL value is as follows [50–52]:

As shown in Fig. S5, the CF (Fig. S5a, c) and CCF (Fig. 
S5b, d) samples exhibit low RL values and inadequate 
microwave absorption performance, which can be attributed 
to the suboptimal impedance matching. For the FCF sam-
ple (Fig. 4a, e), the microwave absorption performance gets 
better in some degree because of the promoted impedance 
matching. The minimum RL reaches -19 dB, and the maxi-
mum EAB is 5.4 GHz. It is also observed in Fig. 4g that the 
EAB value in C-band reaches 3.1 GHz, confirming that the 
3D magnetic foam structure has potential in low frequency 
microwave absorption. Furthermore, the FCCF-1 sample 
(Fig. 4b, f) achieves a broad EAB of 9.2 GHz with a thick-
ness of 3.5 mm, indicating that the chiral magnetic units are 
beneficial for extending the EAB. The C-band EAB of the 
FCCF-1 sample reaches 2.9 GHz. In addition, the FCCF-2 
sample (Fig. 4c, g), with a higher density of magnetic nano-
particles, shows a wider EAB of 10 GHz with a thickness of 
4 mm. More importantly, the C-band EAB of the FCCF-2 
sample is also expanded to 4 GHz, achieving the full C-band 
coverage. With the further increase in the growth density of 
the magnetic nanoparticles, the FCCF-3 sample (Fig. 4d, h) 
achieves an ultrabroad EAB of 14 GHz. However, the cor-
responding thickness rises to 10 mm, which is much thicker 
than the FCCF-2 sample. In a word, the FCCF samples all 

(2)RL(dB) = 20 log
||
|

(
Zin − Z0

)/(
Zin + Z0

)||
|

exhibit superior microwave absorption performance com-
pared with the FCF sample. On the one hand, the excellent 
microwave absorption performance of the FCCF samples is 
attributed to their better impedance matching. On the other 
hand, the introduction of the CNCs and the magnetic het-
erostructures further enhances the dielectric and magnetic 
losses. As shown in Fig. 4i, it is concluded that the FCCF 
samples achieve both high EAB and C-band EAB values 
compared to the carbon-based 3D aerogel/foam absorbers in 
other studies [53–61]. Therefore, the FCCF samples could 
exhibit excellent microwave absorption performance in both 
low frequency and high frequency regions.

To further evaluate the actual far-field microwave 
absorption performance of the FCCF samples in real situa-
tions, radar cross section (RCS) simulations are performed 
based on the electromagnetic parameters. In general, theta 
and phi in spherical coordinates determine the scatter-
ing direction of the RCS value ( � ) for a given scattering 
source as follows [62–65]:

where ES and Ei refer to the electric field intensities of the 
accepting wave; � represents the wavelength of the incident 
microwave; and S stands for the area of the simulated plate. 
The RCS is the parameter used to quantify the echo intensity 
of a target material when illuminated by radar waves. Con-
sequently, a weaker RCS signal indicates a greater micro-
wave absorption capability of the sample. In this study, RCS 
simulations are performed using the CST STUDIO SUITE 
2019 software, with the positive x-axis set as the direction 
of the microwave. As shown in Fig. 5j, the pristine perfect 
electric conductor (PEC) plate exhibits strong RCS scatter-
ing signal, indicating weak microwave absorption capability. 
However, the PEC plate coated with the FCF sample shows 
lower scattering signal due to the microwave absorption 
capability of the FCF sample. Furthermore, the FCCF-2/
PEC model exhibits the lowest scattering signal, revealing 
that the FCCF-2 sample possesses the strongest microwave 
absorption capability. Due to the consistency of the meas-
ured microwave absorption results and the RCS simulation 
results, it is reasonable to conclude that the FCCF-2 compos-
ites show great potential for practical applications as excel-
lent microwave absorbers.
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(
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)
= 10 log
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In addition to the microwave absorption performance, 
the FCCF-2 composites also possess multifunctional prop-
erties. As shown in Fig. S6a, the FCCF-2 sample could 
easily be perched on top of a dandelion without deforming 
the soft dandelion seeds, indicating the ultra-lightweight 
and low-density characteristics of the FCCF sample. Fig-
ure S6b shows that the FCCF-2 sample exhibits obvious 
magnetic properties, which is beneficial for improving the 
magnetic loss. Furthermore, the FCCF-2 sample could 
maintain its structure without mechanical damage even 
under a load of 3000 times its own weight (Fig. S6c), 
owing to its excellent structural robustness. As shown in 
Fig. 4k, when the 5-mm-thick FCCF-2 sample is placed on 

the heating platform with the temperature set at 100, 120, 
and 150 °C, respectively, the surface temperatures of the 
FCCF-2 sample are only 65, 71, and 86 °C, respectively. 
Moreover, the surface temperature of FCCF-2 remains sta-
ble at around 60 °C as the heating time is increased (Fig. 
S7). Therefore, it is considered that the FCCF-2 sample 
possesses excellent thermal insulating performance. Fur-
thermore, the Joule heating performance of the FCCF-2 
sample is investigated by applying a voltage to both ends 
of the foam. The infrared thermal images shown in Fig. 4l 
intuitively indicate the surface temperature of the FCCF-2 
sample under different voltages. At voltages of 5–25 V, 
the FCCF-2 sample exhibits excellent Joule heating 

Fig. 4  3D RL values and their projection plots of a, e CF, b, f CCF, c, g FCF, and d, h FCCF-2 samples; i comparison of the maximum EAB 
and the maximum C-Band EAB values with other aerogel/foam-based absorbers reported recently in literature; j 3D RCS plots for PEC sub-
strate, PEC substrate covered with FCF and FCCF-2; k Infrared radiation images of surface temperature of FCCF-2 sample on a platform with 
different temperatures; l Infrared radiation images of surface temperature of FCCF-2 sample under different driving voltages
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performance with surface temperatures ranging from 28.5 
to 98.4 °C. It is believed that the 3D interconnected CNC-
CF network provides efficient paths for electron transfer, 
which endows the FCCF-2 sample with excellent elec-
trothermal conversion capability. In a word, the excellent 
thermal insulation is essential to protect sensitive elec-
tronic equipment from high temperatures. Joule heating 
performance also protects equipment from freezing envi-
ronments. Therefore, we believe that the composite carbon 
foam absorbers have the potential to cope with the harsh 
practical application environment [66–68].

3.3  Microwave Absorption Mechanisms of the Samples

In Fig. 5, the electromagnetic parameters of CF, CCF, 
FCF, and FCCF-2 samples are further analyzed to investi-
gate the dielectric microwave dissipation mechanisms of 
the sample. It is shown in Fig. 5a, b that the CF sample 
exhibits the lowest �′ and �′′ values, indicating the weak 
dielectric loss of the CF sample. For the CCF sample, the 
introduction of the CNCs greatly improves the �′ and �′′ 
values, which endows the CCF sample with strong dielec-
tric loss. However, the excessive �′ and �′′ values result in 
poor impedance matching (Fig. 3h). Thus, the moderate �′ 
and �′′ values endow the FCF and FCCF-2 samples with 
considerable dielectric loss and good impedance matching. 
As shown in Fig. S8a, the dielectric loss tangent curves 
of the samples are calculated. It is observed that the CCF 
sample exhibits the strongest dielectric loss capability. 
However, the poor impedance matching of the CCF sam-
ple limits the microwave absorption performance. The 
FCF and FCCF-2 samples both possess strong dielectric 
loss capability and good impedance matching, resulting in 
the excellent microwave absorption performance. There-
fore, the synergistic effect between the dielectric loss and 
impedance matching is beneficial for achieving excellent 
microwave absorption performance. Moreover, the Raman 
spectra (Figs. 5c and S2c) of the samples all exhibit two 
characteristic peaks, D-band and G-band peaks, at 1340.1 
and 1580.8  cm−1, respectively, indicating the graphitic 
structures of the samples. In general, the intensity ratio 
of D-band to G-band (ID/IG) stands for the graphitization 
degree of the graphitic structures [69–72]. It is observed 
in Figs. 5c and S2c that the CCF and FCCF samples show 
lower ID/IG values compared to the CF and FCF samples, 

confirming that the introduction of the CNCs promotes the 
graphitization degree and enhances the electron transfer 
capability. For the CCF sample, the growth of the CNCs 
endows the CCF sample with a dense conductive network, 
resulting in an excessive electron transport capability. The 
introduction of magnetic nanoparticles further reduces the 
electron transport capability of the conductive network. 
However, in Fig. 5c, the high ID/IG value of the CF sample 
indicates the poor graphitization degree. Thus, the electron 
transport capability of the CF sample is extremely weak. 
In this situation, the crystal structures of the magnetic par-
ticles improve the electron transport capability of the CF 
sample instead. Therefore, the introduction of the FeNi/
NiFe2O4 particles contributes to the moderate �′ and �′′ 
values. In addition, the Cole–Cole curves of the samples 
are calculated to further investigate the polarization loss 
of the samples according to the Debye relaxation theory 
[73–76]:

where �s and �∞ represent the static permittivity and the 
relative permittivity at the high-frequency limit, respectively. 
As presented in Fig. 5d, the CF sample exhibits several 
semicircles, indicating the existence of multiple polariza-
tion processes. Due to the low graphitization degree of CF 
samples, these polarization processes are attributed to the 
dipole polarization induced by the defects and functional 
groups. For the CCF sample, the promoted graphitiza-
tion degree and the CNC-CF conductive network induce 
strong conduction loss. Thus, the Cole–Cole curve of the 
CCF sample shows a linear shape. For FCF and FCCF-2 
samples, the electron transfer capability is further adjusted 
by the FeNi-based nanoparticles. Moreover, the formation 
of the metal–carbon heterointerfaces induces interfacial 
polarization. The Raman spectra results show that the FCF 
and FCCF-2 samples both contain numerous defects, which 
induce the dipole polarization. Therefore, the Cole–Cole 
curves of the FCF and FCCF-2 samples show the conduction 
loss and polarization loss simultaneously. According to the 
Debye relaxation theory, the transfer of the electrons results 
in the distortion of the Cole–Cole semicircle. In Fig. 5f, g, 
the approximately linear curve means that the distortion of 
the semicircle was at a high level. Thus, conduction loss is 
the main loss mechanism in dielectric loss. As illustrated 
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in Fig. 5h–k, the dielectric loss mechanisms are presented 
in accordance with the aforementioned results. Firstly, the 
main dielectric loss mechanism of the CF sample is dipole 
polarization due to the poor graphitization degree (Fig. 5h). 
Secondly, the conduction loss [26] is considered as the 
main dielectric loss mechanism of the CCF sample due to 
the formation of the CNC-CF conductive network (Fig. 5i, 
j). Finally, the introduction of FeNi-based nanoparticles 
induces interfacial polarization, which is further confirmed 
by the density functional theory (DFT) calculations (Figs. 5k 
and S9). Figure 5k provides the calculated electron density 

difference and corresponding isosurface plot, in which the 
yellow and cyan regions denote electron density accumu-
lation and depletion, respectively. It is observed that the 
charges accumulate at the heterointerface between carbon 
and FeNi, which induce the interfacial polarization. Moreo-
ver, the number of transferred electrons at the carbon-FeNi 
interface is calculated (Fig. S10), further confirming the 
existence of the interfacial polarization at the heterointerface 
between carbon and FeNi. It is reasonable to conclude that 
the dielectric loss mechanism of FCCF-2 composites could 

Fig. 5  a Real permittivity, b imaginary permittivity, and c Raman spectra of CF, CCF, FCF, and FCCF-2 samples; Cole–Cole plots of d CF, e 
CCF, f FCF, and g FCCF-2 samples; Dielectric loss diagram of h CF, i CCF, and j FCCF samples; k Calculated electron density difference and 
corresponding isosurface plot. Electron density difference was calculated by Δ = ρ(C/FeNi)-ρ(C)-ρ(FeNi). The yellow and cyan regions denote 
electron density accumulation and depletion, respectively
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be attributed to the synergistic effect of the conduction loss 
and polarization loss.

The permeability of the samples is compared in Fig. 6a, 
b to further investigate their magnetic loss mechanisms. It 
is observed that the �′ and �′′ values of the CF and CCF 
samples are close to 1 and 0, respectively, due to their weak 
magnetic property. Moreover, the FCF samples exhibit 
higher �′ and �′′ values due to the formation of the mag-
netic FeNi-NiFe2O4 particles. More importantly, the FCCF-2 
sample shows the highest �′ and �′′ values, indicating that 
the chiral magnetic structure and the nanoscale magnetic 
heterostructure are beneficial to improve the magnetic loss. 
In addition, the room-temperature magnetic hysteresis loops 
(Fig. 6c) are tested to confirm the excellent intrinsic mag-
netic properties of the FCCF-2 sample. It is observed that 
the FCCF-2 samples exhibit the highest saturation magneti-
zation (Ms) values, which is consistent with the variation 
tendency of the �′ and �′′ curves. Figure S2d also shows that 
the Ms values of the FCCF samples could be well adjusted 
by modulating the growth density of the magnetic nanopar-
ticles. In the CNC-carbon foam network, the CNCs act as 
the branches of the carbon foam trunk, increasing the surface 
area of the sample and providing more growth sites for the 
magnetic nanoparticles. Therefore, the FCCF-2 sample has a 
higher saturation magnetization value than the FCF sample. 
Besides, Figs. 6d and S11 show that the FCF and FCCF sam-
ples both show the asymmetry magnetic hysteresis loops, 
indicating the existence of the exchange bias induced by the 
FeNi-NiFe2O4 magnetic heterostructures. According to the 
research of Wang et al. [12], the exchange bias originates 
from the magnetic pinning effect at the interface of the mag-
netic heterostructures, which is conducive to increasing the 
magnetocrystalline anisotropy field (Hk). Generally, the Hk 
could be estimated by comparing the hysteresis loops of the 
sample using the simplified formulas of the S-W approxima-
tion [77, 78]:

In the above formulae, c is a constant and b is the slope 
of the M-1/H2 plots. As shown in Fig. 6e, the slope b of 
the FCCF-2 sample is greater than that of the FCF sample, 
which indicates that the FCCF-2 sample possesses the larger 
Hk. According to the Snoke’s limit, the larger Hk gives rise 
to the larger natural resonance frequency, which is beneficial 

(5)M = Ms

(
1 −

b

H2

)
,Hk = c ⋅ b

1

2

for improving the magnetic loss. Thus, the eddy current 
induction coefficient C0 of the FCF and FCCF-2 samples is 
calculated ulteriorly to investigate the magnetic resonance 
[79–82]:

In general, the fluctuations in the C0 curves indicate the 
existence of magnetic resonance. According to the ferro-
magnetic resonance theory, the resonance peaks appear-
ing at 2–10 GHz represent the natural resonance, while 
the resonance peaks at 10–18 GHz stand for the exchange 
resonance. As shown in Fig. S8b, the magnetic loss tangent 
curves of the FCF and FCCF-2 samples are calculated. It is 
observed that the magnetic loss tangent curves of the FCF 
and FCCF-2 samples also show several resonance peaks, 
which is consistent with the C0 curves. In Figs. 6f and S8b, 
the FCF and FCCF-2 samples both exhibit natural and 
exchange resonances. However, the FCCF-2 sample exhibits 
a higher natural resonance frequency, further confirming that 
the FCCF-2 sample possesses the larger Hk and promotes the 
Snoke’s limit efficiently.

Furthermore, the dynamic evolution processes of the 
magnetic domains are explored by the micromagnetic sim-
ulations to confirm the magnetic loss mechanisms of the 
FCF and FCCF-2 samples. Firstly, a magnetic heterostruc-
ture composed of the ferrimagnetic  NiFe2O4 and ferromag-
netic FeNi is constructed to confirm the magnetic pinning 
effect. In Fig. 6g, a magnetic heterostructure composed 
of the ferrimagnetic  NiFe2O4 and ferromagnetic FeNi is 
constructed to confirm the magnetic pinning effect. For 
the ferromagnetic FeNi, the external alternating magnetic 
field results in the rotation of magnetic moments. Thus, 
at the heterointerface between the  NiFe2O4 and FeNi, the 
magnetic moment of the ferromagnetic FeNi generates an 
exchange magnetic field, acting on the uncompensated 
magnetic moment of the ferrimagnetic  NiFe2O4. In con-
trast, the uncompensated magnetic moments around the 
interface in the ferrimagnetic  NiFe2O4 also hinder the 
rotation of magnetic moments in the ferromagnetic FeNi. 
Therefore, the magnetic loss capability is enhanced by the 
magnetic pinning effect. Moreover, the microscale linear 
structure of the FCF sample is constructed by linearly 
arranging the microscale magnetic particles (Fig. 6h), 
where the color of the magnetic moments represents the 
orientations. In Fig. 6h, the multicolor distribution of the 

(6)C0=�
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FCF sample stands for the chaotic magnetic moment ori-
entations, indicating the weak magnetic anisotropy and 
weak magnetic coupling. Therefore, the magnetic loss 
mechanism of the FCF sample is attributed to the rota-
tion of magnetic moments. Moreover, the nanoscale chi-
ral structure of the FCCF-2 sample is also constructed 
(Fig. 6i). As the magnetic particle size decreases, the mag-
netic domain orientations tend to be oriented in the same 
direction, indicating the enhanced magnetic anisotropy. In 
addition, the magnetic domains in different helical direc-
tions show an obvious magnetic coupling effect. In our 
previous research [29], the enhanced magnetic coupling 
effect was studied in detail. For the chiral helical structure, 
the magnetic coupling effects occur not only along the 
axis of the helical fiber, but also between the helical rings. 
Thus, it is concluded that the chiral structures enhance 
the magnetic loss capability of the FCCF-2 sample. In a 
word, the nanoscale chiral magnetic heterostructures in 
the FCCF-2 sample achieve strong magnetic anisotropy 

and high magnetic loss, which contribute to the excellent 
microwave absorption performance.

In addition, the quarter-wavelength matching model 
[30] is introduced to better analyze the microwave absorp-
tion mechanisms of the samples:

In the above formulae, the tm represents the thickness of 
the absorber, and the fm stands for the peak frequency of the 
RL value. Generally, if the tm and the fm accord well with the 
model, the phase cancelation effect would occur to largely 
reduce the reflection of the microwave. In Fig. S12, the 
quarter-wavelength matching model curves of the samples 
are calculated and depicted as the blue dots. It is observed 
that all the samples accord well with the quarter-wavelength 
matching model, indicating that the phase cancelation effect 
contributes to their microwave absorption performance. 
In addition, Fig. S13 shows that the regions where the 
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Fig. 6  a Real permeability, b imaginary permeability, and c M-H curves of CF, CCF, FCF, and FCCF-2 samples; d Enlarged M-H curves, e M 
versus 1/H2 plots, and f eddy current induction coefficient of FCF and FCCF-2 samples; micromagnetic simulation of g  NiFe2O4-FeNi magnetic 
heterostructures, h linear FCF sample, and i chiral FCCF-2 sample
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impedance matching values are close to 1 also accord well 
with the quarter-wavelength matching model. Therefore, it 
is concluded that the coexistence of the quarter-wavelength 
matching models and the impedance matching is necessary 
to obtain the strong microwave absorption performances.

4  Conclusions

In summary, the chiral CNCs are first synthesized on a 3D 
carbon foam and then combined with the FeNi/NiFe2O4 
nanoparticles to form a novel chiral-dielectric-magnetic 
trinity foam via chemical vapor deposition (CVD) and sol-
vothermal reactions. The efficient 3D CNC-CF conductive 
network provided strong conduction loss, and the formation 
of metal–carbon interface induced interfacial polarization 
loss. The nanoscale chiral magnetic heterostructures exhib-
ited magnetic pinning and magnetic coupling effects, fur-
ther enhancing the magnetic anisotropy and magnetic loss 
capability. Owing to the synergistic effect between dielec-
tricity, chirality, and magnetism, the trinity composite foam 
exhibits excellent microwave absorption performance with 
an ultrabroad EAB of 14 GHz and a minimum reflection of 
loss less than − 50 dB. More importantly, the C-band EAB 
of the foam is extended to 4 GHz, achieving the full C-band 
coverage. These results can be used as the guidelines for the 
design of efficient chiral microwave absorbers.
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