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HIGHLIGHTS

• A detailed exploration is provided of how artificial intelligence (AI) and machine learning techniques are applied across various 
aspects of materials science.

• Major challenges in AI-driven materials science are evaluated.

• Novel case studies are incorporated, demonstrating their impact on accelerating material development and discovery.

ABSTRACT The advancement of materials has played a pivotal role in the advance-

ment of human civilization, and the emergence of artificial intelligence (AI)-empow-
ered materials science heralds a new era with substantial potential to tackle the 
escalating challenges related to energy, environment, and biomedical concerns in a 
sustainable manner. The exploration and development of sustainable materials are 
poised to assume a critical role in attaining technologically advanced solutions that 
are environmentally friendly, energy-efficient, and conducive to human well-being. 
This review provides a comprehensive overview of the current scholarly progress in 
artificial intelligence-powered materials science and its cutting-edge applications. 
We anticipate that AI technology will be extensively utilized in material research 
and development, thereby expediting the growth and implementation of novel mate-
rials. AI will serve as a catalyst for materials innovation, and in turn, advancements 
in materials innovation will further enhance the capabilities of AI and AI-powered 
materials science. Through the synergistic collaboration between AI and materials 
science, we stand to realize a future propelled by advanced AI-powered materials. 
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1 Introduction

Material science has emerged as a pivotal nexus for the 
advancement and maturation of contemporary science 
and technology, assuming a foundational and pioneering 
role in their development. Each stride taken in material 
science theory exerts a catalytic influence on the innova-
tion of materials technology and materials engineering. 
Noteworthy breakthroughs achieved in key material tech-
nologies have the potential to foster advancements across 
multiple scientific and technological domains. Further-
more, the advent of novel materials holds the prospect 
of instigating the inception of nascent industrial sectors.

The conventional model for material research and devel-
opment primarily relies on scientific researchers who 
design experiments and continuously optimize experimen-
tal parameters in order to attain optimal materials. This 
process typically spans a duration of 10–20 years, requir-
ing significant engineering efforts, extensive consumption 
of experimental materials, and substantial labor costs. 
These factors have posed substantial obstacles to meet-
ing the demands for novel materials in twenty-first-century 
industrial development. However, with the advancements 
in information technology within the domain of material 
simulation, the trajectory of materials research and devel-
opment has shifted from an experimental-driven paradigm 
to a computational-driven one [1]. Through the application 
of theoretical and computational simulations, promising 
candidate materials can be predicted, subsequently nar-
rowing down the scope of experimental validation. This 
approach is currently extensively employed. Moreover, 
with the advent of AI, the present landscape of material 
research and development has progressively transitioned 
into a data-driven phase [2]. Drawing upon machine learn-
ing and data mining techniques, models are constructed 
based on substantial datasets to predict potential materi-
als. This methodology is grounded in theoretical calcu-
lations, and the utilization of high-throughput computing 
systems enables the rapid acquisition of vast amounts of 
data. By leveraging artificial intelligence for screening and 
designing novel materials, the pace of material research 
and development is significantly enhanced, while costs are 
concurrently reduced.

2  Artificial Intelligence and Machine 
Learning

2.1  Artificial Intelligence

Artificial intelligence, commonly referred to as AI, encom-
passes a system that enables humans to emulate human cog-
nition and behavior. AI entails the emulation of human intel-
ligence in programmed machines, enabling them to replicate 
human-like thinking, actions, and task completion that were 
formerly exclusive to natural intelligence [1]. By harnessing 
data-driven AI technology [2], the capabilities of AI systems 
transcend those of natural or human intelligence in terms of 
speed, efficiency, and productivity. AI-based programs, such 
as Siri on Apple devices, possess the capacity to analyze 
and process data while emulating human cognitive abilities. 
To streamline the cycle of material research and develop-
ment, artificial intelligence serves as a potent auxiliary tool 
that employs data sharing to predict and screen the physico-
chemical properties of advanced materials, thus expediting 
the synthesis and production of new materials. In essence, 
AI endeavors to imbue programs with enhanced human-like 
processing and task execution capabilities.

2.2  Machine Learning

Machine learning, a subset of AI, utilizes data-driven tech-
niques to solve specific tasks by learning from data and mak-
ing predictions. It involves extracting knowledge and predic-
tions from extensive datasets, eliminating the need for explicit 
programming. The core of machine learning lies in training 
machine learning models, which optimize their parameters 
by iteratively comparing them to actual values. This optimi-
zation process, which involves millions of iterations, aims to 
minimize the discrepancy between simulated and real-world 
scenarios. Machine learning algorithms play a significant 
role in assisting the design of novel materials as part of the 
broader field of AI. The workflow of machine learning in 
materials science primarily encompasses four steps: descrip-
tor generation, model construction and verification, material 
prediction, and experimental validation. Descriptors capture 
specific material properties based on existing data, enabling 
the construction of nonlinear training models to predict the 
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properties of new materials. This process circumvents the reli-
ance on traditional physical knowledge. In comparison with 
conventional trial-and-error research methods, machine learn-
ing technology offers benefits such as low cost, high efficiency, 
shorter cycles, and scalability [3]. On the one hand, the field 
of materials science has generated vast amounts of data in the 
information age, establishing extensive databases. Given that 
machine learning’s core statistical algorithms excel in process-
ing and generalizing big data, it becomes possible to extract 
new insights from existing experimental data, explore intricate 
implicit relationships between various parameters, establish 
accurate prediction models, and leverage the full potential of 
experimental data. On the other hand, prevalent computational 
simulation methods used in computational materials science, 
such as first-principles calculations [4], molecular dynamics 
[5], and finite element simulation [6], often entail significant 
time and resource consumption while possessing inherent 
limitations. Material simulations aim to predict the properties 
of new materials based on existing data through mathemati-
cal modeling. Frequently, the relationships between input and 
output material properties exhibit complexity that traditional 
linear and nonlinear association methods struggle to handle. 
Machine learning, however, enables the identification of such 
relationships through modeling. Additionally, machine learn-
ing not only significantly reduces computing time but also 
expands the spatial and temporal scales of computational sys-
tems. For material design, the crucial step involves construct-
ing an associative model that accurately captures the relation-
ship between input material-specific features and properties 
of interest, based on a given dataset. Classical models heav-
ily rely on physical perspectives and mechanisms, utilizing 
mathematical formulations to derive parameters, typically 
linear or slightly nonlinear, from existing reference data using 
conservation laws and thermodynamics. Machine learning 
takes a distinct approach, training models in flexible and often 
highly nonlinear forms based solely on available data, without 
dependence on physical principles or knowledge. In materi-
als science, complex relationships frequently exist between a 
material’s structure and the properties of interest, challenging 
traditional correlation methods. Consequently, machine learn-
ing methods have emerged as vital tools for predicting mate-
rial properties, material screening, and optimal design [7–9]. 
Thus, data-driven approaches represent a crucial development 
direction for the future of materials science. This review aims 
to provide insights into the current progress and future pros-
pects of AI-powered materials science. One area where AI has 

made significant contributions is in materials discovery and 
development. Traditionally, the process of discovering new 
materials involved a combination of empirical experimenta-
tion and theoretical calculations based on established physical 
principles. However, this approach is often time-consuming, 
expensive, and limited in its ability to explore the vast space of 
possible materials and their properties. AI-powered machine 
learning algorithms have revolutionized this process by ena-
bling the rapid screening of materials and the prediction of 
their properties. The first step in applying machine learning to 
materials science is the generation of descriptors. Descriptors 
are numerical representations of specific material properties or 
features derived from existing data. These descriptors capture 
important characteristics of materials that can be used to train 
machine learning models. By utilizing descriptors, machine 
learning models can learn complex relationships between 
input features and material properties, allowing for accurate 
predictions of the properties of new materials. Once descrip-
tors are generated, machine learning models are constructed 
and verified using training data. The models are trained by 
iteratively adjusting their parameters to minimize the error 
between predicted and actual values. This iterative optimiza-
tion process, often involving millions of iterations, allows the 
models to learn from the data and improve their predictive 
performance. After the models are trained and verified, they 
can be used to predict the properties of new materials. This 
enables researchers to rapidly screen a large number of mate-
rials and identify those with desirable properties for specific 
applications. The predictions made by machine learning mod-
els can guide experimental efforts by suggesting promising 
materials that can be synthesized and tested in the laboratory. 
Experimental validation is a crucial step in the machine learn-
ing workflow. The predicted properties of materials need to be 
experimentally verified to ensure their accuracy and reliability. 
This iterative process of prediction and validation helps refine 
and improve the machine learning models, leading to more 
accurate predictions in subsequent iterations.

2.3  Progression Stage of Materials Simulation

The prediction of material properties through computational 
simulation has evolved across three generations (Fig. 1). The 
first generation involves calculating the physical properties 
of input structures, typically achieved by approximating the 
Schrödinger equation and employing local optimization 
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techniques. The second generation focuses on predicting 
structures or combinations of structures based on the com-
position of input materials, utilizing global optimization 
algorithms. The third generation utilizes machine learn-
ing to predict compositions, structures, and properties of 
materials by leveraging experimental data (adequate data is 
essential for training suitable models) [10]. This data-driven 
computational approach necessitates the establishment of 

a novel infrastructure. It becomes imperative to develop a 
comprehensive innovation platform with data at its core, 
integrating "high-throughput experiment," "high-throughput 
calculation," and "material-data platform."

2.4  Development Process of New AI Materials

The development process of novel AI materials encompasses 
three distinct stages: data acquisition through the characteri-
zation and computational platform of existing materials, data 
analysis utilizing AI data models, and the generation of new 
materials based on the identified data characteristics.

2.5  Machine Learning Databases

As widely acknowledged, data collection is typically 
achieved through experimental means. However, the sub-
stantial volume of experimental data resources necessitated 
often presents a bottleneck for the development of machine 
learning. Currently, existing databases are enumerated in 
Table 1.

The characterization and application scopes of these 
machine learning databases are shown in below.

2.5.1  ZINC8

ZINC8 is a machine learning database specifically designed 
to furnish chemical compound information. It encompasses 

Fig. 1  Evolutionary process of computational simulation for predict-
ing material properties

Table 1  Databases commonly used in the material field

Databases Material category Material properties

ZINC [11], ChEMBL [12], GDB-13 [13], 
GDB-17 [14]

Molecules Low melting and boiling points

International Crystal Structure Database 
(ICSD) [15], Open Quantum Materials Data-
base (OQMD) [16]

Inorganic crystals High thermal stability, high modulus

Harvard Clean Energy Project [17] Organic solar-absorber materials Made up of polymers or π-bonded molecules
CoRE MOF [18] Over 4000 metal–organic framework materials Porous structures
Cambridge Structure Database [19] Organic and metal–organic crystal structures 3D structures contain a wide range of organic, 

metal–organic, organometallic molecules
Computational Materials Repository [20] Electronic-structure codes The state of motion of electrons in an electro-

static field
PubChem [21] Biological activities of small molecules Small molecules with less than 100 atoms and 

1,000 bonds
Computational 2D Materials [22] 2D Materials Crystalline solids consisting of a single layer 

of atoms
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an extensive assortment of virtual compounds, thereby 
affording researchers the opportunity to explore a wide 
range of chemical space and gain access to potential drug 
candidates. By integrating diverse sources of chemical and 
biological data, this database facilitates virtual screening 
and leads optimization processes pertinent to drug discov-
ery projects. The expansive library of compounds offered 
by ZINC8 proves invaluable to researchers by furnishing 
them with invaluable molecular insights, thereby aiding the 
development of novel therapeutic interventions.

2.5.2  ChEMBL

ChEMBL represents a comprehensive machine learning 
database that concentrates on the storage and retrieval of 
bioactivity data for small molecule drug-like compounds. 
This database delivers meticulous information regarding the 
interaction between these compounds and their correspond-
ing targets, such as proteins and enzymes. By enabling sci-
entists to investigate structure–activity relationships (SAR) 
and undertake target identification and validation endeavors, 
ChEMBL emerges as an indispensable resource in the realm 
of drug discovery and development. Moreover, owing to its 
access to large-scale bioactivity data, this database facilitates 
the exploration of chemical space and expedites the design 
of novel pharmaceutical agents.

2.5.3  GDB‑13 and GDB‑17

GDB-13 and GDB-17 are machine learning databases that 
focus on the enumeration and exploration of small organic 
molecules. These databases provide exhaustive and methodi-
cal collections of chemically feasible compounds based on 
predefined structural rules and constraints. While GDB-13 
encompasses around 977 million unique molecules, GDB-17 
further expands this collection to approximately 166 billion 
molecules. These databases prove instrumental in virtual 
screening endeavors, de novo drug design processes, and 
the comprehensive investigation of chemical space in drug 
discovery and materials science.

2.5.4  International Crystal Structure Database

The International Crystal Structure Database (ICSD) 
serves as a machine learning database housing an extensive 

compilation of experimentally determined crystal struc-
tures. Researchers can gain access to precise and dependable 
crystallographic data, including atomic positions, unit cell 
parameters, and other essential structural details. Given its 
comprehensive nature, the ICSD emerges as an invaluable 
resource for crystallographers, material scientists, and chem-
ists engaged in structure determination, crystallographic 
analysis, and the study of solid-state properties of materials.

2.5.5  Open Quantum Materials Database

The Open Quantum Materials Database (OQMD) is a 
machine learning database specializing in materials infor-
matics and quantum mechanical calculations. Researchers 
are granted access to an extensive compendium of calculated 
properties pertaining to a broad range of inorganic com-
pounds, including crystal structures, formation energies, 
electronic band structures, and thermodynamic properties. 
The OQMD facilitates high-throughput materials screening, 
prediction of novel materials, and the exploration of struc-
ture–property relationships employing quantum mechanical 
methods.

2.5.6  Harvard Clean Energy Project

The Harvard Clean Energy Project (CEP) functions as a 
machine learning database concentrating on the discovery 
and design of organic materials tailored for solar energy 
applications. By integrating computational methods, 
machine learning algorithms, and high-throughput screen-
ing techniques, the CEP aims to identify promising materials 
exhibiting desirable electronic and photovoltaic properties. 
Consequently, the CEP database expedites the exploration of 
organic materials suitable for photovoltaic purposes, thereby 
enabling researchers to hasten the development of efficient 
and cost-effective solar energy technologies.

2.5.7  CoRE MOF

CoRE MOF is a machine learning database that specializes 
in metal–organic frameworks (MOFs). MOFs are porous 
materials comprising metal ions or clusters coordinated with 
organic ligands, and they find diverse applications in gas 
storage, separation, and catalysis. The CoRE MOF database 
offers researchers access to a comprehensive compilation 
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of experimentally characterized MOFs, encompassing their 
structures, porosity data, and adsorption properties. This 
database facilitates the discovery and design of new MOFs 
for various applications by enabling in-depth analysis of 
structure–property relationships.

2.5.8  Cambridge Structure Database

The Cambridge Structure Database (CSD) functions as a 
machine learning database that focuses on small organic 
and metal–organic crystal structures. It encompasses an 
extensive collection of experimentally determined crystal 
structures, providing atomic coordinates and crystallo-
graphic data for analysis. The CSD proves to be an invalu-
able resource for chemists and crystallographers, offering a 
wealth of structural information that can be utilized to study 
molecular conformations, intermolecular interactions, and 
crystal packing arrangements. Researchers can delve into 
the CSD to gain insights into chemical bonding, supramo-
lecular assemblies, and the intricate relationship between 
structure and properties across a wide range of organic and 
metal–organic compounds.

2.5.9  Computational Materials Repository

The Computational Materials Repository (CMR) serves 
as a machine learning database that focuses on storing and 
sharing data related to computational materials science. It 
encompasses a wide range of material properties, includ-
ing crystal structures, electronic band structures, thermo-
dynamic properties, and mechanical properties. The CMR 
operates as a collaborative platform where researchers can 
share their simulation data, validate computational models, 
and compare results across different materials systems. This 
database fosters the development of new materials models, 
facilitates benchmarking of computational methods, and 
advances materials discovery and design through data-
driven approaches.

2.5.10  PubChem

PubChem is a comprehensive machine learning database 
maintained by the National Center for Biotechnology Infor-
mation (NCBI). It provides extensive information on the 
biological activities, chemical structures, and properties 

of small molecules. PubChem integrates data from vari-
ous sources, including chemical literature, high-throughput 
screening experiments, and computational predictions. 
This database serves as a valuable resource for research-
ers engaged in drug discovery, chemical biology, and toxi-
cology, allowing them to explore chemical space, identify 
potential drug targets, and analyze the biological effects of 
small molecules.

2.5.11  Computational 2D Materials

The Computational 2D Materials database focuses specifi-
cally on 2D materials, which are ultrathin layers of materials 
with distinctive electronic, optical, and mechanical proper-
ties. This database offers researchers access to computational 
models and simulations for various 2D materials, including 
graphene, transition metal dichalcogenides (TMDs), and 
other layered materials. It enables the exploration and pre-
diction of 2D material properties such as electronic band 
structures, phonon dispersions, and optical response, thereby 
aiding in the design and optimization of novel 2D materials 
for applications in electronics, optoelectronics, and energy 
storage.

In conclusion, these machine learning databases play 
indispensable roles in advancing various academic fields, 
including drug discovery, crystallography, and computa-
tional modeling. They provide researchers with access to 
diverse chemical and materials data, thereby enabling them 
to explore chemical space, analyze structure–activity rela-
tionships, design new materials, and accelerate the discovery 
and development of innovative solutions in their respective 
domains.

2.6  Machine Learning Algorithm Models

Upon gathering the requisite data, researchers must under-
take the process of converting the data into a digital format 
comprehensible to machines. Open-source AI frameworks 
like TensorFlow, Keras, and Scikit-Learn are essential tools 
for developing machine learning models (Table 2). They 
offer flexibility and customization, making it possible to 
implement complex algorithms and cater to specific require-
ments. These frameworks benefit from large developer com-
munities, encouraging collaboration, knowledge sharing, and 
the development of pre-built models and extensions. They 
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are widely used in research, education, and practical appli-
cations, and they enable the deployment of models across 
various platforms. Consequently, numerous machine learn-
ing tools have been devised [22], as illustrated in Table 3.

Machine learning relies on various algorithms to tackle 
data problems, as there is no universally applicable algo-
rithm that can address all types of problems. The choice of 
algorithm depends on the specific problem at hand. Machine 
learning algorithms can be categorized into supervised 
learning, unsupervised learning, and semi-supervised learn-
ing. To address the need for a more structured breakdown 
of AI techniques and their relevance to materials science, 
we have included a detailed comparative analysis of ML 
algorithms and deep learning (DL) models. ML algorithms 
such as support vector machines (SVMs) and decision 
trees excel in structured datasets with lower computational 
demands, making them suitable for tasks like defect detec-
tion and material classification. In contrast, DL models, 
including artificial neural networks (ANNs), are more effec-
tive for complex, high-dimensional data, such as predicting 

structure–property relationships or optimizing nanoporous 
materials. However, DL models require significantly more 
data and computational resources, making their deployment 
in resource-limited settings more challenging. Furthermore, 
critical challenges associated with AI integration, such as 
data standardization, model interpretability, and compu-
tational efficiency, are evaluated. For instance, ensuring 
standardized, high-quality datasets is vital for reproducibil-
ity, while explainable AI methods are crucial for aligning 
predictions with physical principles. Computational scal-
ability, particularly for DL models, requires advances in 
high-performance computing and algorithm optimization 
to address the growing demands of training complex models.

Within supervised learning, examples include logistic 
regression and feedforward neural networks. Several com-
monly used learning algorithm models are described below. 
Decision tree (DT) is a versatile machine learning algo-
rithm that is particularly well-suited for handling datasets 
with missing attribute values. By employing a hierarchical 
structure of nodes and branches, DT can efficiently process 

Table 2  Open-source AI frameworks used in material science

Open-source AI frameworks Characterization

TensorFlow Building and training various machine learning and deep learning models
Keras Open-source high-level neural networks API
Scikit-Learn Wide range of tools for data preprocessing, classification, regression, 

clustering, dimensionality reduction
PyTorch Dynamic computation graph
Caffe Speed and efficiency in training deep neural networks

Table 3  Machine learning algorithm models used in material science

Algorithm model Examples in materials science Learning mode

C4.5 [23] Analysis of the causes of coffee defects by decision tree [24] Supervised learning
Naive Bayes [25] Classification of metal binders [26]
SVM [27] Material monitoring and defect diagnosis [28]

Prediction of rock brittleness [29]
KNN [30] Prediction of process parameters of reinforced metal casting [31]

Analysis of welding modeling of different materials [32]
Adaboost [33] Temperature compensation of silicon piezoresistive pressure sensor [34]
Cart [35] Differential diagnosis of mucosanase [36]
EM [37] Estimation of dose distribution from positron [38] emitter distribution combined with filtering Unsupervised learning
K-Means [39] Structural texture similarity recognition of materials

Establishment of parametric homogenized crystal plasticity model of single crystal Ni-base 
superalloy [40]

COMBO [41] Determining the atomic structure of crystal interfaces
AFLOW-ML [42] Retrieve predictions of electrical, thermal and mechanical properties
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large-scale datasets within a relatively short time frame. 
However, one notable limitation of DT is its susceptibil-
ity to overfitting, which occurs when the model excessively 
captures noise or irrelevant patterns in the training data, 
leading to poor generalization on unseen data. Additionally, 
DT assumes that attributes are independent of each other, 
thereby neglecting potential correlations that exist among 
the data. This assumption can limit its ability to accurately 
capture complex relationships and interactions between vari-
ables. Despite these limitations, DT remains a valuable tool 
in machine learning, and various techniques, such as prun-
ing and ensemble methods, have been developed to mitigate 
overfitting and enhance its performance in real-world appli-
cations. C4.5 is a well-known DT algorithm, with the "C" 
denoting its implementation in the C programming language 
and "4.5" indicating the specific version. It offers the advan-
tage of generalizing relatively quickly and often achieving 
high precision. It is suitable for handling samples with miss-
ing attributes and can produce efficient results for large-scale 
data sources within a short timeframe. However, it is prone 
to overfitting and disregards the interrelation between data. 
Naive Bayesian: Bayesian classification is a general term 
encompassing a class of classification algorithms that lev-
erage Bayesian theorem. Naive Bayes is the simplest clas-
sification method within this category, commonly employed 
for classification tasks involving multiple attributes. Sup-
port vector machine (SVM): SVM can handle the interaction 
of nonlinear features without relying on the entire dataset, 
enhancing its generalization ability and enabling the solu-
tion of high-dimensional problems. However, its efficiency 
decreases with an excessive number of samples due to 
reduced sensitivity to data. Linear regression (LR): LR is 
suitable for simple regression problems. It employs the least 
squares method to optimize the error function in the form of 
gradient descent. LR offers simplicity and fast training speed 
but cannot effectively fit nonlinear data. LR is well-suited for 
classification problems, providing fast calculation speed. It 
can be combined with regularization models to tackle spe-
cific challenges. K-Nearest neighbor (KNN) is a widely used 
machine learning algorithm that can be applied to various 
problem domains, encompassing both regression and clas-
sification tasks. In regression, KNN predicts the continu-
ous values of a target variable by considering the average 
or weighted average of the values of its k-nearest neigh-
bors. This allows KNN to capture nonlinear relationships 

between input features and the target variable. For classifica-
tion tasks, KNN assigns a class label to a data point based 
on the majority class labels of its k-nearest neighbors. This 
flexible nature of KNN makes it suitable for addressing non-
linear classification problems, where decision boundaries 
are not linearly separable. By leveraging the distances and 
similarities between instances, KNN provides an effective 
and adaptable approach for analyzing complex datasets and 
making predictions in both regression and classification sce-
narios. Kernel ridge regression (KRR) is a powerful machine 
learning technique commonly applied in regression analysis 
and the prediction of material properties. It has gained popu-
larity in the field of materials science, particularly for tasks 
such as predicting band gap values and synthesis enthalpy 
(energy) of materials. KRR combines the concepts of kernel 
methods and ridge regression to capture complex nonlinear 
relationships between input features and target variables. 
By utilizing a kernel function, KRR can implicitly map the 
input data into a higher-dimensional feature space, allowing 
for more flexible and accurate modeling. Moreover, KRR 
incorporates a regularization term, known as the ridge pen-
alty, which helps prevent overfitting and improves gener-
alization performance. The versatility and effectiveness of 
KRR make it a valuable tool for materials researchers in 
predicting and understanding various material properties, 
aiding in the design and development of new materials with 
desired characteristics. Artificial neural network (ANN) is a 
computational model inspired by the structure and function-
ing of biological neural networks. It has been widely utilized 
in materials science research to investigate and analyze an 
extensive range of crystal structures. By leveraging ANN, 
researchers can efficiently explore the relationship between 
the structure and properties of materials, particularly in 
the context of predicting electronic properties using small 
molecule force fields. ANN’s ability to learn complex pat-
terns and relationships from input data enables it to uncover 
valuable insights and visualize the structure–property rela-
tionship. Through training on a diverse dataset of crystal 
structures and their corresponding electronic properties, 
ANN can capture the underlying patterns and generalize 
this knowledge to make predictions for new materials [43]. 
This approach offers a powerful means of accelerating the 
discovery and design of materials with specific electronic 
properties, contributing to advancements in fields such as 
electronic devices, energy storage, and catalysis.
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Unsupervised learning differs from supervised learning 
as it lacks correct answers or a teacher. Algorithms in unsu-
pervised learning are designed to autonomously discover 
and reveal interesting structures within data. Unsupervised 
learning algorithms extract fewer features from the data, and 
when new data is introduced, these algorithms employ previ-
ously learned features to identify data categories. Cluster-
ing and feature reduction are the main applications of unsu-
pervised learning. The k-means algorithm derives its name 
from its objective of creating k distinct and non-overlapping 
subgroups. Its goal is to maximize the similarity of data 
points within clusters while ensuring differentiation between 
clusters. The center of a cluster is determined by the average 
values of its data points. The algorithm seeks to minimize 
the squared distance between a data point and the centroid of 
its assigned cluster. Since there is no ground truth to evalu-
ate the clustering algorithm’s output against true labels, the 
primary aim is to explore the underlying data structure by 
partitioning it into distinct subgroups. Auto-encoder (AE) is 
a neural network architecture that leverages layer-by-layer 
unsupervised learning to compress input data. The AE con-
sists of an encoder network that maps the input data to a 
lower-dimensional representation, and a decoder network 
that reconstructs the original data from the compressed rep-
resentation. Through this compression and reconstruction 
process, the AE learns to capture the salient features and pat-
terns present in the input data. After the unsupervised pre-
training phase, the AE can further fine-tune its parameters 
through supervised learning, where the network is trained 
using labeled data to perform specific tasks such as classifi-
cation or regression. This two-step learning approach of AE, 
combining unsupervised pre-training and supervised fine-
tuning, enables the network to effectively learn meaning-
ful representations from the data and enhance its predictive 
capabilities. AE has found numerous applications in various 
domains, including image recognition, anomaly detection, 
and data compression.

Semi-supervised learning is a machine learning algorithm 
utilized for datasets that comprise a mixture of labeled and 
unlabeled data. Unlabeled data typically correspond to a spe-
cific category within the labeled data and do not belong to 
multiple categories. The labels associated with the labeled 
data are assumed to be correct. Semi-supervised learning 
often leverages a small amount of labeled data alongside 
a larger volume of unlabeled data to address the challenge 

of acquiring a substantial labeled dataset. Some generative 
models, such as generative adversarial networks (GANs) 
and variational autoencoders (VAEs), can be used for semi-
supervised learning. These models learn a latent representa-
tion of the data and can leverage both labeled and unlabeled 
instances to improve the quality of the learned representation 
and subsequent classification. Transductive support vector 
machine (TSVM) is an extension of traditional support vec-
tor machines (SVM) that incorporates unlabeled data into 
the decision boundary estimation process. It aims to find a 
decision boundary that separates labeled instances and unla-
beled instances while maximizing the margin.

These classical algorithms hold significant potential for 
application in material information mining. However, fur-
ther development of open-source algorithms is required to 
facilitate the wider adoption of machine learning-driven 
materials. The success and adoption of machine learning 
solutions and applications primarily depend on the effec-
tiveness of both data and algorithms. If data suffers from 
poor representation, low correlation, or insufficient volume, 
the results obtained from machine learning models based 
on such data may become inaccurate. Thus, the validity of 
the data is crucial, in addition to selecting the appropriate 
machine learning model.

To ensure the validity and reliability of machine learning-
driven materials, it is essential to address the shortcomings 
of data representation, correlation, and volume. Improving 
data quality and addressing these limitations will enhance 
the effectiveness of machine learning models. Furthermore, 
the development of open-source algorithms should be pri-
oritized to facilitate broader accessibility and utilization of 
machine learning approaches in materials science. The wide-
spread adoption of machine learning solutions and applica-
tions relies on the synergy between high-quality data and 
advanced algorithms. As researchers continue to refine and 
optimize these aspects, the potential for discovering valuable 
insights and accelerating materials research through machine 
learning will be further realized.

3  Artificial Intelligence‑Powered Materials

In recent years, the field of artificial intelligence has expe-
rienced a surge in interest pertaining to the innovation and 
investigation of novel materials, giving rise to extensive 
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research endeavors and comprehensive documentation 
concerning various materials that have been engineered 
with the aid of artificial intelligence, as depicted in Fig. 2. 
These materials can be broadly categorized into three 
major classes, namely carbon-based functional materials, 
inorganic materials, and hybrid materials. Organic mate-
rials encompass a variety of substances, such as carbon 
nanotubes [44] and organic light-emitting diodes [45]. 
On the other hand, inorganic materials constitute another 
class, which includes materials like noble metal nanopar-
ticles [46, 47] and two-dimensional materials [48, 49]. 
A noteworthy example of hybrid materials is MOFs [50, 
51]. These materials exhibit versatile applicability across 
a wide spectrum of domains, encompassing organic field-
effect transistors [52], micropattern manufacturing [53, 
54], medical diagnosis [55], image processing [56], bio-
medicine [57, 58], the field of intelligent robotics [59], 
electrocatalysis [60], etc. In the following sections, we 
provide detailed insights into selected examples from 
this diverse range of materials. Upon analyzing the mate-
rial’s applications using AI, we categorize them into the 
following groups: materials discovery, property predic-
tion, optimization and design, and process simulation and 
manufacturing.

3.1  Materials Discovery

3.1.1  Carbon Nanotube

Carbon nanotubes possess high strength, stiffness, excel-
lent electrical and thermal conductivity, and have found 
extensive applications in nanoelectronics, conductive 
cables, and biological and chemical sensors [61]. However, 
the synthesis of carbon nanotubes encounters challenges 
such as defects and low purity, primarily due to their sen-
sitivity to experimental conditions such as temperature and 
pressure. Traditional methods of synthesis rely heavily on 
trial-and-error experimentation, which is time-consuming 
and inefficient. Here, AI plays a transformative role by 
drastically improving the synthesis process. In the study 
by Nikolaev et al., AI was used to design an innovative 
system called the artificial intelligence-based autonomous 
research system (ARES) [44]. ARES employs a machine 
learning platform to autonomously conduct experiments 
and optimize the synthesis of single-walled carbon nano-
tubes. The key advantage of this approach lies in its itera-
tive closed-loop system, where the AI learns from each 
experiment, updates the database, and adjusts the experi-
mental conditions for the next round of testing. This self-
adjusting process allows the system to optimize CNT syn-
thesis far more quickly than traditional manual methods.

3.1.1.1 How AI Accelerates the Discovery Process? Auto-
mated Experimental Design: Once the initial database is 
created, ARES conducts experiments autonomously, gener-
ating new experimental parameters and adjusting conditions 
based on previous results. It performs over 600 experiments 
in an automated and iterative manner, speeding up the pro-
cess compared to human researchers.

Continuous Learning: ARES uses a growing database 
of experimental results to refine its predictions. As more 
experiments are conducted, the discrepancy between the 
predicted and actual growth rates of the CNTs becomes 
smaller, indicating that the system is improving its under-
standing and predictions over time.

Exploring Complex Parameter Spaces: AI allows for the 
exploration of a wide range of experimental conditions that 
might be too complex or impractical for manual experimen-
tation. With machine learning, ARES can navigate multidi-
mensional parameter spaces, identifying optimal conditions 
for CNT synthesis much faster than traditional methods.

Fig. 2  Artificial intelligence-powered materials
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In Situ Detection and Characterization: ARES incorpo-
rates in situ detection and characterization to monitor CNT 
growth in real time. This real-time feedback loop allows for 
immediate adjustments, ensuring better synthesis outcomes.

Increased Speed and Efficiency: As ARES grows its data-
base and conducts more experiments, the system becomes 
increasingly accurate, reducing the number of trials needed 
to achieve desired results. In the study, it was shown that 
after a large dataset of experiments, ARES could predict and 
simulate conditions that resulted in the successful synthesis 
of CNTs in up to 68% of cases, a significant improvement 
over a sparse dataset where success was only achieved in 8% 
of experiments.This approach is orders of magnitude faster 
than traditional manual experiments and presents novel 
opportunities for synthesizing other materials using sophis-
ticated techniques. Figure 3a depicts a comparison between 
the experimental growth rate and the predicted growth rate 
of ARES. As the number of experiments conducted by 
ARES increases from 0 to 600, the discrepancy between 
the experimental and predicted growth rates diminishes. 
The convergence is quantified by the difference between 
the experimental and predicted growth rates (Fig. 3b). It 
is evident that as the number of experiments increases, the 
difference gradually approaches zero. The carbon nanotubes 
grown according to the simulated experimental parameters 
are illustrated in Fig. 3c, exhibiting growth rates propor-
tional to those observed in the simulated experiments (500, 
3000, and 16,000  s−1). Importantly, when the model was 
trained using a limited and sparse dataset, a wide range of 
parameter choices resulted (Fig. 3d), and only 8% of experi-
ments achieved the desired outcome. In Fig. 3e, with a data-
set three times larger than that in Fig. 3d, the gap between 
predictions and experiments narrows (68% of experiments 
achieve the goal). This outcome demonstrates ARES’s 
ability to simulate and explore complex multidimensional 
parameter spaces. The work also underscores the challenges 
and limitations of employing machine learning in materials 
research, such as the requirement for high-quality data and 
the potential for model overfitting. The authors emphasize 
the importance of combining domain knowledge and physi-
cal intuition with machine learning to ensure interpretable 
and reliable results. Overall, the paper provides a compel-
ling demonstration of machine learning’s potential to revo-
lutionize materials research and facilitate new discoveries 
across various fields. As machine learning algorithms con-
tinue to advance and new data sources become available, 

autonomous materials research is expected to become 
increasingly prevalent and impactful in the future.

3.1.2  Organic Light‑Emitting Diodes

The light-emitting layers in light-emitting diode (LED) 
devices are typically composed of electroluminescent 
molecules, and organic LEDs (OLEDs) are extensively 
employed in small displays due to their high efficiency and 
color rendering capabilities. However, OLEDs currently face 
challenges such as expensive material costs, low efficiency, 
and poor stability. To address these issues and eliminate the 
need for heavy atoms like iridium, a promising strategy is 
thermal activation delayed fluorescence (TADF) [62], which 
offers an efficient and cost-effective approach for OLED 
technology. By combining computational quantum chemis-
try, machine learning, organic synthesis, device fabrication, 
testing, and collaboration with industrial partners, it is pos-
sible to screen potential novel TADF materials. Through the 
exploration of 1.6 million molecules and the screening of 
over 400,000 molecules using transient density functional 
theory, machine learning techniques have facilitated the dis-
covery of thousands of promising new organic light-emitting 
diode molecules in the visible spectrum [45].

3.2  Property Prediction

3.2.1  Multimetallic Materials

Bimetallic or multimetallic materials have been extensively 
explored for catalyzing chemical and electrochemical reac-
tions, as they can harness the synergistic effects of alloyed 
metal species to achieve new physicochemical properties 
on the surface [63–67]. However, the discovery of suitable 
alloy materials through high-throughput experiments and 
quantum chemical calculations is a time-consuming and 
expensive process. To address this challenge, AI-driven 
models have been increasingly utilized for property predic-
tion to optimize material discovery and performance. For 
example, predicting physical, chemical, and mechanical 
properties such as adsorption energy, catalytic activity, and 
selectivity has proven crucial for identifying effective  CO2 
electroreduction catalysts. Currently, machine learning tech-
niques, particularly ANNs, have shown significant promise 
in predicting these properties quickly and accurately, thereby 
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facilitating the screening of alloy candidates. Among the 
transition metals, copper (Cu) exhibits remarkable elec-
troreduction activity toward  CO2, although the products 
of its reduction depend on the geometric arrangement of 
surface metal atoms. Cu(100), for example, shows high 
selectivity toward  C2 species such as ethylene and ethanol, 
with low overpotentials (~ 0.8 V). Therefore, the design of 
100-capped bimetallic or multimetallic materials is of great 
significance for enhancing the efficiency of  CO2 reduction to 
 C2 species. Ma et al. proposed a machine-learning-enhanced 

chemisorption model for screening  CO2 electroreduction 
catalysts, enabling fast and accurate prediction of the sur-
face reactivity of metal alloys across a wide chemical space 
[60]. Figure 4a illustrates the most favorable free energy 
pathways for  C1 and  C2 species during  CO2 electroreduc-
tion on Cu(100) at 0 and − 0.7 V (vs. RHE), with snapshots 
of intermediate geometries depicted at the top. The authors 
calculated the theoretical limiting potentials of the  C1 and 
 C2 pathways for  CO2 electroreduction as a function of the 
CO adsorption energy, a reactivity descriptor, as shown in 

Fig. 3  ARES for research on the synthesis of single-walled carbon nanotubes. a Comparison of the experimental growth rate and the predicted 
growth rate of ARES. b Convergence is assessed by quantifying the disparity between the experimentally observed growth rate and the predicted 
growth rate. c Carbon nanotubes synthesized based on simulated experimental parameters. d Model was trained using a limited and sparse 
dataset, resulting in a broad spectrum of parameter selections. e The model’s dataset is three times larger than that depicted in Fig. 3d, leading 
to a narrower discrepancy between predictions and experimental outcomes.  Reproduced with permission from Ref. [44]. Copyright 2016, The 
Author(s)
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Fig. 4b. The calculated CO adsorption energies (− 0.63 eV) 
on 1/8 monolayer (ML) of Cu(100) are in good agreement 
with the deduced measurements (− 0.66 eV) obtained from 
0 to 1/8 ML *CO chemisorption differential heat measure-
ments using the Perdew–Burke–Ernzerhof (PBE) exchange 

correlation function prediction. These findings confirm the 
excellent  CO2 reducing activity of Cu among the transition 
metals. The construction of predictive models that relate 
the surface reactivity of metal sites to their electronic prop-
erties is a challenging task. However, with the availability 

Fig. 4  Machine learning-enhanced chemisorption model for  CO2 electroreduction catalyst screening. a Most favorable free energy pathways for 
 C1 and  C2 species for  CO2 electroreduction on Cu(100) at 0 and − 0.7 V with RHE. b Theoretical limiting potentials of  C1 and  C2 pathways for 
the electroreduction of  CO2 as a function of the reactivity descriptor, the adsorption energy of CO. c Rational screening of CO adsorption ener-
gies on second-generation core–shell alloy surfaces  (Cu3B-A@Cu ML) using the developed neural network model. d Parity plot illustrating the 
comparison of CO adsorption energies on selected Cu monolayer alloys calculated by the neural network model and DFT. e Normalized sensitiv-
ity coefficients obtained by analyzing the response of the network to perturbations of the input features.  Reproduced with permission from Ref. 
[60]. Copyright 2015 Royal Society of Chemistry
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of increasingly large materials databases, machine learning 
methods have emerged as a powerful solution, allowing 
complex physical interactions to be mapped onto statisti-
cal models. To achieve this, various input characteristics 
of the alloy surface and the corresponding CO adsorption 
energy data must be obtained in advance. These character-
istics include the spatial extent of the metal d orbitals [68], 
the square of the adsorbate–metal interatomic d coupling 
matrix element, work function, atomic radius, ionization 
potential, electron affinity, and Pauling electronegativity. A 
nonlinear mapping between material characteristics and CO 
adsorption energy is established using an artificial neural 
network model. It is anticipated that numerous alloys will 
exhibit the desired CO binding energy, which is 0–0.2 eV 
weaker than CO adsorption on Cu(100). Employing a neu-
ral network model requires negligible CPU time, whereas 
performing standard density functional theory (DFT) cal-
culations on hundreds of computers would take weeks or 
longer. Figure 4c illustrates the rational screening of CO 
adsorption energies on Cu3B-A@Cu monolayer surfaces 
using the neural network model. The parity plot in Fig. 4d 
compares the CO adsorption energies on selected Cu mon-
olayer alloys obtained from the neural network model and 
DFT calculations. The inset in Fig. 4d depicts the geometry 
of the model system. By constructing a reliable machine 
learning model that enables high-throughput computation 
of key descriptors such as adsorption energy, d-band center, 
and coordination number, catalytic activity, optimal compo-
sition, and active sites can be predicted and understood for 
various potential materials and reaction pathways. Through 
the machine-learned chemisorption model, it was deter-
mined that Cu polymetallic compounds with a 100-capped 
structure exhibit lower overpotentials and higher selectivity 
for the electroreduction of  CO2–C2 species. Figure 4e pre-
sents the relationship between each principal feature and the 
host metal M. It can be observed that, for all metal alloys, 
the d-band center can be adjusted through strain and ligand 
engineering due to its low sensitivity to different metals, 
while other factors show slight variations across the peri-
odic table. This chemisorption model greatly facilitates the 
capture of complex nonlinear adsorbate–substrate interac-
tions and deepens the understanding of chemical bonding 
on metal surfaces. Moreover, it opens up new avenues for 
the subsequent design of intricate metal-based catalysts. One 
constructive comment is that the authors have tested their 
model on a relatively small set of catalysts. While the results 

are promising, it would be interesting to assess the model’s 
performance on a larger dataset of catalysts. Furthermore, 
it would be advantageous to compare the effectiveness of 
the chemisorption model augmented by machine learning 
with alternative methodologies that have been employed for 
catalyst screening in  CO2 electroreduction. 

3.2.2  Intermetallic Compounds

In the context of  CO2 reduction reactions and the hydrogen 
uptake reaction (HER), the CO adsorption energy serves 
as a representative descriptor for predicting hydrocarbon 
production activity. This approach of using adsorption 
energy as a predictive tool can also be applied to general 
HER reactions. To identify potential selective catalysts for 
 CO2 reduction and HER, Tran et al. developed a workflow 
based on surrogate optimization and active machine learn-
ing, which allowed for the screening of 1499 intermetallic 
compounds [69]. This study successfully identified 54 inter-
metallic surfaces with excellent  CO2 reduction descriptors 
and 102 intermetallic surfaces with excellent HER descrip-
tors. By combining machine learning techniques with DFT 
calculations, the feasibility of predicting the performance of 
electrocatalysts was demonstrated through the screening of 
alloys composed of 31 different elements. This integration of 
machine learning with DFT computations enables acceler-
ated calculations and cost savings.

The specific workflow followed in this study involved ini-
tially using DFT calculations to verify the adsorption ener-
gies of various sites. The DFT results were then stored in a 
database for retraining the machine learning model, which 
was subsequently used for screening purposes. This iterative 
process formed a closed feedback loop, encompassing DFT 
verification, machine-learning-based screening, and retrain-
ing. To enable machine learning of catalyst descriptors, the 
researchers developed a fingerprint method for numerical 
representation of the adsorption sites in intermetallic com-
pounds. Each element type was described using a four-
number vector, incorporating the element’s atomic number, 
Pauling electronegativity, atomic number coordination with 
the adsorbate, and the median adsorption energies between 
adsorbates and elements. An automated machine learning 
package called TPOT [70] was employed to select a suit-
able regression method for predicting adsorption energies. 
An iterative approach was utilized to calculate prediction 
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errors, median absolute deviations over time, and the opti-
mal number of surfaces over time. By analyzing all 19,644 
sites computed by DFT, the researchers demonstrated that 
the performance of intermetallic compounds could be pre-
dicted based on the number and distribution of potential 
active sites. The researchers simulated the t-SNE plots of 
all adsorption sites using DFT and identified 258 different 
surfaces with low coverage ΔEH values. The intermetallic 
compounds screened using near-optimal ΔEH values were 
validated against relevant literature sources [70–73]. This 
work accelerates the theoretical discovery of CO catalysts 
and serves as an effective tool for screening candidate cata-
lysts from a relatively large search space, guiding subsequent 
experimental studies. However, this design approach does 
not address other important aspects of catalyst screening, 
such as surface stability and catalyst cost. It is worth not-
ing that this design approach can be extended to other reac-
tion chemistries by employing appropriate thermodynamic 
descriptors.

3.3  Optimization and Design

3.3.1  Gold/Silver Nanoparticles

Nanoparticles have a significant impact on various research 
fields, such as surface-enhanced Raman scattering, drug 
delivery, and biomolecular carriers. The unique character-
istics of nanoparticles lie in the fact that their size, morphol-
ogy, and surface chemistry profoundly influence their opti-
cal, electrical, and magnetic properties. Achieving precise 
control over particle size and morphology requires careful 
consideration of various experimental conditions, including 
reagent concentration ratio, reaction time, temperature, and 
external environment. This poses significant challenges in 
the controllable synthesis of nanoparticles. However, with 
the advancements in artificial intelligence, machine learning 
is increasingly being employed to expedite the development 
of controllable nanoparticles. Machine learning and opti-
mization algorithms, such as Bayesian optimization (BO) 
and genetic algorithms, are now employed to achieve this 
precise control, thereby significantly reducing experimental 
time and resource consumption. For instance, in the prepa-
ration of gold nanoparticles, the acquisition of UV signals 
from known gold nanoparticles is essential to establish a 
spectral target for an automated system. Subsequently, a 

genetic algorithm is employed to synthesize gold nano-
particles based on the spectral target (Fig. 5a) [46]. This 
approach enables the easy generation of nanoparticles with 
diverse morphologies, as demonstrated by the transmission 
electron microscopy (TEM) images of gold nanospheres, 
gold nanorods, and gold nanooctahedrons prepared using the 
automated platform (Fig. 5b). In the case of silver nanoparti-
cles, a microfluidic high-throughput experimental platform 
(THE) is utilized to obtain a large amount of experimental 
data with a minimal number of materials. BO is employed to 
guide the THE loop, as it efficiently explores the parameter 
space and targets specific material properties using a lim-
ited number of datasets [74, 75]. The two-step framework 
combines BO with deep neural networks (DNNs) to evalu-
ate the optimization performance. In each iteration, the BO 
algorithm determines the experimental conditions for the 
subsequent cycle based on the trade-off between minimiz-
ing the loss and reducing the uncertainty determined by the 
loss function. As depicted in Fig. 5c [47], the median loss 
for the best BO performance decreases rapidly in the initial 
iterations, whereas random sampling (RS) shows an increas-
ing trend. By introducing a DNN in the sixth run, lower 
median loss is achieved compared to BO in the eighth run. 
The absorbance peak of the BO samples converges rapidly 
toward the target value (645 nm) as the number of experi-
ments increases. When BO and DNN are combined, the pre-
dicted spectrum becomes smoother in the seventh run after 
initially exhibiting some noise in the sixth run. A machine 
learning approach was employed to expedite the optimiza-
tion of fabricated  TiO2 nanotube micropatterns (TNM) and 
the doping of AgNPs [54] through electrochemical deposi-
tion. The findings of the study indicate an enhancement in 
the antibacterial performance with an increase in the diam-
eter of the nanotubes [54]. Further details pertaining to these 
biomaterials will be elaborated in the subsequent section.

3.3.2  Hybrid Materials

MOFs are porous materials composed of metal nodes and 
organic linkers, exhibiting exceptional porosity and a vast 
internal surface area. Their structure encompasses a wide 
range of organic and inorganic components, rendering 
them versatile for numerous applications, including gas 
storage, separation, catalysis [76], electrocatalysis [77], 
and biomedicine [78–80]. Despite extensive preparation 
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and study of thousands of MOFs, their theoretical capacity 
to yield an infinite number of nanoporous materials ren-
ders it impossible to identify the best-performing MOFs 

solely through experimental means. However, by utilizing 
binary decision number (DT) and support vector machine 
(SVM) models calibrated with 325,000 MOF structures, 

Fig. 5  Machine-learning-based synthesis of gold and silver nanoparticles. a A schematic representation of a platform workflow depicting the 
hierarchical evolution of AuNPs. b TEM images showcasing gold nanospheres, gold nanorods, and gold nanooctahedrons. Adapted with permis-
sion from Ref. [46].  Copyright 2020, The Author(s). c Optimization of the synthesis process for silver nanoparticles. The absorbance spectra of 
the most proficient d BO and e DNN models, coupled with the concurrent size distribution analysis of triangular prisms in the solution, substan-
tiate the efficacy of the selected loss function in facilitating the convergence of spectra toward the designated target spectrum and the triangular 
prisms toward an edge length of 65 nm. The scale bars in the images correspond to a length of 50 nm. Reproduced with permission from Ref. 
[47]. Copyright 2021, The Author(s)
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high-performance MOFs can be accurately identified based 
on their binding properties, such as pore size, porosity, and 
surface area [51]. This approach achieves a remarkable 
recognition rate of up to 90% (Fig. 6a). The quantitative 
structure–property relationship (QSPR) model serves as 
an efficient computational tool for screening extensive 
structural libraries, thus facilitating the discovery of MOF 
sorbent materials for methane purification. The  CO2 work-
ing capacity and  CO2/CH4 selectivity distribution of the 
entire database are depicted in Fig. 6b, with approximately 
60% of the databases exhibiting a  CO2 working capacity 
exceeding 2 mmol  g−1, and approximately 10% surpass-
ing 4 mmol  g−1. Regarding selectivity, around 40% of the 
databases showcase  CO2/CH4 selectivity greater than 5, 
while 10% display selectivity surpassing 10. Figure 6c 
illustrates an interaction scatter plot of the maximum 
pore size, porosity, and surface area of 324,500 MOFs, 
with the  CO2/CH4 selectivity and  CO2 working capacity 
represented by color mapping. MOFs with lower surface 
area, pore size, and porosity exhibit selectivity values 
exceeding 5. In MOFs possessing a surface area below 
1000  m2  g−1 and a porosity below 0.1, the  CO2 working 
capacity decreases below 1 mmol  g−1. The DT predictions 
are based on a simple binary rule, where a porosity below 
0.32 and a pore size below 8.30 Å correspond to selectiv-
ity > 5 for  CO2/CH4, while a porosity below 0.27 and a 
pore size below 6.6 Å correspond to selectivity > 10. Addi-
tionally, SVM was employed to screen extensive structural 
databases, aiming to reduce the computational demands 
of grand canonical Monte Carlo (GCMC) simulations. 
The relationship between the number of high-performing 
MOFs and various sensitivity thresholds indicates that by 
performing GCMC simulations on only 23% of the data-
base, approximately 90% of the high-performance MOFs 
can be recovered. Consequently, the QSPR model emerges 
as an effective tool for predicting the  CO2 working capac-
ity and  CO2/CH4 selectivity of MOFs, thereby facilitating 
their application in methane purification. The authors uti-
lized a dataset comprising 79 MOFs and calculated various 
features encompassing geometric, topological, and chemi-
cal descriptors to train the QSPR model. The model’s per-
formance was evaluated using statistical metrics, and a 
feature selection analysis was conducted to identify the 
most influential features for predicting the properties of 
interest. The results demonstrated the QSPR model’s accu-
racy in predicting the  CO2 working capacity and  CO2/CH4 

selectivity of MOFs, with geometric descriptors such as 
surface area and pore volume identified as the most sig-
nificant features for predicting these properties.

As we are aware, natural gas is an abundant resource, with 
methane being its primary constituent. One notable advan-
tage of methane as a fuel is its high combustion energy per 
unit of carbon dioxide compared to other hydrocarbons. 
However, its volumetric energy density under ambient 
conditions is merely 0.11% of that of gasoline. Therefore, 
finding suitable materials for methane adsorption becomes 
imperative. MOFs are widely recognized for their unique 
properties of regularity, diversity, and designability, which 
facilitate computer-aided screening [81, 82]. Nonetheless, 
traditional molecular simulations as screening tools are 
highly time-consuming due to the vast number of MOF 
structures involved. In response, considerable efforts have 
been devoted to employing machine learning in this field. 
Previous work has involved utilizing comprehensive data-
bases of various adsorbent materials and conducting GCMC 
simulations to explore the relationship between structural 
properties and adsorption [83–92]. Regression models and 
radial distribution functions have been employed as predic-
tors to estimate  CO2 and  N2 uptake [86]. Other studies have 
utilized structural variables to predict  CH4 uptake, achiev-
ing an R2 value of 0.85 [87]. Classification methods based 
on quantitative structure–property relationship have been 
used to predict optimal MOFs for CO adsorption. Further-
more, structural properties such as surface area, crystal den-
sity, porosity, pore size, and heat of adsorption have been 
employed to predict  CH4 uptake in MOFs. In addition to 
characterizing adsorption properties using structural fea-
tures, comprehensive models have been developed to better 
elucidate the chemical interactions of MOFs. These models 
incorporate not only the physical properties of MOFs, such 
as surface organics, density, porosity, and crystal structure, 
but also introduce new variables, including the degree of 
unsaturation and electronegativity, as chemical predictors. 
Pardakhti et al. demonstrated that incorporating chemical 
variables into machine-learning-based material analysis can 
enhance prediction accuracy without sacrificing computa-
tional speed [50]. The DT algorithm, illustrated in Fig. 7a, 
employs if–then logistic rules to train the classification, 
while Poisson regression, a generalized linear model, uti-
lizes regression directly associated with the model coeffi-
cients. The support vector machine method, a widely used 
classification technique, is adapted for nonlinear kernel 
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Fig. 6  Identify high-performance metal–organic framework materials accurately through the utilization of machine-learning-based QSPR mod-
els. a Schematic representation of collaborative approach. b The quantity of screened molecules as a function of singlet–triplet splitting (ΔEST) 
and oscillator strength. c Linear model prediction based on data derived from TD-DFT, alongside neural network predictions on TD-DFT-
derived data.  Reproduced with permission from Ref. [51]. Copyright 2016 WILEY‐VCH Verlag GmbH & Co. KgaA, Weinheim
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applications. Figure 7b displays a comparative parity dia-
gram that combines the physical structure and chemical 
characteristics of the materials. It is evident that the predic-
tion accuracy significantly improves from the DT model to 

the random forest model (Fig. 7c). This study demonstrated 
that machine learning algorithms are relatively cost-effective 
compared to molecular simulations, and incorporating chem-
ical variables into machine-learning-based material analysis 

Fig. 7  Evaluation of structural and chemical descriptors and various machine learning algorithms, including decision trees, Poisson regres-
sion, support vector machines, and random forests to predict methane uptake on metal–organic frameworks. a Structural descriptors and chemi-
cal descriptors were introduced for adsorption analysis. Parity plots illustrating the correlation between predicted mass-based methane uptake 
 (cm3  g−1) derived from machine learning (ML) models and those obtained through Grand Canonical Monte Carlo (GCMC) simulations, incor-
porating structural and chemical variables for b DT, c Poisson, d SVM, and e RF models. The red diagonal line in each plot represents a 45° 
line, denoting perfect alignment between ML predictions and GCMC simulation outcomes. The color scale employed in the plots signifies 
the frequency of occurrences or the count of hypothetical metal–organic frameworks (hMOFs) exhibiting concordant GCMC and ML results.  
Reproduced with permission from Ref. [50]. Copyright 2017 Royal Society of Chemistry



 Nano-Micro Lett.          (2025) 17:135   135  Page 20 of 30

https://doi.org/10.1007/s40820-024-01634-8© The authors

can greatly enhance prediction accuracy and computational 
speed. In conclusion, the use of machine learning models 
for predicting methane adsorption performance of MOFs 
based on combined structural and chemical descriptors is a 
promising approach. The results of the study demonstrate the 
effectiveness of the developed model in predicting methane 
adsorption capacities of MOFs with high accuracy. The com-
bination of structural and chemical descriptors provided a 
more comprehensive representation of MOFs, leading to bet-
ter model performance. Furthermore, the proposed method 
has the potential to significantly accelerate the screening 
process for MOFs, which can save a considerable amount 
of time and resources in the development of new materials 
for gas storage and separation applications. However, there 
are some limitations that need to be addressed in future stud-
ies. First, the dataset used in this study is relatively small, 
which may limit the generalizability of the developed model. 
Future studies could benefit from a larger and more diverse 
dataset to improve the robustness of the model. Addition-
ally, the proposed method only considers methane adsorp-
tion performance, and other gas adsorption properties could 
be included to provide a more comprehensive understanding 
of the adsorption behavior of MOFs.

3.4  Process Simulation and Manufacturing

3.4.1  A Mobile Robotic Chemist

The synthesis of new materials is often accompanied by 
a wealth of data and intricate parameters, necessitating 
advanced methods to optimize manufacturing processes. 
Chemical synthesis routes for materials involve numerous 
potential transitions at each step, ranging from tens to thou-
sands, which complicates the manufacturing process. Con-
sequently, the consideration of highly complex systems and 
a vast array of potential transformations becomes essential. 
Within these combinations, various competing parameters 
such as time, cost, purity, and toxicity impact the manufac-
turing efficiency and product quality. Consequently, tradi-
tional experimental methods are no longer suitable for the 
synthesis and development of new materials. Organic chem-
ists were among the first to recognize the immense potential 
of computer technology in chemical synthesis. Over 50 years 
ago, Corey’s "Organic Analog Synthesis Program (OCSS)" 
attempted to automate the chemical synthesis of materials 

by harnessing the power of computers. This study demon-
strated that, under specific conditions and synthetic rules, 
computers can effectively replace human experts and even 
surpass their efficiency [93]. Researchers at the University 
of Liverpool have developed an intelligent mobile robotic 
scientist capable of performing continuous, autonomous 
experiments over long periods of time [59]. It represents 
the first robotic scientist with the ability to independently 
decide which chemistry experiments to undertake next, 
leading to the discovery of a novel catalyst for hydrogen 
production from water. Equipped with a solid dispensing 
station, the robot can accurately measure solid components 
and transfer them into sample vials. Despite having a simi-
lar size to a human, the 400 kg robot possesses exceptional 
dexterity, enabling it to perform various tasks within the 
laboratory, such as vial handling, instrument operation, and 
intact sample storage. Unlike humans, the robot operates 
with unlimited patience and can work for up to 21.5 h per 
day, pausing solely for recharging. During an 8-day period, 
the robot executed 688 experiments, working a total of 
172 h. It accomplished this through 319 movements and 
6,500 operations, covering a distance of 2.17 km. The robot 
successfully identified the optimal catalyst formulation, a 
mixture of NaOH, L-cysteine, sodium disilicate, and P10, 
resulting in the highest hydrogen evolution rate (HER) of 
21.05 µmol  h‒1, a performance six times greater than that 
achieved under the starting conditions.

To investigate the algorithm’s dependence on starting 
conditions, the researchers conducted 100 simulations with 
random initial conditions. They discovered that an experi-
mental protocol achieving 95% HER performance could be 
identified after approximately 160 simulations. Although 
this AI-driven method is 1000 times faster than manual 
experimentation, it requires two years to establish such a 
platform. Further advancements are necessary to expedite 
the platform’s construction and facilitate the development 
of artificial intelligence-powered materials science. Conse-
quently, reducing the time and cost associated with building 
such a robotic platform is crucial to attract more laboratories 
and companies to utilize and promote its applications. While 
the extended working hours and lack of fatigue exhibited by 
the robotic scientist are advantageous, its ability to address 
unforeseen or complex experimental scenarios may be lim-
ited. To overcome these limitations, integrating machine 
learning algorithms, advanced perception systems, and 
fostering collaborations with human experts are potential 
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avenues for enhancing the robot’s adaptability and problem-
solving capabilities. These advancements would contribute 
to a more comprehensive understanding of the robotic sci-
entist’s potential and facilitate its integration into materials 
science research and development.

3.4.2  Biomedicine

The design and fabrication of biomaterials are significant 
objectives in the field of biomedicine, where AI plays an 
increasing role in improving manufacturing processes. 
Conventional preparation methods are often laborious 
and time-consuming, necessitating the exploration of 
approaches that require fewer experiments and raw materi-
als while achieving biomaterials with desirable properties 
[88–95]. Micropatterning techniques offer a means to min-
iaturize and integrate materials with distinct characteristics 
onto platforms, enabling efficient screening of biomateri-
als using minimal samples [53, 54, 96–98]. Among these 
techniques, bipolar electrochemistry has gained consider-
able popularity for constructing chemically or structurally 
gradient micropatterns [44, 99]. Given the widespread use 
of  TiO2 nanotubes in biomedicine, sensing, and photo-
catalysis, the fabrication of  TiO2 nanotube micropatterns 
(TNM) through bipolar electrochemical methods has been 
explored for high-throughput applications [54, 100]. It has 
been observed that increasing the applied voltage leads to 
an expansion in the diameter of the nanotubes, accompa-
nied by accelerated current flow and potential cracking 
of the titanium foil during anodization. The regulation of 
parameters such as temperature, stirring speed, and elec-
trolyte concentration is crucial to prevent the titanium foil 
from fracturing. However, the control of multiple param-
eters poses significant challenges in experimental design, 
necessitating the adoption of machine learning techniques 
to address these issues. A machine learning approach is 
employed to constrain the experimental boundary condi-
tions for bipolar electrochemistry, thereby expediting the 
optimization of fabricated TNMs [54]. Through recurrent 
machine learning and experimental validation, the optimal 
experimental parameters for TNMs within a broad range of 
diameters can be determined with minimal experimenta-
tion. Notably, the predictions made by machine learning 
algorithms demonstrate superior agreement with experi-
mental results compared to empirical predictions. Machine 

learning algorithms efficiently analyze electrochemical 
data, establish experimental boundaries, and optimize 
material fabrication. DT models are particularly suitable 
for classification tasks, enabling the identification of cutoff 
points and establishment of experimental boundary condi-
tions. Gradient boosting regression tree (GBRT) models, 
on the other hand, learn data patterns and facilitate inno-
vative design and manufacturing. The optimized TNMs 
can be further employed for high-throughput investiga-
tions in various fields, including biomedical devices, drug 
delivery, metal doping, photocurrent screening, corrosion 
resistance, photovoltaic cells, sensors, photoelectro-
chemical water splitting, and microfluidics. To illustrate, 
AgNPs were doped through electrochemical deposition 
while preserving the nanotube structure of TNM depicts 
the increase in antibacterial performance as the diameter 
of the nanotubes grows. Notably, we possess significant 
expertise in the biomedicine field [98–109].

Given the data-intensive nature of AI, the abundant data 
generated by microfluidics have provided fertile ground 
for the development of AI in this field. Machine learning 
techniques have been widely applied in various application 
areas within microfluidics. These include the optimization 
of biosensors [110, 111], cell detection and identification 
[99, 112, 113], disease diagnosis [114–116], drug discovery 
[117], drug susceptibility testing [118], protein identification 
[119], and stem cell proliferation [120]. ML not only enables 
analysis and measurement in microfluidics but also plays a 
role in microchip design. The applications of ML in micro-
chips encompass fluid property measurement, soft sensors, 
flow cytometry, cytopathology, and glucose determination 
[121]. Furthermore, microchips can enhance the accuracy 
and speed of bioassays [119]. The integration of ML and 
microchips has demonstrated potential in image classifica-
tion for tuberculosis detection [110]. In summary, the use of 
machine learning techniques in the design and fabrication 
of biomaterials, particularly in the context of bipolar elec-
trochemistry and microfluidics, holds great promise. These 
techniques enable the optimization of experimental param-
eters, facilitate innovative design and manufacturing, and 
enhance the accuracy and speed of bioassays. The integra-
tion of machine learning with microchips offers new possi-
bilities for applications such as disease diagnosis, treatment, 
and detection. Further research and development in these 
areas can lead to significant advancements in biomedicine.
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4  Conclusions and Outlook

The widespread availability of big data and continuous 
advancements in computer computing power have contrib-
uted to the rapid development of AI, particularly machine 
learning. AI technologies have experienced significant 
progress and have found application across various dis-
ciplines. AI methods, being driven by data, eliminate the 
need for constructing complex physical models or dealing 
with cumbersome empirical parameters. This paradigm 
shift has facilitated a transition from traditional causal 
exploration to the establishment of flexible relationships 
with the support of artificial intelligence. Furthermore, 
under specific conditions and synthesis rules, mobile 
robots have the potential to fully replace human experts, 
thereby alleviating the burden on human resources. Addi-
tionally, machine learning methods have successfully 
been employed in the preparation of nanomaterials such 
as bimetallic materials, carbon nanotubes, intermetallic 
compounds, MOFs, OLEDs, gold/silver nanoparticles, 
and biomaterials. These nanomaterials represent a highly 
active research field in materials science and have dem-
onstrated excellent performance when synthesized using 
machine learning techniques.

Currently, the application of machine learning in the 
field of materials science is still in its nascent stage, and 
numerous challenges and issues need to be addressed. One 
major challenge is the scarcity of sufficient data. While 
AI has demonstrated remarkable potential, challenges 
remain. Data availability and standardization are critical 
for building robust machine learning models. Collabora-
tive efforts to create shared databases with uniform proto-
cols are essential for overcoming these limitations. Addi-
tionally, model interpretability remains a key focus, with 
explainable AI methods being developed to align predic-
tions with physical principles. To address computational 
constraints, integrating AI with quantum computing offers 
a promising avenue. Future research should also empha-
size integrating domain knowledge with machine learning 
algorithms to ensure interpretable and physically consist-
ent results. To establish effective datasets, it is necessary 
to ensure uniform standards for the data, including using 
the same experimental system, experimental conditions, 
and dimensional variables. Data in material science suf-
fer from high acquisition costs and lack of standardized 

processing. Despite researchers in the field sharing com-
mon research directions, experimental conditions often 
vary significantly. Attempting to unify data obtained under 
different experimental conditions can lead to overfitting. 
Simulated data cannot fully capture the specific experi-
mental conditions, and certain characteristic parameters 
in experimental conditions are difficult to obtain compre-
hensively. Machine learning heavily relies on robust data 
support, as without adequate data, it cannot reflect the true 
value of the learning process. Moreover, experimentally 
obtained data in materials science exhibit complex and 
chaotic features, making it challenging for machine learn-
ing techniques to rapidly identify, classify, and establish 
associations. Consequently, extracting the crucial features 
from original data becomes arduous for machine learn-
ing algorithms. Recent advancements in explainable AI 
(XAI) techniques are being leveraged to tackle these chal-
lenges, enabling researchers to align ML predictions with 
established physical and chemical principles. Furthermore, 
emerging trends such as hybrid AI models that combine 
physics-based simulations with ML have shown promise 
in addressing data scarcity and improving interpretabil-
ity. Additionally, the existing practical algorithms and 
models often lack generality and are limited to specific 
scenarios. The discovery of new materials is frequently 
accompanied by the development of new preparation con-
ditions and rules. Furthermore, scientists working in the 
materials field typically possess scientific backgrounds in 
materials and physics, lacking familiarity with computer-
based machine learning. This knowledge gap hinders the 
progress of machine learning in materials innovation. 
Another aspect to consider is whether machine learning 
can entirely replace traditional experimental research, 
despite its potential in the development and application 
of novel materials. Further investigation is necessary to 
determine whether the implicit correlations and rules 
derived from machine learning align with the intrinsic 
characteristics of the materials. Verifying this alignment 
requires substantial effort.

Finally, we present our perspectives on the challenges 
and opportunities in this field.

(1) One of the primary challenges is the construction and 
management of databases. Effectively storing, manag-
ing, and analyzing vast amounts of data presents a com-
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plex problem. As the concept of material genome gains 
traction, accurately and comprehensively characterizing 
the relationships between composition, structure, and 
properties of materials becomes crucial for the research 
and development of new materials. Establishing more 
comprehensive material databases necessitates collabo-
rative efforts among scientific researchers worldwide, 
along with the creation of material library collections. 
This involves establishing material-specific data sets 
and transforming the material databases into AI-read-
able digital formats.

(2) The integration of machine learning and high-through-
put computing offers transformative potential for 
sustainability by optimizing resource use and reduc-
ing experimental redundancies. Both approaches are 
adept at extracting valuable insights from large data 
sets. High-throughput computing functions as an effi-
cient computational tool, lacking independent learning 
capabilities. In contrast, machine learning possesses 
the ability to learn autonomously. By combining the 
strengths of both approaches, the efficiency of new 
material screening can be further enhanced. This inte-
gration leverages standardized technical parameters 
and the large volume of high-throughput computing 
alongside the self-learning ability of machine learning.

(3) There is room for improvement in machine learning 
algorithms. Uncertainty in machine learning arises 
from three major aspects. Firstly, the uncertainty of 
input data encompasses geometry uncertainty, model 
parameter uncertainty, boundary condition uncertainty, 
and initial condition uncertainty. Secondly, the uncer-
tainty of model form includes model bias and limited 
computational budgets. Thirdly, the uncertainty of 
numerical methods encompasses discretization error, 
iterative error, round-off error, and coding error. Cur-
rent research focuses on quantitatively analyzing data 
uncertainty, understanding the uncertainty of machine 
learning models themselves, and comprehending the 
learning process of deep learning networks and the 
resulting prediction functions. These areas represent 
the forefront of current research interests.

(4) Feature engineering is crucial in machine learning, 
wherein it involves the careful selection, extraction, 
and transformation of descriptors into a suitable for-
mat for machine learning algorithms. This approach 
has emerged as a powerful tool in materials science, 

facilitating the efficient selection of relevant features 
for specific problems. Moreover, descriptor-based fea-
ture engineering provides insights into the underlying 
physical and chemical processes governing material 
properties. Descriptors can be categorized into two 
main types: structural descriptors and compositional 
descriptors. Structural descriptors capture the geom-
etry and topology of materials, including bond angles, 
bond lengths, coordination numbers, and surface area. 
They offer valuable information about the arrange-
ment of atoms within a material, enabling predictions 
of mechanical, electronic, and optical properties. Com-
positional descriptors, on the other hand, describe the 
elemental composition of a material, such as the atomic 
fractions of constituent elements and their distribution 
throughout the material. Compositional descriptors 
provide insights into the chemical makeup of a mate-
rial and can predict its chemical, thermal, and magnetic 
properties [122]. Utilizing descriptors, researchers have 
successfully predicted various material properties, such 
as crystal structure, bandgap, melting point, and elastic 
modulus [123]. For instance, machine learning mod-
els trained on structural and compositional descriptors 
have achieved high accuracy in predicting the elastic 
modulus of materials, even for materials that have not 
been experimentally tested [123]. Despite the numer-
ous advantages of descriptor-based feature engineer-
ing, several challenges must be addressed. One key 
challenge is the selection of relevant descriptors from 
the vast array of available options in materials science. 
The presence of highly correlated descriptors can lead 
to overfitting of models [16]. The challenge of select-
ing relevant descriptors from the vast array available in 
materials science can be addressed through a system-
atic approach combining domain knowledge, compu-
tational methods, and data-driven strategies. Initially, 
leveraging domain expertise and insights from litera-
ture or experimental studies can guide the prioritiza-
tion of descriptors with known physical significance. 
Statistical and machine learning techniques, such as 
filter methods, wrapper methods, or embedded meth-
ods (e.g., Lasso regression or tree-based models), can 
be employed to identify the most relevant features. 
Dimensionality reduction methods, including principal 
component analysis (PCA) and t-SNE, can further aid 
in isolating key descriptors by reducing redundancy. 
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Advanced feature engineering techniques, such as 
composite descriptor creation and automated feature 
generation, enhance the representation of material 
properties. Additionally, high-throughput screening 
and explainable AI methods, like Shapley values, can 
be used to evaluate and rank descriptors based on their 
predictive contributions. Validation through cross-val-
idation, model performance metrics, and experimental 
feedback ensures the robustness of selected descrip-
tors. Finally, accessing established databases, develop-
ing descriptor ontologies, and utilizing active learning 
approaches provide valuable frameworks for refining 
and optimizing feature selection processes. Together, 
these strategies address the complexity of descriptor 
selection, facilitating the development of predictive 
and interpretable models in materials science. Another 
challenge lies in the interpretability of machine learn-
ing models based on descriptors. While descriptors 
themselves are interpretable, complex machine learn-
ing models, especially those employing deep learning 
algorithms, can be difficult to interpret. This lack of 
interpretability poses difficulties in understanding the 
underlying physical and chemical processes governing 
material properties [124]. Standardization of data for-
mats and reporting protocols for materials data is also 
a major challenge. Without standardized formats, shar-
ing, comparing, and interpreting data across different 
research groups and databases become cumbersome. 
The challenge of data preprocessing and standardiza-
tion in materials science can be addressed through the 
adoption of unified data formats, the establishment of 
robust reporting protocols, and the integration of com-
putational tools designed for interoperability. Stand-
ardization initiatives, such as the Materials Project’s 
Materials API and the Materials Data Facility’s data 
repository aim to address this challenge by providing 
standardized formats and protocols, facilitating the 
sharing and integration of materials data for machine 
learning and AI applications [125]. Automated pre-
processing pipelines, incorporating techniques for data 
cleaning, normalization, and transformation, streamline 
the preparation of materials datasets for machine learn-
ing applications. Furthermore, the use of ontologies 
and metadata standards, such as the Chemical Markup 
Language (CML), facilitates semantic interoperabil-
ity, allowing for more efficient data integration and 

interpretation. It is important to note that descriptors 
are not a substitute for domain expertise in materials 
science. While descriptors offer insights into material 
properties, they represent just one tool among many 
in the materials scientist’s toolkit. Domain expertise 
remains essential for comprehending the complexi-
ties of materials science and designing materials with 
specific properties. Future research in this field holds 
promise for the development of novel descriptors, the 
incorporation of domain knowledge, the utilization of 
multiple descriptors, the enhancement of data quality 
and availability, and the creation of more interpretable 
machine learning models [88].

(5)  The integration of AI into materials science holds 
transformative potential for advancing sustainable 
development [126, 127]. By accelerating the discov-
ery, design, and optimization of materials, AI can 
address global challenges such as resource efficiency, 
energy sustainability, and environmental impact reduc-
tion. Predictive modeling and optimization algorithms 
enable the identification of environmentally friendly 
alternatives to critical raw materials and the minimi-
zation of material waste, thereby promoting circular 
material flows and reducing dependence on non-renew-
able resources. Furthermore, AI facilitates the develop-
ment of materials for renewable energy technologies, 
such as high-capacity battery components and green 
hydrogen catalysts, while enhancing their efficiency 
and longevity. Life-cycle assessment (LCA) frame-
works, augmented by AI, allow researchers to quantify 
and mitigate the environmental impacts of materials 
throughout their production, use, and disposal stages. 
Predictive maintenance further extends material lifes-
pans, contributing to resource conservation.

We firmly believe that the application of machine learning 
in materials science is just at the beginning of its journey. 
We anticipate that artificial intelligence will find increas-
ingly widespread use in materials research and development. 
As artificial intelligence continues to advance, we expect a 
steady growth in the development and practical application 
of new materials, driven by the synergistic capabilities of 
machine learning and materials science. Emerging trends, 
such as AI-augmented robotics for autonomous material 
synthesis and in situ experimentation, further illustrate the 
transformative impact of AI. Future research should also 
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prioritize ethical considerations, sustainability, and the 
integration of domain-specific knowledge to ensure that AI 
applications in materials science align with broader societal 
goals.
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