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Recent Advances of Electrocatalysts and Electrodes 
for Direct Formic Acid Fuel Cells: from Nano 
to Meter Scale Challenges

Yang Li1,2, Ming-Shui Yao1,3,4, Yanping He5 *, Shangfeng Du1 *

HIGHLIGHTS

• Comprehensive review of the progress in direct formic acid fuel cells from catalytic mechanisms to catalyst design, and to the elec-
trode/device fabrication.

• The gap between highly active formic acid oxidation catalysts and unsatisfactory device performance is highlighted.

• Perspectives for catalyst and electrode design are discussed.

ABSTRACT Direct formic 
acid fuel cells are promising 
energy devices with advan-
tages of low working temper-
ature and high safety in fuel 
storage and transport. They 
have been expected to be a 
future power source for port-
able electronic devices. The 
technology has been devel-
oped rapidly to overcome the 
high cost and low power per-
formance that hinder its prac-
tical application, which mainly originated from the slow reaction kinetics of the formic acid oxidation and complex mass transfer within 
the fuel cell electrodes. Here, we provide a comprehensive review of the progress around this technology, in particular for addressing 
multiscale challenges from catalytic mechanism understanding at the atomic scale, to catalyst design at the nanoscale, electrode structure 
at the micro scale and design at the millimeter scale, and finally to device fabrication at the meter scale. The gap between the highly active 
electrocatalysts and the poor electrode performance in practical devices is highlighted. Finally, perspectives and opportunities are proposed 
to potentially bridge this gap for further development of this technology.
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1 Introduction

Over the last decades, the pace of research and development 
of clean and sustainable energy technologies has sharply 
increased, motivated by the growing energy demand and pres-
sures of environmental challenges. Proton exchange membrane 
fuel cells (PEMFC), as one of the clean power generation tech-
nologies, have become a crucial industrial sector for global 
sustainable economic development [1]. In the history of the 
PEMFC, most of the efforts were spent on hydrogen-PEMFC. 
By contrast, these intensive studies can still not solve the inher-
ent limitation of hydrogen, in particular, the challenges facing 
hydrogen storage and distribution. Driven by this limitation 
and the requirements of alternative clean power sources, liq-
uid fuels, including methanol, ethanol, formic acid, ammonia, 
etc., have received more attention in the fuel cell area. Most of 
these fuels are considered as safe and convenient for storage 
and operation, and can be obtained either through sustainable 
approaches, or by catalytic reforming of abundant fossil fuels 
such as natural gas. Besides, most liquid fuels have a competi-
tive energy density compared with high-pressure or even liquid 
hydrogen (shown in Fig. 1), which can even be several orders 
of magnitude larger than that of the Li-ion battery [2].

The history of the first liquid fuel cell can be traced back to 
1845 [3], six years after the first fuel cell (in the former time, 
it was known as “gas battery”) demonstrated by Sir William 
Grove [4], in which he used gas battery to ascertain voltaic 
relation of oxygen and alcohol. In light of the advancements 
in hydrocarbon fuel infrastructure, in the early studies on liq-
uid fuel cells, researchers had several attempts on hydrocar-
bons, such as using diesel or jet fuel as the power sources [5]. 
However, these studies showed less positive results due to the 
large challenges in the electrooxidation of hydrocarbons at 
both low- and intermediate-temperature. This limitation later 
made the research focus shift to direct methanol fuel cells 
(DMFC). Since the last century, huge efforts have been car-
ried out on DMFC research [6–10]. The fast development of 
advanced electrochemical equipment provided opportunities 
to investigate the mechanism of the methanol oxidation reac-
tion (MOR); thus, a great number of studies were conducted 
in order to increase the power performance of DMFC [11–17]. 
Driven by the great development of DMFC at that period, the 
idea of the “Methanol Economy” was proposed as an alterna-
tive energy source to the “Hydrogen Economy” [18].

While the studies on the DMFC had been developed for a 
long time, many challenges remained unaddressed, in par-
ticular, catalyst poisoning and fuel crossover [19]. Therefore, 
scientists began to explore alternative liquid fuels. Formic 
acid is a safe liquid on the list of food additives published by 
the US Food and Drug Administration (FDA). The thermo-
dynamic potential (E0) of formic acid oxidation (FAOR) is 
-0.25 V vs RHE, compared to the hydrogen oxidation (0 V 
vs RHE) and MOR (+ 0.03 V vs RHE). Benefiting from 
this, the theoretical open-circuit voltage (OCV) of the direct 
formic acid fuel cell (DFAFC) can reach 1.48 V, higher than 
1.23 V of hydrogen-PEMFC and 1.20 V of DMFC [20, 21]. 
Also, during the DFAFC operation, the repulsion between 
the  HCOO− group of formic acid and the sulfuric group 
in the commonly used perfluorinated sulfonic acid (PFSA) 
membrane leads to a smaller crossover flux, which offers an 
opportunity for using a high concentration of formic acid 
to provide a high power density [1, 22]. Moreover, as an 
important component of carbon neutrality, formic acid can 
be directly produced by carbon dioxide reduction. If  CO2 
generated from FAOR is used, a  CO2 loop with a net zero 
can be achieved. These advantages make DFAFC a highly 
competitive power source for future applications.

Rapid research and development of DFAFC contributed 
to many improvements in the most recent years, and demon-
strated better commercialization prospects [23]. In order to better 
understand the recent fast progress on both FAOR catalysts and 
electrodes for DFAFC, a new review paper based on the state-
of-the-art studies is required to summarize the progress achieved 

Fig. 1  Gravimetric and volumetric energy density of different fuels
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and give a clear picture of the current strategies and methods to 
design and fabricate DFAFC, despite several papers focusing on 
the specific/narrow aspect have been published previously where 
usually FAOR electrocatalysts are discussed [24–27]. This arti-
cle will comprehensively review and analyze the development 
in the field of DFAFC, including the fundamental principles 
and challenges of the FAOR, preparation methods of electro-
catalysts, strategies for the improvement of catalytic activities 
and stability, and especially the development of DFAFC elec-
trodes. In particular, the evaluation of these catalysts and the 
large gap between their intrinsic activities and practical power 
performance in fuel cell electrodes are highlighted. Finally, the 
technical challenges are summarized and analyzed with several 
proposed future research directions to overcome the challenges 
toward DFAFC and their commercial applications.

2  Hierarchical Structures and History 
of DFAFC

Although it has been nearly two hundred years since the con-
cept of the fuel cell was proposed, DFAFC, as a new-born 
technique in the fuel cell family, was not presented until the 
end of the last century. The earliest research mainly focused 
on the mechanism of FAOR due to its simple two-electron 
exchange during oxidation. As shown in Fig. 2, the investi-
gation of the FAOR can be traced back to 1928 as the best-
known example of a nonlinear electrochemical oscillator [28]. 
With more advanced technology, the mechanism of FAOR 
was investigated later by using the voltammetry and chro-
nopotentiometry study [11, 29]. Despite researchers putting 
intensive research efforts and establishing a deep understand-
ing of FAOR, formic acid did not receive attention as the fuel 
used in fuel cells until 1996 [30], when Weber and co-workers 
proposed a novel fuel cell prototype based on the principle of 
FAOR. They found the electrochemical oxidation activity of 
formic acid was better than methanol on both Pt black and 
Pt/Ru catalysts under the same conditions. In 2002, the first 
DFAFC was demonstrated by Rice and co-works [31]. The 
MEA was made by 7 mg  cm−2 Pt black (cathode), Nafion® 
117 and 4 mg  cm−2 Pt-based proprietary catalyst (anode), 
delivering the peak power density of 5 mW  cm−2 (2 M formic 
acid) and 48.8 mW  cm−2 (12 M). In this study, the working 
temperature was significantly reduced to 60 °C, and this con-
dition is still being used in studies today. After that, benefiting 
from the long-term research and understanding achieved on 

FAOR, especially the reaction on different precious metals 
[32], the development of DFAFC was boomed. Most tech-
niques used now have been proposed in the first few years 
after the birth of DFAFC, including PtAu- and Pd-based cata-
lysts [33, 34], especially for the practice of carbon-supported 
catalysts, which significantly reduced the catalyst loading by 
optimizing the catalyst utilization within fuel cell electrodes 
[35, 36]. However, due to the lack of a breakthrough in the 
study of FAOR and DFAFC, the pace of DFAFC develop-
ment slowed down later. Especially in recent years, only a 
few published papers reported in the MEA fabrication and 
single-cell tests, while most studies shifted the pure material 
research focusing on the synthesis of electrocatalysts toward 
FAOR and improving their intrinsic activity.

Similar to hydrogen-PEMFC, the study of DFAFC involves 
a multilength-scale project and requires contributions from 
different disciplines [40]. As shown Fig. 3, the studies of the 
smallest scale can be down to atomic size, in which the inves-
tigation is carried out to reveal the mechanisms of FAOR on 
catalyst atoms. With the help of advanced operando tech-
niques and high-performance computing, recent research in 
this scale primarily focuses on identifying active reaction 
intermediates, thereby enabling continuous refinement of 
the FAOR reaction steps. More details can be found below 
in Sect. 3. Based on the studies of the reaction mechanism, 
various strategies have been proposed to optimize electro-
catalysts, such as increasing the active surface area, enhanc-
ing reaction kinetics and avoiding unwanted side reactions. In 
addition, corresponding synthesis methods are continuously 
being developed, aiming for cost-effective and environmen-
tally friendly approaches that meet these optimization strate-
gies. These will be detailed in Sect. 4.

Once the synthesized electrocatalyst demonstrated 
good potential in the electrochemical measurements, fur-
ther experiments could be designed to fabricate electrodes 
and membrane electrode assemblies (MEA). At this scale, 
numerous technical challenges arise, with a key focus on 
effectively preparing the catalyst to an electrode. This 
includes methods for spraying the catalyst uniformly, opti-
mizing triple phase boundaries, reducing contact resistance 
and more. Given that DFAFC research is still in its early 
stages, studies addressing these areas are limited. This 
review draws on research from other fuel cells to provide a 
framework and insights into these aspects. Single-cell and 
stack tests are necessary in this stage, in which more factors 
need to be considered, and they will be discussed in Sect. 5.
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3  Atomic Scale: Formic Acid Oxidation

FAOR is the foundation of catalyst design for boosting their 
catalytic activities and stability to be used in DFAFC. Based 
on advanced computing and operando characterization tech-
nology, modern research is mainly interested in the iden-
tity of the intermediates during the FAOR. This is not only 
because some of them could poison the catalyst surface, but 
also because the bond strength of these intermediates is a 
crucial factor for determining reaction kinetics. This section, 
therefore, will center on the intermediates during FAOR, and 
discuss the most accepted mechanisms and theories.

3.1  Mechanism of the Formic Acid Oxidation

As discussed in the above section, due to the simple two-
electron exchange, this reaction has been used as a model 
to explore the oxidation processes of more complex organic 
fuels (such as methanol), and therefore has been extensively 

investigated since decades ago. As early as 1928, the experi-
ment was conducted toward FAOR on the platinum surface. 
The formation of adsorbed poisoning species has been 
proposed based on the oscillatory behavior of the reaction 
[28]. A later investigation using IR spectroscopy revealed 
that this catalytic poison is carbon monoxide (CO) [41]. In 
1973, the theory of FAOR through dual parallel pathways 
was first proposed by Capon and Parsons [42]. With one 
pathway, formic acid is directly oxidized to carbon dioxide 
via a dehydrogenation reaction without breaking CO bonds 
(direct pathway): HCOOH → CO

2
+ 2H

+
+ 2e− . In another 

pathway, FAOR occurs via a dehydration reaction and 
forms adsorbed species as the intermediate (indirect path-
way): HCOOH → −CO

ads
+H

2
O → CO

2
+ 2H

+
+ 2e− . 

Adsorbed intermediates formed followed the indirect path-
way are easy to be adsorbed on the catalyst surface, block-
ing active sites and suppressing catalytic activities (catalyst 
poisoning). Therefore, a great effort of the recent catalyst 
design focused on improving the catalyst performance by 
adjusting the ratio between direct and indirect oxidation. For 

Fig. 2  The timeline for the study of the formic acid oxidation reaction (FAOR) and direct formic acid fuel cell (DFAFC). References: CV [11, 29], 
FAOR on Pd, Ir, Rh and Au [32, 37], Prototype [30], First DFAFC [31], PtRu [33], Pd black [38], Pd/C [35], Stack [39], 300 W Stack [23]
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example, it is found that FAOR is very sensitive to differ-
ent crystal facets, suggesting the reaction rates of these two 
pathways significantly rely on the surface structure of the 
electrocatalysts. An early study was conducted to investigate 
the oxidation kinetics of small organic molecules by cyclic 
voltammetry (CV) scan, including formic acid, methanol 
and formaldehyde, on platinum catalysts. They found Pt 
(100) plane was fully blocked by the intermediates, while 
the least adsorption was on Pt (111) surface [43].

However, there is still a lack of complete research to fully 
describe the mechanism of FAOR, which makes this topic 
still under debate. The focus of the recent investigation is on 
the identification of active intermediates. Using advanced 
surface-enhanced infrared spectroscopy (SEIRAS), adsorbed 
formate  (HCOOads) was initially detected in the direct oxida-
tion pathway [44, 45]. Subsequent studies further indicated 
this intermediate is also present in the dehydration of formic 
acid (indirect oxidation) [46, 47]. Moreover, the oxidation 
of formic acid/formate has been found to exhibit a volcano-
shaped pH dependence, peaking at a pH close to the pKa of 
HCOOH (3.75), which suggests that  HCOO− oxidation is 
the dominant reaction pathway across the whole pH range. 
It is thus posited that formic acid undergoes dissociation into 
 HCOO− prior to oxidation, through acid–base equilibrium 
[48, 49]. This series of studies is collectively termed the 

bridge-bonded adsorbed formate mechanism, as shown in 
Fig. 4.

Given that adsorbed formate is a common active inter-
mediate in FAOR, its adsorption configuration and cover-
age have received significant attention. Formate has been 
observed to adsorb on the platinum surface in two con-
figurations: monodentate formate and bidentate formate, 
depending on the number of oxygen atoms bonded to the 
platinum. Experimental results suggest that monodentate 
formate serves as the active intermediate, while bidentate 
formate is relatively stable [50]. Although bidentate formate 
does not participate directly in the reaction, it is more than 
a mere spectator. At low to moderate coverage levels, the 
presence of adjacent bidentate formate helps stabilize the 
reactive monodentate formate species [51]. However, when 
formate coverage exceeds approximately 50%, the rate of 
direct oxidation decreases, possibly due to the tight pack-
ing of bidentate formate, which prevents its conversion to 
monodentate formate. Additionally, formate could adsorb in 
another bidentate form, transitioning from a Pt–O adsorption 
mode to a Pt–C mode, and undergoes a dehydrogenation 
process to form adsorbed CO [50]. Because the potential of 
zero free charge (pzfc) on Pt (100) is more negative, high 
coverage of adsorbed formate can be achieved at relatively 
negative potentials, resulting in high formate reduction rates 

Fig. 3  Multilength-scale challenges for DFAFCs
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and increased CO poisoning. In contrast, on Pt (111), high 
formate coverage is only achievable at relatively positive 
potentials, where the reduction of adsorbed formate to CO 
occurs slowly, explaining the slow CO poisoning observed 
on Pt (111) electrodes.

However, some studies suggest that formic acid can 
adsorb directly onto the electrocatalyst surface and undergo 
oxidation without forming formate as an intermediate [52, 
53]. Contrary to previous conclusions, formate may occupy 
active sites, competing with formic acid and thus poisoning 
the catalyst. Therefore, catalyst design should selectively 
prevent formate adsorption. This highlights that our current 
understanding of the formic acid oxidation is still evolving, 
necessitating further and more comprehensive research in 
the future.

Very recently, facilitated by the increasing computing 
power, numerical simulation techniques, exemplified by den-
sity functional theory (DFT), have been applied to assist the 
investigation of the oxidation process, which involves the 
FAOR on different catalyst surfaces [54–59], temperature 
[60], pH value [61] and elastic strain [62]. For example, DFT 
calculations were employed to investigate the underlying 
mechanism of FAOR over different surfaces of PdCu with 
different Pd/Cu ratios. The results show Cu atoms of  Pd3Cu 
donate the electrons to Pd atoms with the trimer to realize 
the bimetallic synergetic effect. Therefore,  Pd3Cu reduces 

the adsorption ability of CO and enhances the ability of anti-
CO position, thus increasing the activity and stability.

3.2  D‑Band Center and Volcano Plot

The reaction rate of FAOR is significantly contributed by the 
adsorption of intermediates on the catalyst surface, which 
is the basement for the catalyst design. Sabatier theory 
indicates the ideal catalyst should bind the reactant with a 
medium strength [63]. Too strong strength causes difficulty 
in desorption of products, while a too weak bond is unable to 
activate reactants. In the case of FAOR, the binding between 
the formate intermediate and platinum is considered through 
the Pt-O bond. Strong adsorption would lead to an increase 
in formate coverage, and a decline in oxidation rate, prob-
ably because it is difficult for the too closely packed biden-
tate formate to convert to the reactive specie monodentate 
[51]. Besides, a weaker metal–oxygen bond scission requires 
less energy. These all make improved catalytic activity when 
decreasing adsorption energy. However, as the bond strength 
further shifts away from the optimum value, the formation 
of formate becomes too weak and restricts the follow-up 
reactions, also causing a decrease in performance [64, 65].

In order to accurately describe the relationship between the 
bond strength and catalytic activity, Hammer and Nørskov 
developed the “d-band center model,” in which the electronic 

Fig. 4  Illustration of the bridge-bonded adsorbed formate mechanism for the formic acid oxidation reaction (FAOR)
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structure of the catalyst could be calculated through the 
weighted mean energy of its d-band, namely d-band center, 
which correlated to the binding strength [66–68]. Catalytic 
reactivity, therefore, could be controlled through various 
methods to optimize the position of the d-band center which 
is called electronic effects [69]. In the application of catalyst 
design for FAOR, the d-band center is usually adjusted by 
alloying through the two main mechanisms: (i) The intro-
duction of a second element can lead to the migration of 
charges if they have unequal electronegativity. This factor 
is named ligand effect [70]; (ii) besides, another influence is 
contributed by the change of lattice constant due to the lattice 
mismatch. This effect could cause strain on the catalyst sur-
face, thus referred as strain effect [71, 72]. Both effects can 
cause redistribution of value electrons and shift the d-band 
center. A great quantitative implementation of the classical 
Sabatier theory and electronic effects is the volcano plots, 
which demonstrate the optimized d-band center and “best” 
catalyst. A series of experiments were conducted by Hu and 
co-workers to investigate the effect of different transition 
metals on the d-band center of Pd-based catalysts, and their 
catalytic activities toward FAOR [65, 71, 73]. The d-band 
center of each alloy was calculated through the integration 
of the normalized first moment of the density of state (DOS), 
and all showed a typical volcano plot with their performance 
in those studies (Fig. 5).

In general, after long-term research on FAOR and result-
ing from the rapid development of electrochemical meas-
urement methodologies, particularly in situ characterization 
techniques, there has been now a profound understanding of 
the mechanisms underlying FAOR. Except for the widely 
accepted dual pathway theory, current research primarily 
focuses on the study of the reaction intermediate formate. In 
this context, computational simulation techniques, such as 
DFT, have provided substantial support. However, most sim-
ulations are based only on simplistic models. For instance, 
DFT calculations necessitate the specification of particular 
crystal facets. Yet, practical catalysts often possess complex 
structures. Even single crystals may have high-index fac-
ets on the surfaces, where active sites are usually located. 
Therefore, significant efforts are still required in order to 
build model for providing further understanding about the 
reaction mechanisms with multicomponent alloy and com-
plex nanostructures.

4  Nano Scale: Catalyst Design and Synthesis

The studies of the mechanisms provide a fundamental 
understanding for FAOR. Armed with these mechanis-
tic insights, we now pivot our attention toward the conse-
quential endeavor of the catalyst design. Drawing inspira-
tion from the elucidated reaction mechanisms, researchers 
were able to propose different strategies for designing new 
catalysts, in order to obtain desirable catalytic pathways 
and mitigate undesired side reactions. Moreover, through 
intricate manipulations at the atomic and molecular levels, 
the catalyst composition, structure and morphology were 
manipulated to achieve designed strategies. This section will 
summarize common strategies for enhancing catalytic activ-
ity and stability reported in recent studies.

4.1  Strategies of Catalyst Design for FAOR

The design of FAOR catalysts is mainly optimized from two 
aspects. One is to improve catalytic activity, ensuring that 
formic acid can be rapidly and completely oxidized on the 
catalyst surface. On the other hand, it is also necessary to 
consider their stability, that is, the catalytic activity degrades 
under long-term operation.

There are a number of studies that contribute to the 
improvement of FAOR activity, and the methods could be 
classified into two strategic factors. The first is increasing 
the catalytic active sites of a catalyst. Benefiting from the 
rapid development of nanomaterial synthesis technology, 
structural engineering has been significantly deployed in 
catalyst design. Many unique nanostructures, even the single 
atom, were reported, which showed a large specific surface 
area and high performance. In addition to pursuing more 
active sites, boosting the intrinsic activity of each site is 
another important strategy. As discussed in the section of the 
FAOR mechanism in the last section, the catalytic activity 
is strongly dependent on the binding strength between the 
catalyst surface and reactants/products. Both numerical and 
experimental results show that alloying and/or support could 
adjust the electronic structure of the catalyst, thus affecting 
the binding strength toward different reactions.



 Nano-Micro Lett.          (2025) 17:148   148  Page 8 of 50

https://doi.org/10.1007/s40820-025-01648-w© The authors

4.1.1  Structure Effect and Crystal Facets

Structure engineering is a powerful tool that could be applied 
in catalyst development. Figure 6 summarizes typical cata-
lysts reported for FAOR in recent studies, with the mass 
activity shown vs the ECSA of the catalysts toward FAOR. 
A nearly linear relationship is obtained for the mass activ-
ity demonstrated as a function of ECSA. This is similar to 
the catalysts prepared for ORR, where a similar relation-
ship between activity and ECSA was also reported [74–76]. 
This can be ascribed to the more active sites provided with a 
higher ECSA. In this case, the synthesis of the catalyst with a 
high surface area received significant attention in developing 
highly active catalysts. In the catalyst synthesis process, a high 
surface area can be achieved through creating rough surfaces 
and even pores with solid catalysts with different dimensions 
[77], such as nanoframes, nanotubes and nanosheets. In addi-
tion, with structure engineering, the formation of high-energy 
sites could be facilitated, such as crystal defects and crystal/
amorphous interface [78], which can significantly promote the 
catalytic activity for FAOR even with the same ECSA. In the 
following parts, these will be discussed in detail.

4.1.2  0‑Dimensional (0D) Catalysts with Special 
Structure

0D catalysts, represented by Pt and Pd nanoparticles sup-
ported on carbon nanospheres (Pt/C and Pd/C), are widely 

used in fuel cells. Despite their activities reported in recent 
studies were not as competitive as other nanostructures dis-
cussed later, they still received great attention toward FAOR 
due to the easy synthesis process. However, these conven-
tional 0D nanoparticle catalysts suffer from various intrinsic 
drawbacks, including low activity and poor stability. There-
fore, there were some attempts to modify the nanoparticle 
catalysts in recently reported studies, in which pursuing the 
larger surface area was their main target as it could offer 
more active sites for FAOR. These attempts are summarized 
in Fig. 7. They can be categorized into two approaches, 
including simply creating a larger specific surface area and 
controlling the exposed crystal facets.

To achieve a high specific surface area, the hollow nano-
structure is one of the most popular strategies which could 
be achieved by introducing a solid spherical template, 
such as carbon nanospheres, and bubble templates  (NH3 
or  CO2). The hollow nanostructure has a significantly 
increased surface to volume ratio compared with a con-
ventional solid nanoparticle. Chen and co-workers synthe-
sized PdNi bimetallic hollow nanocrystals with a dendritic 
shell [79]. The rough surface of the prepared catalysts is 
comprised of a great number of dendrite-like PdNi nano-
particles, thus providing a high surface area. These fac-
tors endow the prepared catalyst with an improved ECSA 
(19.74  m2  gPd

−1), which is 2.1 times higher than that of the 
commercial Pd/C catalyst. A similar study was reported 
for a porous PdPt half-shell catalyst [80]; the ECSA of 
21.3  m2  g−1 was obtained. In addition to the benefit of 

Fig. 5  Volcano plots of catalytic activity toward the formic acid oxidation reaction (FAOR) vs d-band center for various catalysts [71, 73]
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Fig. 6  Mass activity vs electrochemical surface area (ECSA) for different catalysts toward the formic acid oxidation reaction (FAOR) reaction 
reported in recent studies. Partially enlarged view of the square area shown in bottom
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the hollow structure and rough surface, the researchers 
created a mass of small pores and crystal defects (such 
as distortions, twin boundaries and atomic holes) on the 
shell. These rich surface defects serve as the catalytically 
active sites, thus further improving ECSA of the catalyst. 
Besides, the mass diffusion is also enhanced through the 
porous shell, because reagents, such as formic acid, can 
transport to the active sites through these pores. A PdO/
Pd-CeO2 nanocatalyst with a similar hollow structure was 
also reported, showing an excellent catalytic activity of 
1.62 A  mgPd

−1 at 0.68 V toward FAOR [81]. Recently, a 
hollow high-entropy alloy, involving Pd, Cu, Mo, Ni and 
Co, was also reported for ORR and FAOR [82].

Boosting FAOR with designed crystal facets is another 
important methodology, which is well demonstrated for 
electrocatalysts with polyhedral nanostructures. Previous 
research has demonstrated the catalytic activity toward 
FAOR varies on different crystal facets [83]. This differ-
ence is mainly contributed by the onset potential for the 
oxidation of the adsorbed intermediates on different facets. 
Polyhedral structures, such as tetrahedrons [84], cubes [85] 
and decahedrons [86], that enclosed by the specific crystal 
facets have been demonstrated. The exposed surface required 
for the FAOR, therefore, could be achieved by controlling 
the structures of the synthesized catalysts.

In recent studies, the polyhedral nanostructures with 
high surface area attract more interest since they have the 
advantages of both strategies, i.e., large surface area and 
controllably exposed crystal facets. These catalysts were 
usually achieved by creating porous, curved surfaces or 
even framework structures through galvanic replacement 
or chemical etching of polyhedral structures. A core–shell 
CuPd@Pd catalyst with a concave tetrahedral structure that 
was introduced in Chen and co-workers’ study [77]. Benefit-
ing from its concave surface, the ECSA of the prepared cata-
lyst reached 10.17  m2  gPd

−1, compared with 5.98  m2  gPd
−1 of 

the benchmark JM Pd black. Jiang and co-workers reported 
an octahedral AgPt@Pt nanocatalyst with a porous surface 
structure [87]. This structure was achieved by selective etch-
ing of Ag segments using  HNO3 from an AgPt octahedral 
nanostructure, exposing inner Pt atoms and leading to an 
enriched Pt surface. Consequently, the as-prepared AgPt@
Pt catalyst demonstrated a mass activity of 10.8-fold larger 
than that of the commercial Pt black.

Furthermore, the nanoframework is considered as a 
structure that can further optimize the utilization efficiency 
of catalysts, therefore, receiving great interest in recent 
years. The PtPdCu nanoframe was prepared from PtPdCu 
nanocubes by selectively etching the Pd-rich cores with 
 FeCl3 solution and HCl [88]. This designed framework 

Fig. 7  Key advances of the structural engineering research to improve the activity of 0D catalysts toward the FAOR
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structure demonstrated multiple merits toward FAOR. The 
maximized number of active sites and abundant stepped 
atoms produced during the etching process offers a large 
specific surface area, while the three-dimensional structure 
of the nanoframe provides a pathway facilitating the access 
of the reaction species to the catalyst surface. Frames with 
other polyhedral structures were also reported. They all 
demonstrated improved catalytic activities contributed 
by the large surface area and optimized charge and mass 
transfer. For example, Wang and co-workers presented a 
dodecahedral PtCu nanoframe catalyst for FAOR through 
a similar strategy [89]. The preparation of PtPdRhAg 
nanoframes with an octahedral structure and small par-
ticle size of less than 6.5 nm was introduced in Saleem 
and co-workers’ study [90]. A cubic PdAg catalyst with a 
framework structure was also reported [91].

4.1.3  One‑Dimensional (1D) Nanostructures

Fuel cell catalysts with 1D nanostructures, such as nanow-
ires, nanorods, nanotubes and nanochains [92–95], have also 
received increasing prominence in recent studies. Research-
ers from our group have also well-reviewed the 1D electro-
catalysts and their application for the oxygen reduction reac-
tion (ORR) as well as the hydrocarbon oxidation (including 
formic acid, methanol and ethanol) [96–98]. Compared with 
nanoparticles, 1D nanostructures show good potential to 
alleviate the inherent drawback resulting from aggregation, 
dissolution and Oswald ripening [99].

It has been well demonstrated that single-crystal 1D nano-
structures can facilitate electrocatalytic activity via exposing 
highly active crystal facets, along with promoting electron 
transport through the path directing effect [97]. The study 
reported by Jiang and co-workers demonstrated the prepara-
tion of PtAg nanowires and its application for FAOR [100]. 
They noted the formed nanowires had an oriented attach-
ment along the < 111 > direction due to the adsorption of 
polymer structure-directing agent on (110) and (100) facets 
during the catalyst synthesis process. Previous work based 
on both experimental and numerical calculation methods for 
investigating the FAOR mechanism has concluded that the 
CO formation reaction on the Pt(111) surface was more dif-
ficult than others [50]. Therefore, the dominant Pt(111) fac-
ets within the PtAg nanowires are favorable for suppressing 

the indirect pathway of FAOR and boosting the overall 
catalytic efficiency. A similar crystal facet effect was also 
observed in a study of trimetallic AuPtRh nanowires [101]. 
Besides, the nanowire structure was achieved with various 
Pt-based alloys, such as PtRu [102], PtAu [103] and PtPd 
[104]. Moreover, the benefit of exposing high-active facets 
was also well demonstrated with the Pd-based nanowires, 
where higher performance was contributed from the rapid 
FAOR on Pd(100) facet [83, 105].

Inspired by the excellent catalytic activities of the hollow 
and porous 0D nanocatalysts, hollow nanowires, or called 
nanotubes, have also been frequently reported as they can 
further increase the surface area and provide more active 
sites as well. For example, an enhanced ECSA of 63  m2  g−1 
was measured in a study of PdAg@Pd core–shell nanotubes 
(Fig. 8a) [106]. Moreover, the mesoporous Pd nanotubes 
were demonstrated in Ding and co-workers’ experiments 
[95]. Besides the high specific surface area provided by the 
tube structure, the presence of the soft template randomly 
perturbs the nanotube growth and generates mesopores and 
anisotropic substructures (such as lattice defects and step 
edges), which offer more additional active sites and high-
energy domains to accelerate the adsorption and oxidation 
of formic acid.

The 1D nanostructure could be further assembled to form 
high-dimensional materials, such as chains [112] and net-
works [113, 114]. Very recently, a hemispherical nanocata-
lyst assembled by PtPd nanowires (Fig. 8c, d) was reported 
by Liang and co-workers [107]. In this study, the anisotropic 
1D catalysts were formed on Au seeds, enabling the nano-
structure to have a large specific surface area and thus dem-
onstrating excellent electrocatalytic activity for the oxidation 
of various liquid fuels (methanol, ethanol and formic acid).

4.1.4  Two‑Dimensional (2D) Nanostructures

2D nanomaterials have received increasing interest since the 
report of graphene in 2004 [115]. In the studies on FAOR, 
the nanosheet, as a typical 2D nanomaterial, demonstrated 
the largest surface area and best catalyst activity through a 
comparison of the mass activity of different nanostructures 
(Fig. 6), thus has been widely reported recently for FAOR 
application. The ultrathin 2D structure can expose more inte-
rior atoms, thus providing a relatively high surface to volume 
ratio. This structure is usually formed with the assistance of 
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carbon monoxide (CO), as the CO can strongly bind to the 
metal (111) facets and induce 2D growth. In Yang and co-
workers’ work, the ultrathin PdCu alloy nanosheets with a 
thickness of 2.8 nm were prepared as the highly efficient 
electrocatalyst for FAOR (Fig. 8d, e), in which an enlarged 
ECSA of 139.8  m2  gPd

−1 was achieved [108]. A similar 
nanostructure was also obtained in the research of PtPd alloy 
from another group, showing an almost tenfold higher ECSA 
compared with a JM 20 wt% Pd/C catalyst [116], reaching 
up to 128.23  m2  g−1, delivering a mass activity of 1.831 A 
 mg−1.

Besides, the advantage of the porous structure was also 
applied to these 2D nanomaterials. Zhang and co-workers 
synthesized perforated Pd nanosheets with a crystalline/

amorphous heterostructure [109]. As shown in Fig. 8f, they 
noted that the perforated structure not only reduced the cata-
lyst usage amount and improved utilization, but also pro-
vided more active sites due to increased atomic edges and 
steps, as mentioned above. As a consequence, the ECSA 
measured in this study reached 172.6  m2  gPd

−1, which is 
the highest value compared with other reported Pd-based 
catalysts in the literature. In addition, a Pd nanosheet with a 
large porosity was also synthesized through a one-pot hydro-
thermal method in Qiu and co-workers’ report, in which the 
nanosheet structure was knitted by interweaved ultrathin 
nanowires [117]. The researcher demonstrated that besides 
the properties of the nanosheet, the nanowire structure fur-
ther facilitated the mass transport and charge transfer, which 

Fig. 8  Typical nanostructures of catalysts for the formic acid oxidation (FAOR). a A TEM image of PdAg@Pd core–shell nanotubes [106]. b, c 
SEM images of Au@PtPd hemispherical nanostructures [107]. d, e TEM and AFM images of ultrathin PdCu alloy nanosheets. [108] f A TEM 
image of perforated Pd nanosheets [109]. g A SEM image of hyperbranched PdRu nanospine [110]. h, i TEM images of web-like g Pt nanopen-
tagons [111]
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was revealed by the high exchange current density (114.8 A 
 g−1) with the obtained Tafel plots.

The preparation of a 2D Pd electrocatalyst with peri-
odically ordered mesoporosity was also reported recently 
through the assistance of a lyotropic liquid–crystal tem-
plate [118]. This periodically ordered structure was con-
sidered to be able to optimize some congenital shortcom-
ings of conventional porous nanosheets, for example, the 
sluggish mass transfer can be caused by the pores that are 
tortuous and isolated from each other, which can further 
lead to a lack of fresh reactants deep inside and, therefore, 
rapid catalyst poisoning. In this study, the periodically 
ordered catalyst was precisely synthesized by controlling 
the potential and temperature of electrodeposition, dem-
onstrating great electrocatalytic activity (3.34 A  mg−1) 
for the FAOR compared with a commercial 30 wt% Pd/C 
catalyst (0.43 A  mg−1).

Furthermore, these 2D nanosheets can also be further 
assembled into a 3D structure. A typical example was 
shown in Zhang and co-workers’ study, where a layered 
and heterostructured Pd/PdWCr nanoflower was reported 
with a high mass activity of 2.09 A  mgPd−1 recorded in the 
measurement in 0.5 M  H2SO4 + 0.5 M HCOOH aqueous 
electrolyte [119].

4.1.5  Nanostructures with High‑index Facets

Most of the conventional structures discussed above only 
involve low-index crystal facets, such as {111} and {100} 
facets. Some works also reported the attempts to expose 
high-index facets with nanostructured catalysts as they usu-
ally provide higher catalytic activity for FAOR, which are 
contributed by the presence of the high density of atomic 
steps, edges, kinks and dangling bonds on the surface [120]. 
The DFT calculation reveals FAOR on the high-index fac-
ets is dominated by the direct pathway, which can suppress 
the formation of poisoned intermediates and provide high-
performance electrocatalysts for the DFAFC [121]. Because 
high-index facets are most shown in high-curvature struc-
tures of Pd and Pt catalysts, such as the spine tip, these sharp 
structures are also considered to concentrate electric fields 
at the surface and facilitate catalytic activity through field-
induced reagent concentration [122]. Wang and co-workers 
reported the preparation of hyperbranched PdRu nanospines 

(Fig. 8g) with a 2.8-fold ECSA compared with that of Pd 
nanoparticles [110]. In their further study, the mass activity 
of the PdRu nanospines reached 1.37 A  mgPd

−1 after doping 
boron (B) and phosphorus (P) [123]. In addition, a web-
like Pt nanopentagon (Fig. 8h, i) with sharp branches was 
demonstrated in Lai and co-workers’ research, in which the 
authors noted that the high-index facet (554) plane presented 
at the boundary of the branch surface [111]. The mass peak 
current density of 739 mA  mg−1 was recorded, which is 1.7, 
6.8 and 23 times higher than that of commercial Pd/C, Pt/C 
and Pt black. A similar urchin-liked nanostructure was also 
reported for PdCu [124] and PdCuPt catalysts [125].

4.1.6  Single Atom Catalysts (SAC)

In the previous section, we discussed that electrocatalytic 
performance demonstrated a linear relationship with their 
ECSA. Consequently, extensive research has focused on 
synthesizing highly efficient catalysts. Simple mathemati-
cal calculations reveal that reducing the catalyst size can 
increase surface area, thus enhancing utilization. Sig-
nificant effort has been dedicated to studying ultrasmall 
catalyst particles [126]. The most extreme case is the sin-
gle-atom catalysts (SACs), which, with nearly 100% utili-
zation, has attracted considerable attention. For example, 
Liu and co-workers synthesized Pt SAC on Au nanocrys-
tals, achieving an impressive FAOR catalytic activity of 
38.6 A  cm−2, 370 times greater than that of conventional 
Pt/C catalysts [127]. Similar electrocatalysts have also 
been reported on titanium nitride supports [128] and hol-
low carbon nanorods [129].

Furthermore, SACs typically exhibit distinct electro-
chemical properties and reaction pathways compared to 
conventional nanoparticle catalysts. This is because the 
metal sites in SACs usually carry a partial positive charge, 
resulting in reduced electron density and thus altering the 
metal–reactant interactions. More importantly, the spatial 
isolation of metal atoms in SACs can be exploited to mod-
ify the adsorption configuration of reactive intermediates 
and prevent side reactions that require adjacent metal sites. 
Based on this principle, Xiong and co-workers reported a 
single-atom Rh/N-doped carbon electrocatalyst for FAOR 
[130]. DFT calculations indicate that this catalyst pos-
sesses a high barrier for CO formation and an unfavorable 
binding with CO, thus exhibiting excellent CO tolerance. 
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A similar strategy has also been reported with an iridium 
single-atom catalyst on nitrogen-doped carbon [131].

4.1.7  Alloying

Alloying is another crucial strategy that has been widely 
applied in catalyst design. The catalytic activity toward 
FAOR, as discussed in the mechanism section, is highly 
dependent on the binding strength between the reactants/
intermediate species and catalyst. Alloying provides an 
effective pathway to adjust this strength through the modi-
fication of the electronic structure of catalysts (electronic 
effects), which is contributed by the migration of charges 
(ligand effect) and lattice mismatch (strain effect). Pre-
vious work explored the correlation of FAOR catalytic 
activity and electronic properties of various Pd-based 
nanoparticles, including Ru, Pt, Cu, Au and Ag [71]. XPS 
analysis results revealed the shift of core level binding 
energy for Pd followed the order: PdRu < PdPt < PdCu < P
dAu < PdAg, which well fit the simulation results in DFT. 
A typical volcano plot (shown in Fig. 5a) was demon-
strated in this study where the maximum catalytic activity 
was located between 2.58 eV (PdPt) and 2.85 eV (PdCu) 
of the d-band center. This trend is similar to their previous 
results reported for the Pd-based bimetallic thin films [65].

Although many computational and experimental stud-
ies have been conducted to identify the “best alloy” for 
FAOR, an obvious relationship between the catalytic activ-
ity and the electron structure of the alloy is still unclear. 
A number of metals, therefore, have been explored to be 
alloyed with Pt or Pd. Figure 9a summarizes the most com-
mon elements used to alloy electrocatalysts reported in 
recent studies. It is noted that Au and Cu share almost 
the same proportion, and they account for more than 50% 
of the total studies. However, when separately analyz-
ing the usage of these elements in the Pt and Pd cata-
lysts (Fig. 9b), it is obvious more investigations have been 
performed on Cu for Pd-based catalysts, while more to 
alloy Pt catalysts with Au. With the Pt catalyst, the biggest 
challenge is its indirect oxidation pathway toward FAOR. 
PtAu demonstrates excellent performance in suppressing 
the dehydration reaction and formation of poisoning inter-
mediates, thus receiving the most interest in recent stud-
ies. Cyclic voltammetry (CV) measurements conducted 

on the PtAu/C catalyst revealed alloying with Au sup-
pressed the indirect oxidation reaction by comparing the 
ratio of the first to second oxidation peak of the CV plot 
[132]. DFT calculation reported by Fan and co-workers 
proposed another reason to explain the dominated direct 
pathway with the PtAu catalyst from the contribution of 
energy barriers [133]. They noted the barriers of C-H bond 
cleavage were lower than that of the O–H bond on the Pt 
surface. The initial C-H bond activation governed the oxi-
dation process through an indirect way. The introduction 
of neighboring Au could significantly reduce the barrier 
of O–H cleavage, thus facilitating the direct oxidation. A 
similar mechanism was also reported in the study of FAOR 
on the PdPb catalyst [134].

On the other hand, the excellent intrinsic properties of 
the Pd catalyst lead to its dominant direct oxidation. Com-
pared to Pt, the high binding energy between Pd and for-
mate causes higher formate anions coverage, thus blocking 
the ensemble site necessary for CO formation [135]. This 
enables its research efforts domain (61% of total studies, 
as shown in Fig. 9c), compared with Pt-based alloy (38%). 
Therefore, most of the studies about Pd focused on the syn-
thesis of catalysts with controlled shapes, especially for 
the high surface area, as mentioned above. To achieve this 
aim, dealloying has been considered as the most effective 
method, in which a second metal as the sacrifice phase is 
reduced along with Pd and then removed to create rough 
surface. Copper, due to its low cost, easily to be reduced 
and removed, was widely used in the fabrication of Pd-based 
catalysts [89, 136]. The introduction of Ag can also serve 
as the sacrificial phase to obtain high surface area due to 
its high standard reduction potential (galvanic replacement) 
and easy to be leached away (i.e., by acid treatment) [87, 91, 
100, 106, 137].

In addition to the electronic structure modification, the 
introduction of other elements can also provide extra func-
tional groups, such as hydroxyl ion (-OHad), to promote the 
oxidation of the poisoning intermediates. A typical exam-
ple was demonstrated for a AuPtRh catalyst [101]. In this 
study, with the introduction of Rh atoms, although no shift 
was observed in Pt 4f peak through the high-resolution 
XPS analysis (Pt and Rh have the same electronegativity, 
 XPt =  XRh = 2.28), the negative shift of the onset peak in the 
CO stripping measurement suggested easier CO removal 
on the catalyst surface. The researchers ascribed this to 
the -OHad generated from the extra Rh atoms, instead of 
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electronic effects. Besides, the negatively shifted peak in the 
CV plot of the FAOR also reflected the contribution from 
hydroxyl species as it enabled the oxidation at a much lower 
potential [77].

The formation of poisoning CO on the Pt surface requires 
at least three continuous Pt atoms. The presence of a second 
metal, therefore, can disrupt this continuous distribution 
and suppress the indirect oxidation of formic acid. This is 
defined as the “third body effect” [138]. Choi and co-work-
ers demonstrated a facile method to modify the Pt/C catalyst 
by irreversibly adsorbing Bi atoms on the catalyst surface 
[23]. The authors noted that the adsorbed Bi served as the 
third body and promoted FAOR through the direct pathway, 
thus leading to an improved peak power density to around 
180 mW  cm−2 in the single-cell test, which is 2.85 times 
higher than the value of the non-modified Pt/C catalyst. This 
strategy was also applied to the Pd catalyst and was further 
extended. The study reported by Shen and co-workers indi-
cated, compared with the random alloy with a disordered 
structure, ordered intermetallic could further isolate cata-
lyst atoms and limit the formation of the CO intermediate 
[139]. Based on this mechanism, ordered PdBi alloy was 
synthesized and recorded a mass activity of 1.02 A  mgPd

−1 
in the electrochemical measurement in  N2-saturated 0.5 M 

 H2SO4 + 0.5 M HCOOH electrolyte while the disorder PtBi 
catalyst only reached 0.4 A  mgPd

−1.
Last, one thing that is worth stressing is the FAOR mecha-

nism is still under debation and development. More numeri-
cal calculations are being conducted to guide further practi-
cal experiments. For example, recently, research reported by 
Sui and co-workers predicted the catalytic activity of several 
Pd-based alloys based on their carbophilicity and oxophilic-
ity through the DFT calculation [140]. Among them, Mo@
Pd(111) demonstrated the strongest *O–H binding and 
weakest *CO binding, therefore being considered the most 
promising bimetallic Pd-based catalyst for FAOR.

In addition to the conventional alloying method, there 
are some other attempts that have been reported recently to 
introduce a second phase for boosting FAOR. For example, 
metal oxides have been frequently reported in recent stud-
ies, including  TiO2 [141], MnO [142, 143],  Fe3O4 [144], 
 La2O3 [145] and CoO [146]. Among them, the decoration 
of  SnO2 on Pd nanocubes was demonstrated in Rettenmaier 
and co-workers’ study [147]. A negatively shifted peak was 
observed in the CO stripping measurement, suggesting a 
weaker Pd-CO bond formed when  SnO2 was present. Xu and 
co-workers reported a doping technique using boron (B) and 
phosphorus (P) to modify RdRu nanospines [110, 123] and 
Pd nanorods [148]. The B, P doping not only downshifted 

Fig. 9  Percentage of different elements used in alloyed catalysts toward the formic acid oxidation reaction (FAOR) in recent studies. a Alloying 
elements. b Pt- and Pd-based catalysts
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the d-band center position, but also facilitated the forma-
tion of the oxidized boron and oxidized phosphorus species, 
which promoted the oxidation of adsorbed oxygenated spe-
cies. The metal(-transition) phosphide system also received 
attention, because it can effectively regulate the electronic 
structure and induct catalysts to form different valences 
due to strong P-metal interaction [149]. For instance, Pd/
FeP catalyst was published in Bao and co-workers’ research 
[150]. In this work, the XRD and XPS analyses revealed the 
catalyst existing in the form of metallic Pd and PdO. This 
combination of metal and oxides on the catalyst surface has 
also been reported, showing improved catalytic activity in 
previous studies [151]. A similar strategy was used to pre-
pare Pd/CoP catalysts for FAOR, for which a great peak 
power density of 150 mW  cm−2 was recorded in the DFAFC 
single-cell test [152]. Very recently, a few attempts were 
reported, in which the palladium hydrides (PdH) were used 
for catalyzing FAOR, and also showed the ability to tune 
the electronic structure and suppress the CO* generation or 
bonding [153, 154].

4.1.8  Support Effect

The contribution from the support to catalysts comes from 
several aspects. The most intuitive benefit is optimizing 
morphology, including catalyst dispersity and particle size, 
because of the interaction between the metal phase and sup-
port. The most commonly reported catalyst supports are 
carbonaceous and  CeO2.

Benefiting from the great electrical conductivity and 
large surface area, carbonaceous materials are widely rec-
ognized as excellent catalyst supports in fuel cell applica-
tions, including carbon black [155], carbon nanofibers [156], 
carbon nanotubes and graphene [157–162]. Among them, 
graphene has received the most interest in recent decades 
due to its extremely high specific surface area and excellent 
electrical conductivity. Xu and co-workers reported N-gra-
phene supported PtAu, for which small charge resistance 
revealed by the electrochemical impedance spectroscopy 
(EIS) analysis, suggested this support provided a multidirec-
tional electron transfer route. The formed catalyst, therefore, 
exhibits an excellent mass activity of 1.847 A  mg−1 toward 
FAOR [158]. Zhou and co-workers demonstrated a three-
dimensional crumpled graphene by the spray-drying method 
[159]. This 3D structure with the high specific area led to 

a small particle size and a more uniform distribution of the 
supported Pd catalyst. A 3D support was also shown in the 
study of graphene–carbon nitride hybrid [160]. In this study, 
an ultrasmall particle size of 3.6 nm was obtained, contrib-
uted by the anchoring effect from the support. Very recently, 
the low-cost chromium nitride (CrN) was reported to be uti-
lized as a support for the loading of epitaxial ultrathin Pt 
atomic layers [163]. Benefiting from the strong anchoring 
and electronic regulation of Pt atomic layers by CrN, the 
synthesized electrocatalyst demonstrated excellent activity 
with a mass activity of 5.17 A  mgPt

−1.
Besides, the strategy of doping was also deployed to 

the carbonaceous supports, including using boron (B) and 
nitrogen (N), showing enhanced properties for inducing 
the anchoring sites for improving catalyst distribution and 
electron transfer [158, 160]. Similar to the effect of the 
alloying, electronic metal–support interaction (EMSI) was 
used to describe the influence of catalytic activity from 
charge redistribution between the catalyst and support. For 
example, a Pd catalyst supported on  Mo2N was demon-
strated with a shifted binding energy in the XPS analysis, 
for which the electron density was enhanced through elec-
tron transfer from  Mo2N to Pd [164]. A similar phenom-
enon was also observed on PdCu supported on  WO2.72, but 
the electron transfer in this study was in the opposite direc-
tion from metal to support [165]. However, the negatively 
shifted peaks in the CO stripping measurement revealed 
that the ability to remove poisoning CO was boosted for 
both catalyst support combinations above.

Ceria  (CeO2) has also been studied as the catalyst sup-
port material due to its contribution to optimizing elec-
tron transfer and surface oxygen mobility [166]. The DFT 
calculation revealed its properties of fast oxygen mobil-
ity could cause overdosed oxygens on the Pd surface and 
assist removal of strongly adsorbed poison species [167]. 
Besides, the migration of oxygen also promoted the for-
mation of oxygen vacancies in the structure, producing 
high-active  Ce3+/Ce4+ redox pairs. As a result, the cata-
lytic performance was significantly enhanced by the elec-
tronic effect of the oxygen vacancies [168]. Zhang and co-
workers demonstrated the catalytic activity of Pd/Pd-CeO2 
hollow spheres toward FAOR [81]. In this study, the XPS 
analysis showed the presence of the two mentioned char-
acteristic oxidation states of Ce, and the successful forma-
tion of the fresh catalyst surface during the in situ elec-
trochemical reduction process. An excellent mass activity 
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(1.62 A  mgPd
−1), therefore, was recorded in  N2-purged 

aqueous 0.5 M HCOOH + 0.5 M  H2SO4 electrolyte.

4.1.9  Improvement of Catalyst Stability

The main mechanism of catalyst aging during FAOR is 
caused by poisoning and physical loss. The challenge 
of catalyst poisoning is caused by the adsorbed species 
on the catalyst surface, and gradually blocking its active 
sites [169]. Based on this fact, all the strategies discussed 
above, used to promote the direct oxidation and suppress 
the formation of poisoned intermediates (or facilitate their 
oxidation), can potentially promote catalyst stability.

In terms of physical loss, nanoparticles, the most common 
catalysts used for FAOR, suffer from dissolution, aggrega-
tion and Oswald ripening [99]. To overcome these chal-
lenges, various novel nanostructures have been proposed 
and synthesized to enhance catalytic stability. For example, 
different 2D nanosheets were reported in several studies 
[109, 116, 117, 170]. The TEM analysis showed these 2D 
morphologies could be essentially maintained after the long-
term cycling tests. Based on the same mechanism, some cat-
alysts with 3D nanostructures were also prepared with good 
durability for FAOR, such as nanoflowers [119], nanoshells 
[80] and networks [112]. Besides, some other nanostruc-
tures also show the ability to resist deformation, including 
nanotubes [95], nanoplates [111, 171] and nanospines [123].

Moreover, there are some other strategies that have been 
reported to increase the lifetime of FAOR catalysts. Yang 
and co-workers reported a stable Pd catalyst supported on 
a B-doped 3D carbon hybrid [160]. In this study, the cata-
lyst stabilization mechanism was investigated by compar-
ing the commercial Pd/C and the prepared catalyst using 
IL-TEM characterization. After 250 CV cycles of testing, 
many Pd particles were found detached from the carbon 
support for the Pd/C catalyst, and formed larger particles 
due to agglomeration and migration. However, only a slight 
change was observed in the particle size of the Pd/B-doped 
3D carbon hybrid. The researcher ascribed this improve-
ment to the abundant doping species and functional groups 
on the catalyst surface, which served as anchors to form 
strong metal–support interaction and enhanced durabil-
ity. Besides, metal-complex also shows the potential to 
stabilize FAOR catalysts. For example, the introduction 

of (2-[1-(Benzyloxyimino) ethyl] benzothiazole-к2N,N] 
dichloropalladium(II)) on the Pd catalyst was reported by 
EI-Nagar and co-workers [172]. This complex not only 
restricted the catalyst particle size growth during the syn-
thesis leading to large ECSA, but also act as a shell outside 
the Pd nanoparticles, preventing aggregation and dissolution 
of the active sites. Similar metal-complex assemblies were 
also reported in other studies [173, 174].

4.2  Preparation Methods of FAOR Electrocatalysts

The synthesis process determines the properties of the 
formed catalyst, thus playing a crucial role in the achieve-
ment of the designed strategies mentioned above. The 
reported methods can be generally classified into two 
methods: chemical reaction methods and electrochemical 
methods.

4.2.1  Chemical Reaction Methods

The chemical reaction method is the most common one 
for the preparation of FAOR catalysts. In a conventional 
process, catalyst precursors and reducing agents are mixed 
in an aqueous or organic solvent, and then catalysts are 
formed in solution or on support materials. Besides, extra 
assistance has also been applied in some studies, such as 
surfactant, microwave, heating and hydrothermal synthe-
sis, to control the catalyst structure or reaction process. 
The choice of the reductant is mainly dependent on two 
aspects. (i) The elements of the catalyst. It is crucial to 
consider whether the reductant used in the synthesis has 
the ability to reduce all precursors completely. (ii) The 
expected nanostructure of the catalyst. In order to obtain 
the designed nanostructure, the reductant and necessary 
assistance need to be considered [175]. Based on these 
points, the common reductants used in recent studies 
to prepare FAOR catalysts will be discussed, and their 
deployment proportion in the synthesis and their features 
are summarized in Fig. 10.

4.2.2  Sodium Borohydride

Sodium borohydride  (NaBH4) is a low-cost, strong reducing 
agent. A high temperature or long reaction time is usually 
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not required for the process of the  NaBH4 reduction method. 
Besides, as a strong reductant,  NaBH4 demonstrates the most 
extensive practice and ability to reduce the most common 
metal precursors to synthesize catalysts. This leads to a quar-
ter of the published works applying this method to prepare 
FAOR catalysts in recent studies.

NaBH4 is mainly employed in the reaction in the aqueous 
solution, and a buffer is usually required to create an alkaline 
environment. For example, in order to synthesize CNT-sup-
ported Pd for FAOR, Pd(NO3)2 as the precursor was first dis-
solved in water, and mixed with CNT by sonication, followed 
by adding  NaBH4 into the mixture [176]. Using  Na2CO3 solu-
tion as the buffer, Pd nanoparticles supported on three-dimen-
sional crumpled graphene were prepared by using  NaBH4 as 

the reducing agent [159]. A similar strategy was also applied 
to synthesize  Mo2N/rGO supported Pd catalysts for FAOR 
[164]. Benefiting from its strong reducibility,  NaBH4 shows 
an excellent ability in the reducing reactions, and thus has 
been widely used in the preparation of bi- or multimetallic 
catalysts [177–182]. In addition to the conventional carbon 
support, the preparation of catalysts on various other supports 
is also dominated by the  NaBH4 reduction method, such as 
reduced graphene oxide (rGO) [183], carbon nitride [184, 185] 
and carbon bowls [186]. Furthermore,  NaBH4 has also been 
used to modify commercial catalysts. Using  NaBH4 to reduce 
 Bi2O3, Bi was successfully introduced onto the surface of the 
commercial Pt/C catalyst [23]. The Bi-modified Pt/C shows an 
enhanced activity toward FAOR due to the “third body effect.”

Fig. 10  Proportion of the main reductants used for the synthesis of formic acid oxidation reaction (FAOR) catalysts and their main features
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The fast reaction rate allows researchers to prepare cata-
lysts easily, but also leads to some drawbacks, such as poor 
distribution and heavy agglomeration. Some studies have 
attempted to address these issues. Among different strate-
gies, surfactant assistance has received the most attention 
due to its low cost and easy integration with the  NaBH4 
reduction process. For example, a trimetallic catalyst 
PtAuRh was synthesized by a polyethylene glycol (PEG) 
assisted  NaBH4 reduction method [101]. Precise reaction 
control has yielded catalyst nanowire structures. In addi-
tion to the use of surfactants, there are some other attempts 
reported. Fan and co-workers reported the preparation of 
PtAu nanoparticles by an ultrasound-assisted synthesis 
method [133]. Ultrasonic treatment was adopted to help 
achieve a uniform and dense catalyst loading on support 
without using any surfactant. The “water-in-oil” micro-
emulsion method was also attempted in the fabrication of 
both Pt and Pd catalysts for FAOR. The water exists as the 
aqueous droplet in the oil phase, which can be used as indi-
vidual nanoreactors where the catalyst precursors are only 
reduced by  NaBH4 in these droplets. For example, by using 
cyclohexane solution as the oil phase, PdAu alloy nanopar-
ticles were prepared. In this study, the researchers presented 
the controlled metal particle size with narrow size distribu-
tion [187]. A similar strategy was also used to fabricate PtAu 
nanocrystal. The prepared particles showed an average size 
of 4.8 nm, with higher monodispersity and smaller size com-
pared with the catalyst formed in the aqueous solution [132]. 
Chemicals with a similar property to  NaBH4, such as  KBH4, 
have also been used to prepare FAOR catalysts [188, 189].

4.2.3  Polyol

Polyol has been widely reported in the preparation of elec-
trocatalysts because it can serve as both solvent and reducing 
agent, which also makes the polyol reduction method low 
cost and low toxicity.

Ethylene glycol (EG) is the most common polyol used 
as the reducing agent, and its practice is second only to the 
 NaBH4 in all reported chemical reduction methods. In its 
application, metal precursors are usually dissolved into EG 
and reduced at a temperature between 100 and 200 °C [190], 
for example, the preparation of PdCu on carbon support 
[191]. Metal precursors  PdCl2 and  CuCl2 were dissolved 
in EG to form a mixed solution, followed by adding carbon 

support the mixture. The mixture was further mixed with 
NaOH solution to adjust pH, then refluxed at 160 °C, which 
reduced precursors to micelles and produced the PdCu nano-
particles. The EG reduction method has been reported to 
form various catalysts, including the Pd [156, 192], Pt [86], 
PdBi [193] and PtPd [194], and on different carbonaceous 
supports, such as three-dimensional boron- and nitrogen-
co-doped graphene aerogels (BNG) [195], nitrogen-doped 
carbon [155], nitrogen and sulfur dual-doped graphene [161] 
and 3D carbon sheets [196]. In addition to Pt- and Pd-based 
catalysts, there are some attempts at the preparation of other 
metals for FAOR by using EG as the reagent, such as Rh 
supported on graphene [157].

EG can serve as the solvent, reducing agent and sur-
factant, which makes it a popular method to prepare metal 
catalysts; however, the high reaction temperature limits its 
application. Some other assistant techniques, therefore, 
were proposed to avoid the direct heating of chemicals. A 
classic example is the microwave-assisted method. This has 
been used to prepare PdPb nanoparticles [197] and Pd/FeP 
[150]. A CoP/C supported Pd catalyst was also synthesized 
by a similar method, in which the particle size was well 
controlled below 5 nm [152]. Besides, the preparation of 
Pd catalysts supported on  CeO2 [198],  Fe2P/C [199],  ZrO2/ 
MWCNT [200],  WO3/C [201] and Pt on N, B-3D graphene 
aerogel [202] has also been reported. In addition, the hydro-
thermal technique is another method that could be used to 
accelerate the EG reduction method process [116, 203, 204]. 
Polyols with similar properties, including triethylene glycol 
(TEG) [205] and polyethylene glycol (PEG) [112], have also 
been reported for preparing FAOR electrocatalysts.

Oleylamine (OAm) is another chemical with great proper-
ties as it can also act as a solvent, reductant and surfactant 
for synthesizing FAOR catalysts. Xi and co-workers dem-
onstrated the preparation of PdCu nanoparticles on  WO2.72 
nanorods for FAOR, by the OAm reduction method [165, 
206]. The application of OAm could also be conducted 
with co-surfactants to prepare catalysts with various struc-
tures. Using OAm as the main reducing agent and borane 
tributylamine complex (BTB) or oleic acid (OAc) as the 
co-surfactant, Pd, PdCu and PdCu/WO2.72 were successively 
prepared [207]. The PdCu nanoparticles synthesized in the 
presence of OAm showed ultrasmall size, only around 3 nm. 
Web-like platinum nanopentagons were obtained through 
the hydrothermal synthesis method using OAm and tri-n-
propylamine [111]. With hexamethylenetetramine (HMTA) 
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and cetyltrimethylammonium bromide (CTAB), a dodecahe-
dral PtCu nanocatalyst was formed using a similar strategy 
[89]. Other nanostructures, including nanowires [208, 209] 
and nanocubes [210], were also demonstrated.

The synthesis of FAOR catalysts has also been reported 
with other polyols. Ye and co-workers demonstrated the 
preparation of PtPdCu alloy nanoframes using DMF [88]. 
The metal precursors were first reduced in DMF with the 
assistance of capping agent polyvinylpyrrolidone (PVP) 
and KI to form concave nanocubes, followed by selectively 
etching to form nanoframes. Pd nanocubes and nanopar-
ticles with high-index facets were successfully obtained 
in an aqueous suspension of cetyltrimethylammonium 
bromide (CTAB) [121]. Besides, the ethanol reduction 
method has also been reported to synthesize PdO/Pd-CeO2 
hollow nanospheres [81] and core–shell Ru@AuPt nano-
catalysts [211]. Methanol, as another alcohol, was also 
used to synthesize 3D Pd nanoparticles [212]. In addition, 
PtAg with nanocoral structure has been prepared through 
a one-step solvothermal process [137] using 1-naphthol 
ethanol in an autoclave at 100 °C.

4.2.4  Ascorbic Acid (AA)

Ascorbic acid (AA) is another commonly used reducing 
agent in the preparation of FAOR electrocatalysts. Com-
pared to the reducing agents mentioned above, the tem-
perature required for the AA reduction method is lower.

The practice of AA in the catalyst preparation is often 
accompanied by various surfactants, as shown in Fig. 10. 
Xu and co-workers reported the synthesis of B, P-doping 
PdRu nanospines for FAOR with a mass activity of 1.71 
A  mgPd

−1 [123], which was developed from their previous 
work on PdRu nanospines [110]. They used AA to reduce 
 Na2PdCl4 at 90 °C with the assistance of KBr and Pluronic 
F127, followed by introducing B and P atoms through 
 NaBH4 and  NaH2PO2. During the reduction, the stronger 
coordination of  Br− relative to  Cl− caused the transforma-
tion of  PdBr4

2− from  PdCl4
2−, thus decreasing the reduc-

tion rate [213]. Meanwhile, Pluronic, which served as the 
growth-directing agent, has been widely reported to pre-
pare noble metal with branched nanostructure [214–216]. 
These play together to form the nanospine assemblies. 
 SnO2-decorated Pd catalysts with a cubic nanostructure 

were also prepared by reducing Pd precursor and  SnSO4 
with AA and a surfactant hexadecyltrimethylammonium 
bromide (CTAB) at 95 °C [147]. N-doped graphene sup-
ported PtAu/Pt intermetallic core/dendritic shell nanocrys-
tals were also demonstrated with the AA reduction method 
under the existence of sodium citrate and PVP in an oil 
bath [158]. This process has also been reported for the 
synthesis of star-like Au@Pt [217], Pd cubes [153, 218, 
219] and flower-like PdAu [220] as FAOR catalysts.

AA was also applied in organic solution for synthesizing 
FAOR catalysts, such as PtBi@Pd hexagonal nanoplates 
[221] and PtSnBi nanoplates [171] with OAm and octa-
decene (ODE) as both solvent and stabilizer [222], PdBi 
nanocatalyst [223], PdZn nanocrystals [224] and PdCu 
nanoclusters [225] in DMF.

4.2.5  Gas Reduction

In the preparation of FAOR catalysts, various gases have 
been reported to be used as the reducing agents. Among 
all gases used, hydrogen  (H2) is the most common reduc-
ing agent as it is clean, cheap and relatively simple to use. 
Besides, carbon monoxide (CO), benefiting from its ability 
as both the reducing and capping agent, is often applied to 
synthesize catalysts with nanosheet structures.

The application of hydrogen usually occurs together with 
high-temperature treatment, named the impregnation–reduc-
tion method. This process usually requires the use of support 
materials that can be immersed into the catalyst precursor 
suspension. This step allows precursors to be adsorbed onto 
the support and then is reduced under the high-temperature 
hydrogen atmosphere. Yang and co-workers reported the 
fabrication of nanoscaled Pd supported on boron-doped gra-
phene (BG)–carbon nitride (CN) [160]. The Pd precursor 
was mixed with the support BG-CN followed by hydrolyzing 
and crystallizing at 250 °C under He/H2 atmosphere. Due 
to the support–metal particle interaction, the  H2-reduced 
Pd nanoparticles showed small particle size and narrow 
size distribution. This led to an enhanced ECSA and high 
mass activity of 2.215 A  mgPd

−1 toward FAOR. An ordered 
PdBi nanoparticles catalyst has also been reported by using 
the  H2 impregnation–reduction method at 200 °C [139]. A 
similar strategy was also reported by Chen and co-workers 
to prepare structurally ordered PtCoNi ternary intermetallic 
electrocatalysts [226]. Other noble metals (including Ir [227] 
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and Rh [129]) and supports, such as carbon black [228, 229], 
graphene [230, 231], CNT [232–234] and  SiO2 [235], were 
also explored for the impregnation–reduction method.

In some studies, hydrogen can be omitted but only rely 
on high temperatures. Tayler and co-workers reported the 
preparation of PtIr nanoparticles for FAOR by using block 
copolymer templates. In this work, polystyrene-block-poly(4-
vinylpyridine) (PS-b-P4VP) micelles were first self-assem-
bled into a thin film as the template [236]. Pt and Ir precursors 
were then absorbed into the thin film, followed by thermal 
annealing under the argon atmosphere to reduce metal precur-
sors and remove templates. Benefiting from the pyridinium-
rich domains in the PS-b-P4VP, the prepared nanoparticles 
were confined to these domains, thus leading to the optimized 
particle distribution and controlled particle size (~ 4–13 nm).

Carbon monoxide (CO) is another common reducing 
agent. Compared with the  H2 reduction where the crystal 
obtained is in non-directional growth with spherical mor-
phology, CO is not only a strong reducing agent, but a sur-
face confining agent (soft template) because CO can strongly 
adsorb on the Pd {111} facet and consequently confine the 
growth of Pd along the < 111 > direction [237, 238]. As a 
consequence, the catalysts prepared by the CO reduction 
method usually show non-spherical shapes, such as nanow-
ires and nanosheets. Zhang and co-workers reported perfo-
rated Pd nanosheets prepared by the CO reduction method. 
Metal precursor  Na2PdCl4 was first dissolved into methanol. 
Argon gas was then introduced into the solution to remove 
the dissolved oxygen, followed by purging CO to reduce the 
precursor [109]. Benefiting from the surface confining effect 
of CO, the formed Pd catalyst showed a nanosheet structure 
with a thickness of only 1.5 nm. Based on this work, research-
ers from the same group further investigated the influence 
of the surfactant on the CO-reduced Pd nanosheets [170]. 
They found that the introduction of PVP did not change the 
morphology of Pd nanosheets. However, the remained PVP 
was challenging to be completely removed even after being 
washed with ethanol and deionized water. This study con-
cluded that strongly attached PVP suppressed the formic acid 
adsorption and electron transfer, suggesting the advantage of 
the surfactant-free preparation process [239, 240].

In order to control the morphology of nanoscaled Pd cata-
lysts to tune their performance toward FAOR, Pramanick 
and co-workers compared the fabricated Pd catalysts by 
using various reduction gases [105]. It was demonstrated 

that metal precursors reduced by hydrazine,  H2 and CO with 
the assistance of CTAB finally formed nanoparticles, nanow-
ires and nanosheets with a hexagonal structure, respectively.

4.2.6  Other Reducing Agents

In addition to the commonly used reducing agents discussed 
above, some other reducing agents and methods have also 
been reported and achieved excellent results.

The thermal decomposition of M(CO)6 (M = W or Mo) 
produces metal and CO, which are both served as the struc-
ture-directing agents for the preparation of a nanosheet 
structure. For example, nanoflowers assembled by Pd/
PdWCr nanosheets were formed in a DMF-based mixture 
with  Na2PdCl4, Cr(CH3COO)3, W(CO)6 and AA, follow-
ing by reduction under high temperature [119]. The results 
showed that W(CO)6 played an important role in forming 
the layered structure of nanosheets, and only aggregated 
nanocrystals were obtained without W(CO)6. Similarly, 
ultrathin PdCu nanosheets were synthesized by reducing 
metal precursors Pd(acac)2 and Cu(acac)2 into an oil bath 
at 60 °C with Mo(CO)6 as the reductant [108]. An ultrathin 
PdIrCu catalyst with a nanosheet-constructed flower was 
also prepared for FAOR through the mixture of metal pre-
cursors, AA and W(CO)6 in DMF [241].

The application of formaldehyde (HCHO) for the prepara-
tion of FAOR catalysts has also been reported and is often 
accompanied by the hydrothermal process and surfactants. 
As shown in Fig. 10, formaldehyde has been demonstrated 
selectively binding to some special crystal facets, such as 
Pd (111), thus promoting the directional crystal growth and 
the evolution of polyhedral structure [242, 243]. Qiu and 
co-workers reported the preparation of porous Pd nanosheets 
that were knitted by numerous interweaved ultrathin nanow-
ires [117]. The preparation was conducted with the hydro-
thermal process where the pH value of the precursor solu-
tion played a determined role in the structure of the formed 
catalysts. Chen and co-workers published a route to prepare 
core–shell CuPd@Pd tetrahedra with concave structures 
[77]. A porous PtAg nanocatalyst with an octahedral struc-
ture was also obtained by using HCHO as the reducing agent 
and polyallylamine hydrochloride (PAH) as the surfactant 
[87]. A similar method was also used to prepare PtPdRhAg 
octahedral nanoframes [90], polyhedral PtPd [242] and tet-
rahedral PdFe [84].
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The formic acid reduction method was reported from 
our research group for in situ growing Pt-based nanowires 
on the carbon paper surface to fabricate gas diffusion elec-
trodes (GDEs) in an aqueous solution at room temperature 
[93, 244, 245]. Regarding the formation of the nanowires, it 
might be attributed to two aspects: First, the slow reduction 
rate at room temperature provides the opportunity for ani-
sotropic growth [246]. The order of the crystal facet energy 
is (111) < (100) < (110) for Pt fcc structure, which facilitates 
the growth along with the closed-packed < 111 > direction 
following the lowest energy principle. Besides, during the 
formic acid reduction process, the working reducing agent 
is the formate anion that is produced from formic acid via 
the dehydration reaction. Previous studies reported that the 
dehydration of formic acid is favored on other Pt crystal fac-
ets compared with (111) facets. This thus assists the growth 
of Pt along the < 111 > direction to form the nanowire nano-
structure. Pt [247], PdIr [248], PdAu [249] and PtAu [250], 
Pd@Pt [251] catalysts were also prepared by using the same 
strategy. Very recently, the fabrication of a thin and porous 
catalyst layer based on self-assembled jointed Pd polyhedra 
was reported, which is achieved by a modified formic acid 
reduction method. The crystal growth was modulated by 
using  NO3− to control chemical reaction balance, and the 
formed Pd polyhedra provided highly active jointed inter-
faces and high-index facets, boosting their catalytic activity 
toward FAOR [252].

Furthermore, citric acid [253, 254], hydrazine [255–258], 
sodium citrate [259–261], sodium hypophosphite [262–264], 
carnitine [265], benzoic acid [266] and ethanolamine [267] 
have been reported as the reducing agents in recent studies 
to prepare FAOR electrocatalysts.

4.2.7  Electrochemical Methods

Electrochemical methods, including electro-reduction/depo-
sition and galvanic replacement, are also frequently used to 
synthesize FAOR electrocatalysts. The process of the elec-
trochemical methods is usually conducted under a related 
eco-friendly condition, which means no surfactant, reducing 
agent, high temperature and pressure are required, but can 
provide a rapid reaction rate.

4.2.8  Electroreduction and Electrodeposition

The electro-reduction/deposition method, which uses elec-
tricity as the “reducing agent,” has been applied to synthe-
size electrocatalysts composed of various elements. In the 
application, this method is often assisted by a template to 
achieve designed nanostructures.

Ding and co-workers reported the preparation of 
mesoporous Pd nanotube arrays using a dual-template-
assisted electrodeposition method. Aluminum anodic oxide 
(AAO) serving as the hard template was first deposited 
onto an Au layer, followed by adding phytantriol as the soft 
template [95]. The prepared dual template was placed in an 
electrolytic cell, and electrodeposited Pd. A group of experi-
ments were set up in this work to demonstrate the effect of 
the competitive relationship between radial dendrite growth 
and axial growth on the formation of nanotube structures. 
The presence of the soft phytantriol template generated a 
strong electrostatic field near the AAO wall, which elimi-
nated the radial dendrite sprout to form the thin nanotube 
wall. Besides, the crystal growth during the electrodeposi-
tion was randomly perturbed by the soft template, thus lead-
ing to the formation of lattice defects (such as grain bound-
ary and twin) and step edges for improving the catalytic 
activity [268]. Another template-assisted electrodeposition 
process was demonstrated by the same research group [118]. 
In this study, phytantriol was aged, and self-assembled into 
the lyotropic liquid–crystal (LLC) phase serving as the liq-
uid–crystal template. Pd precursor was then electrodeposited 
onto the template with different temperatures and potentials. 
With optimized conditions, the palladium membranes with 
periodically ordered mesopores could be obtained after 
removing LLC in ethanol. Nanoporous PtCuAu thin film 
with an ultralow Pt loading was obtained through a two-
step electrochemical method [269]. The formation of the 
continuous nanoporous structure was obtained by the co-
electrodeposition of Pt, Au and Cu, followed by a dealloying 
step for selective Cu removal. A dendritic Pt-Cu2O nano-
catalyst was prepared by sequentially electrodeposited Pt, 
and the dendritic-shaped nano-Cu2O was obtained through a 
dynamic hydrogen bubble template (DHBT) technique onto 
a glass carbon (GC) surface [270]. Furthermore, the synthe-
sis of PtBi [271], PtPd [272] and Ru@Pd [273] through the 
electrodeposition method was also reported.
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4.2.9  Galvanic Replacement

The galvanic replacement uses the difference in the standard 
reduction potential between two metals to create a redox 
pair, in which the metal with a high reduction potential acts 
as the oxidant and another element works as the reducing 
agent (template). This template, or called the sacrificial 
phase, is often first formed through the chemical reaction 
method mentioned above, followed by the galvanic replace-
ment reaction to prepare the designed catalyst. Various 
nanostructures of catalysts can be tuned by using different 
driving forces of galvanic replacement, which could be con-
trolled by adjusting the ratio of the template to the metal 
precursor [274]. Among all elements, Ag [275–277] and Cu 
[278, 279] are the most common sacrificial phases used for 
replacement.

A bimetallic PdCu homogeneous alloy catalyst with 
a multipod structure was obtained through the galvanic 
replacement between Cu seeds and  Pd2+, and simultane-
ous reduction of Cu ions to metallic Cu by oleylamine 
(OAm) reduction [136]. Using  CuO2 as the sacrificial tem-
plate, the preparation of Pt nanoparticles supported on 
 CeO2 nanoboxes was reported by the sequential galvanic 
replacement of  Cu+ with Ce and Pt in two subsequent 
steps [168]. A similar process was also applied to form 
PdCuCo catalysts for the FAOR based on two replace-
ments (Co to CuCo to PdCuCo) followed by electrochemi-
cal dealloying [280]. Chen and co-workers synthesized 
PdNi hollow nanocrystals with a dendritic shell through 
galvanic replacement [79]. The Ni nanoparticles were first 
obtained by the  NaBH4 reduction method. Then, unlike 
conventional replacement that is usually conducted under 
the protective gases, e.g.,  N2 and Ar to avoid oxidation, 
oxygen was introduced into the galvanic replacement pro-
cess in this study. The researchers noted that the presence 
of oxygen promoted the surface oxidation of the Ni tem-
plate to form NiO, leading to dendritic nanostructures. 
Besides, more bi- and tri-metal catalysts were prepared 
by using this method, such as PdAg hollow catalysts 
[91], PdFe [281] and PtNi nanoparticles [282], as well as 
PdAg@Pd core–shell nanotubes [106], Pt-PdFe [283] and 
PdCuFe nanoparticles [284].

4.2.10  Effects and Removal of Surfactants

Based on the various preparation methods discussed above, 
it is obvious that organic reagents have been widely applied 
for different purposes. For example, surfactants or capping 
agents, such as PVP and CTAB, could restrict the excessive 
growth or induce the directional growth of nanocatalysts, as 
demonstrated in Fig. 11a. Besides, oleylamine (OAm) can 
serve not only as the reducing agent, but as the solvent in 
other methods. However, the removal of organic reagents is 
a big challenge as they are strongly adsorbed on the catalyst 
surface. Among all reviewed studies, few researchers note 
the influence of these chemicals on the activity of the formed 
catalysts. A good example was demonstrated in a recent study 
conducted by Zhang and co-workers [170]. In their work, a 
comparison study was conducted to the Pd catalysts formed 
by the CO reduction method with PVP (UTL-Pd-P) and with-
out PVP (UTL-Pd) as the surfactant. With PVP, the catalyst 
showed a similar ECSA, but its peak current density for the 
FAOR is only 74.3% of that without PVP (Fig. 11b). The 
remained PVP on the catalyst surface suppressed the adsorp-
tion of formic acid as well as the electron transfer process.

The conventional process to remove organic reagents 
is heat treatment, while this method has many limitations 
as a high temperature usually leads to agglomeration and 
shape transformation, especially for extreme small nano-
particles or those ultrathin structures (such as nanowires, 
nanosheets) [285, 286]. Besides, a few attempts with other 
methods were reported, including UV-light cleaning [287] 
and chemical washing [108]. These studies show great 
potential, but systematic investigations are required to 
explore efficiency and expand their applications. There-
fore, the breakthroughs are necessary to develop the uni-
versal process to remove organic reagents but maintain 
the structure and properties of the formed nanocatalysts.

5  Meter Scale: Electrode, DFAFC and Stack

The catalysts with high catalytic activity and stability 
could be integrated into the DFAFC, which is a pivotal 
transition from theoretical catalyst design to tangible 
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real-world applications. This process involves several dis-
ciplines, such as the fabrication of catalyst electrodes and 
membrane electrode assemblies (MEA), optimization of 
mass transfer and system management. This section will 
discuss the recent studies about the DFAFC electrode and 
single cell, and explore the catalyst-device gap.

5.1  Configuration of DFAFC

The configuration structure of a DFAFC is similar to a 
hydrogen-PEMFC, as shown in Fig. 12. The primary compo-
nents include a membrane in the middle and two electrodes 
at both sides, which is named as the membrane electrode 
assembly (MEA). The electrochemical reactions occur at the 
two electrodes. Formic acid is fed at one electrode (anode), 
and catalytically oxidized into protons, electrons and car-
bon dioxide. Protons diffuse through the membrane while 
electrons travel through the external circuit and reach the 

other electrode (cathode). Meanwhile, an oxidant, such as 
oxygen or in the form of air, is fed into the cathode, where 
the oxygen reduction reaction (ORR) is completed and water 
is produced as a by-product. Both simultaneous reactions 
lead to the electrical current through the external circuit, 
thus providing power.

As mentioned, the catalyst electrodes in a DFAFC 
include an anode and cathode where FAOR reaction and 
ORR happen, respectively. The latter has received the 
most attention because it is also a sluggish reaction and 
a big challenge in the hydrogen-PEMFC, and a number 
of excellent review papers have well-discussed catalysts/
electrodes for ORR from different aspects [289–292]. In 
the DFAFC, the slow reaction of FAOR in the anode plays 
a decisive role in the fuel cell performance. Therefore, the 
research and development of DFAFC electrodes pay atten-
tion to the pursuit of the high-performance anode from the 
very beginning.

Fig. 11  The effect of surfactants. a Influence of surfactants to nanostructures and electrochemical surface area (ECSA) [288]. b Comparison of 
CV curves for the Pd catalysts synthesized with/without PVP modification [170]
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5.2  Electrode and MEA Fabrication

Designing catalysts with excellent activity for FAOR is the 
foundation for the DFAFC, while the electrode and MEA 
fabrication process play the essential role for making a 

high-performance device. Unlike the thin catalyst film used 
in the rotate disk electrode (RDE) electrochemical measure-
ment with the liquid electrolyte where the results are highly 
determined by the intrinsic catalytic activity of catalysts, 
the performance of a catalyst electrode is influenced by 

Fig. 12  General operating principle of a direct formic acid fuel cell (DFAFC) and the present state of the anode/cathode (catalyst layer (CL) and 
diffusion layer (DL)) and membrane
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many factors. For example, an electrode usually requires a 
much higher catalyst loading amount, a few milligrams per 
square centimeter compared to the microgram level in the 
RDE measurement; thus, the catalyst layer in the electrode 
is much thicker. This results in a poor catalyst utilization, so 
the mass transport behavior must be considered during the 
practical operation [293].

Mass transport behavior in the fuel cell is primarily 
influenced by the gas diffusion layer. Unfortunately, to our 
knowledge, a gas diffusion layer specifically developed for 
DFAFCs has yet to be reported. However, we can refer to 
research on mass transport in hydrogen-PEMFCs. Cur-
rently, gas diffusion layers used in fuel cells are mainly car-
bon spheres supported by fibers, with the catalyst loaded 
onto the surface. A wide range of commercial products is 
already available, covering various pore sizes, thicknesses 
and conductivity. Meanwhile, research is ongoing to further 
optimize the balance between reaction kinetics and mass 
transport [294]. For example, Kim and co-workers reported 
a novel inverse opal structure [295]. This ordered micropo-
rous diffusion layer features open and interconnected pore 
architecture, thus showing a good effective porosity. During 
the fuel cell test, the fabricated electrode demonstrated effec-
tive mass transfer, and satisfactory water management, while 
the concentration loss was minimized. The (interfacial) 
resistance is another important factor that mainly depends on 
the materials and assembly process. Numerical calculations 
indicate that replacing traditional carbon materials with met-
als can result in lower ohmic resistance [296]. However, its 
corrosion issues, particularly in acidic environments, need 
to be addressed.

After selecting a suitable diffusion layer, the next step is 
fabrication of DFAFC electrodes and MEAs, in which sev-
eral approaches have been developed, as shown in Fig. 13. 
Among them, the catalyst-coated substrate (CCS) method 
based on the direct spraying technique is the most com-
mon technique for fabricating MEAs. With this approach, 
the catalyst is first prepared by different methods, such as 
wet chemical reduction or impregnation–reduction method. 
(Details have been discussed in the above section.) A sepa-
ration step is required in most studies after that, including 
centrifugation, sedimentation and drying, to obtain dry cata-
lyst powder. The formed catalyst is then mixed with proton 
conducting ionomer solution in organic solvent, e.g., isopro-
pyl alcohol (IPA), to prepare catalyst ink, followed by being 
painted or sprayed onto a carbon paper GDL surface, and 

finally hot-pressed with a cathode and membrane to build a 
MEA [297]. However, this painting/spraying-CCS method 
suffers from the complex process of depositing catalyst 
powder onto the substrate. Many steps, such as centrifuga-
tion, drying and sonication, have also a big impact on cata-
lysts prepared by changing their nanostructure, promoting 
agglomeration and causing low catalyst utilization. To opti-
mize the MEA fabrication process, more facile approaches 
have been developed. Electrodeposition, due to its advan-
tages of fast preparation of self-supported electrodes without 
binder, received great attention [298]. By adjusting electro-
plating parameters (such as potential and deposition time), 
catalyst particles with controllable size and distribution were 
directly deposited onto a carbon fiber paper and used as the 
anode [299]. Moreover, the in situ growth methods, such as 
formic acid reduction and hydrothermal process, have been 
reported to fabricate electrodes for hydrogen-PEMFCs [245] 
and electrolyzers [300], and can reduce the metal precursors 
directly onto the substrate. Very recently reported studies 
also demonstrated an implementation of the in situ growth 
method for the fabrication of DFAFC electrodes [244, 252].

Another approach, catalyst-coated membrane (CCM), 
was considered as the 2nd generation fuel cell fabrication 
technique, and has been commonly applied in PEMFC 
manufacture. Several attempts of CCM in DFAFCs were 
also reported in recent research [152, 193, 301]. As shown 
in Fig. 13, instead of painting/spraying the catalyst ink 
onto a GDL, the catalyst ink was directly painted/sprayed 
onto a polymer electrolyte membrane surface, leading to 
close contact between the catalyst layer and the membrane. 
Compared with the CCS method for fabricating MEAs, 
the CCM fabrication method is considered that has great 
advantages in reducing catalyst loadings, and optimizing the 
efficiency, power density as well as ohmic/charge transfer 
resistance [302]. However, due to the lack of deep investi-
gation in optimizing the electrode structure and assembly 
process for DFAFC application, the power density values 
reported did not significantly differ from the performance 
of CCS-DFAFCs, as shown in Table 1. This could result 
from the much high catalyst loading amount compared to 
the hydrogen fuel cell; thus, it requires better catalyst dis-
persion on the substrate; otherwise, this can lead to many 
negative effects, for example, suppressing the benefits of 
CCM and blocking the mass transport within the electrode. 
The catalyst dispersion is highly relative to the depositing 
process (such as drop, paint and spray), but, unfortunately, 
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very limited studies have been published for optimizing the 
DFAFC performance from this aspect [303].

5.3  State‑of‑the‑Art of DFAFCs

Figure 14 presents the peak power densities of the DFAFCs 
reported in recently published studies (detailed data listed 
in Table 1), alongside with the catalyst loading with their 
respective anodes. A variety of catalysts, with differing 
compositions, structures and loadings, have been studied. 
It has been over two decades since the inception of the first 
DFAFC introduced in 2002. And, only in the past decade, 
more than 800 works have been reported on enhancing 
FAOR, asserting that their results could further the progress 
of DFAFC. However, as illustrated in Fig. 14 neither the 
power output nor the usage of precious metals in DFAFC 
seems to have experienced significant optimization in the 
last ten years. The peak power density in the MEA test for 
single DFAFCs today normally stands at below 200 mW 
 cm−2, under working temperatures of 60–80 °C. However, 
there is significant variability in this value, with one reported 
at 316 mW  cm−2 reported in 2016 and one at 321 mW  cm−2 
in 2022 [304, 305]. To the best of our knowledge, the high-
est value recorded to date has reached 550 mW  cm−2 [306]. 
This variation can be attributed to the absence of a standard 
testing procedure, resulting in diverse testing conditions at 
present.

The common anode catalyst loading is around 
0.5–2 mg   cm−2, although instances with ultralow load-
ings reported at 10 μg  cm−2 for PdCuAu and 15 μg  cm−2 
for PdAu. The diffusion layer at the anode side typically 
employed hydrophilic carbon cloth to ensure adequate mass 
transport, owing to the usage of diluted formic acid (typi-
cally 3 M) as fuel which possesses unsatisfactory perme-
ability. In terms of membrane, Nafion® 115 and 117 are 
commonly used. Despite thick membranes compromising 
proton conductivity, they ensure reduced fuel crossover and 
robust mechanical strength, especially in the acidic organic 
solvent environments as in the DFAFC. The configuration 
of the cathode is similar to that of the hydrogen-PEMFC, 
adopting Pt/C electrocatalysts on hydrophobic carbon paper, 
but it requires a relatively higher catalyst loading (usually 
2–4 mg  cm−2) in the DFAFC. The majority of studies still 
employed pure oxygen at the cathode to overcome the reac-
tion barrier of the sluggish ORR. It can be seen that, even 
a high catalyst loading (4 mg  cm−2) was usually used at the 
cathode side to ensure a better kinetic activity toward ORR, 
the power density values recorded in HCOOH/Air are still 
slightly lower compared to those using HCOOH/O2. This 
indicates that besides FAOR as the rate-determining step, 
the mass transport improvement at the cathode side might 
also be another approach to further improve the power per-
formance of DFAFCs.

In recent studies of liquid fuel cells, DMFCs, direct etha-
nol fuel cells (DEFCs) and DFAFCs constitute over 80% of 

Fig. 13  Schematic for the electrodes and MEA fabrication
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the literature [322, 323]. Figure 15 compares their perfor-
mance and catalyst usage, along with hydrogen-PEMFCs. 
It is evident that all three types of liquid fuel cells require 
relatively high catalyst loadings due to the sluggish oxida-
tion of organic molecules. Among them, performance of 
the reported DMFCs is slightly lower than the DFAFCs, 
largely due to significant methanol crossover. The C–C bond 
in ethanol makes complete oxidation challenging, resulting 
in the currently low performance of DEFCs. Additionally, 
compared to hydrogen-PEMFCs, all liquid fuel cells are 
disadvantaged in both performance and catalyst usage. The 
next section offers several proposals for further optimizing 
DFAFCs.

A fuel cell stack comprises numerous single MEAs, and 
is a crucial component for the commercialization of fuel 

cells. Unfortunately, as DFAFC research is still in its early 
stages, no commercial products have been reported to our 
knowledge; only a limited number of laboratory-scale stacks 
have been documented. A research paper published in 2006 
reported a hybrid power source based on a DFAFC stack for 
a laptop computer. The stack was comprised of 15 single 
cells, weighing 650 g and delivered a power output of 21 
W [39]. A similar class DFAFC stack was demonstrated 
in 2012, where the total active area was optimized to 500 
 cm2 (10 MEAs with a total noble metal of 2 g). Its stability 
was evaluated by a 10-day continuous lifetime test at room 
temperature [341]. A particularly notable study was pub-
lished in 2018, in which a stack was composed of 35 MEAs, 
with an active area of 50  cm2 (Fig. 16). The stack was about 
1.77 L (156 × 116 × 98  mm3), and contained 2.1 g Bi-Pt and 

Table 1  Performance comparison of the DFAFCs reported in recent studies

Node catalyst Anode loading /
mg  cm−2

Fabrication 
method

Testing tem-
perature / °C

Cathode gas Peak power density 
/ mW  cm−2

References

PtPbBi/@PtBi 0.5 CCS 80 O2 161 [307]
m-PtTe nanotrepang 0.5 CCS 80 O2 171 [308]
Jointed Pd polyhedral 1 CCS 60 Air 202 [252]
Atomic Pt clusters 0.005 CCS 80 O2 145 [309]
NPG-PdCuAu 0.01 CCS 80 O2 93.2 [310]
Pd@Pt 2 CCS 25 O2 146.2 [251]
PtBiPbNiCo hexagonal nanoplates 0.5 CCS 80 O2 321.2 [304]
PtCu NW 2 CCS 75 Air 116.3 [244]
Pd/nanoporous Au 0.015 CCS 80 O2 85.4 [311]
PdFe 0.5 CCM 70 O2 160 [297]
PdFe 1.2 CCM 65 Air 137 [301]
Pd/TiO2 0.5 CCM 30 O2 255 [312]
Pd/MWCNT 0.52 CCS 30 O2 112.32 [313]
PtCu/carbon capsule 2.4 CCS 80 O2 121 [314]
PtZn/carbon shell 1.8 CCS 80 O2 107 [315]
Bi-Pt 1.2 CCS 60 Air 191 [23]
Bi-PtAu 3 CCS 60 Air 135 [180]
Pt 2 CCS 70 O2 42 [298]
PdBi 1.2 CCM 65 Air 20 [193]
Pd/MWCNT 0.52 CCS 30 O2 61.88 [316]
Pd-CNNF-G 0.5 CCM 60 O2 35 [257]
Pd-CoP 0.3 CCM 30 O2 150 [152]
Pd-B/C 1.2 CCM 30 O2 316 [305]
Pd/C 2 CCS 60 O2 91 [317]
Pd/Fu-TiO2-C 0.5 CCS 25 O2 40 [318]
PdAuIr/C-Sb2O5·SnO2 1 CCS 100 O2 94 [319]
NPG-PtBi 0.02 CCS 40 Air 80 [320]
NPG-Pt 0.013 CCM 40 Air 61 [321]
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5.25 g Pt black. A maximum power density output of 300 
W was recorded at 60 °C when supplying 6 M formic acid 
(50 mL  min−1) at the anode and humidified air (5 L  min−1) 
at the cathode [23].

5.4  Catalyst‑Device Gap

Electrooxidation of formic acid is the most crucial process 
in the DFAFC. Thus, most of efforts have been focused on 
the improvement of the catalytic activity of anodic catalysts. 
In the studies reported, most of the formed electrocatalysts 
demonstrated excellent catalytic performance toward FAOR 
in the electrochemical measurement, and their authors pre-
dicted the prepared catalysts would show great performance 
in the application of DFAFCs. A literature survey about the 
research in this area (Fig. 17a) shows more than 60 papers 
were published annually within the last decade, proposing 

new strategies to boost FAOR, such as preparation of novel 
nanostructures, alloy and supports; however, less than 5% 
reports really made their catalysts to electrodes and tested 
their performance in the MEA in fuel cells. As a conse-
quence, no significant progress has been reported and the 
challenges of high catalyst loading and low power density 
faced by the DFAFC technology is still not addressed.

The gap between the development of catalysts and elec-
trodes is also reflected in the comparison of the performance 
improvement of the reported catalysts to commercial cata-
lysts (Fig. 17b). Most studies use the thin film RDE meas-
urement in liquid electrolytes to evaluate the intrinsic activ-
ity of their prepared catalysts. Through the calculation of 
average mass activity from recently reported catalysts, a 2.7- 
to 12.5-folder improvement value was achieved compared to 
the commercial catalysts for the FAOR catalytic activity by 
the RDE measurement. In some studies, extremely high mass 

Fig. 14  Performance of the recently reported DFAFCs. a Comparison of the MEAs with different catalysts at the anodes. b Development with 
time in the recently reported DFAFCs (solid cube representing the tests under air, and circle for the tests under oxygen) in terms of their peak 
power densities. References are listed in Table 1
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activity was recorded, which was even hundreds of times 
higher than that of benchmarks used in their report [127, 
129, 133]. On the other hand, the improvement of the power 
density of single fuel cells reported in the MEA test is much 
smaller. Only a 0.7- to 2.5-folder improvement ratio was 
obtained when using the as-prepared catalysts in the anode 
electrodes. As compared with the two graphs in Fig. 17b, 
catalysts tested in the MEAs all demonstrated much lower 
enhancement compared with their mass activity recorded in 
the RDE measurement. This big difference between the RDE 
measurement and MEA test for the enhancement monitoring 

is mainly caused by the more complex conditions of the 
catalysts in practical electrodes during the fuel cell opera-
tion, so the results obtained by the RDE measurement in the 
liquid electrolyte cannot accurately reflect their behavior in 
a single cell [74]. In the electrochemical measurement rep-
resented by RDE, the catalyst loading required is ultralow 
(usually ~ 20 µg  cm−2) [342]; thus, only a thin film catalyst 
layer is formed. However, applying catalysts to electrodes 
usually need a 100-folder higher catalyst loading in DFAFC 
electrodes. In addition to possible agglomeration, as men-
tioned above, this also leads to a very thick catalyst layer 
(can reach 50 µm at 2 mg  cm−2), resulting in an extremely 
high mass transport resistance [343]. Besides, a thick cata-
lyst layer tends to impede the uniform distribution of the 
ionomer and fails to provide a substantial number of triple 
phase boundaries (TPBs) that are essential for electrochemi-
cal reactions. These factors all cause a dramatic decrease in 
catalytic utilization, and suppression of transport of both 
formic acid fuel and the produced  CO2 during the fuel cell 
operation.

Based on the aforementioned considerations, we propose 
that a high-performing DFAFC should exhibit the following 
characteristics:

High-performance catalysts: An ideal catalyst for 
DFAFCs should demonstrate superior electrocatalytic activ-
ity specifically for FAOR, ensuring rapid and efficient fuel 
conversion. Beyond its activity, the catalyst must be selec-
tive, targeting the desired reaction pathway and minimizing 
side reactions. Its performance should remain stable over 
prolonged exposure to formic acid and high temperature, 
resisting any form of degradation or poisoning. A significant 
number of achievements have been made in this aspect as 

Fig. 15  Comparison of the peak power density and total cata-
lyst loading of different types of fuel cells. References: Hydrogen: 
H1[324], H2[325], H3[326], H4[327], H5[328], H6[329]; Metha‑
nol: M1[330], M2[331], M3[332], M4[333], M5[334], M6[335]; 
Ethanol: E1[336], E2[337], E3[338], E4[339], E5[340]; Formic 
acid: F1[307], F2[308], F3[23], F4[309], F5[310], F6[251], F7[304], 
F8[305], F9[311], F10[297], F11[301], F12[312]

Fig. 16  DFAFC stack. a Detailed photo. b Performance curve [23]
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discussed in last section. Moreover, the catalyst layer needs 
to be thin, optimizing the distribution of ionomer, thus offer-
ing more TPBs.

Electrode structure with optimized mass transport: The 
diffusion of reactants and products in a DFAFC is pivotal 
for its performance, requiring an optimized porosity for 
effective fuel transport and swift removal of products like 
carbon dioxide. The hydrophobicity of this layer needs to 
strike a balance, promoting gas repelling while facilitating 
necessary mass transport. In the context of durability, the 
total electrode structure should exhibit mechanical sta-
bility, resisting severe degradation over time. Some early 
studies about the mass transfer have been reported, includ-
ing temperature [344], pores in the catalyst layer [345], 
diffusion media structure [346] and flow channel [347]. 
However, more comprehensive and in-depth investiga-
tions are expected to predict the optimal structure based 

on the practical operation requirement in application in 
the future.

Acid-resistant low-crossover membrane: Membranes 
stand, as a crucial component in DFAFCs, serves as the 
separator between the anode and the cathode, ensuring that 
the fuel on the anode side does not directly mix with the 
oxygen on the cathode side, while simultaneously allowing 
the passage of ions to maintain electrical neutrality. Given 
the corrosive nature of the formic acid, its material should 
inherently resist chemical degradation. Even under an envi-
ronment of a high formic acid concentration, the membrane 
should retain its mechanical integrity and resist dissolution, 
swelling or even rupture. Currently reported studies about 
DFAFC, in order to maintain mechanical strength and mini-
mize the fuel crossover, typically employ thick membranes, 
such as Nafion® 117 (183 µm). However, this approach 
substantially increases proton conduction resistance. 

Fig. 17  The gap between formic acid oxidation (FAOR) catalysts and real tests in direct formic acid fuel cells (DFAFCs). a Number of 
the research studies reported. b Comparison of the enhancement reported for the activity of the catalysts measured in the half-cell measurement 
in the liquid electrolyte (FAOR) and power density of the practical electrodes in the single-cell test (DFAFC), showing as a ratio of the reported 
catalysts to the benchmark catalysts
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Consequently, an ideal membrane should be as thin as pos-
sible. Based on our knowledge, there is no study specifically 
aiming at optimizing membranes for DFAFCs that has been 
published to date. This review, therefore, does not delve into 
the issue of the membrane.

6  Perspective

To further develop DFAFC and be used as an efficient power 
source in the industry, several challenges cannot be over-
looked, as shown in Fig. 18.

6.1  Low Power Output

One of the major challenges with a DFAFC is the relatively 
low power energy output. Formic acid has a high-energy 
density, which stands out in comparison with other poten-
tial fuels and serves as one of the foundational motivations 
for pursuing the DFAFC technology. This high-energy 
density theoretically suggests that DFAFCs could achieve 

impressive high power outputs. However, during practical 
demonstrations, the power outputs of DFAFCs typically only 
reached about 200 mW  cm−2. For comparison, hydrogen-
PEMFC can achieve more than 1 W  cm−2 [348]. One of 
the critical reasons for this discrepancy is that the current 
DFAFC can only utilize diluted formic acid, implying that 
the majority of fuel pumped into the anode is water, leading 
to low fuel energy density. For example, DFAFCs typically 
use 3 M formic acid, which is diluted, reducing the energy 
density from 1770 to around 200 Wh  L−1 (Fig. 1). This is 
significantly lower than the energy density of other fuels, 
such as approximately 1500 Wh  L−1 for 700 bar  H2, render-
ing DFAFCs less competitive.

The impact of high concentrations of formic acid on cata-
lysts is not yet fully understood. One of the primary con-
cerns with concentrated formic acid is catalyst poisoning. 
Most of the development and electrochemical measurements 
reported on catalysts for DFAFCs have been conducted 
using low concentrations of formic acid. This means that the 
understanding of the behavior, efficiency and longevity of 
these catalysts in the presence of concentrated formic acid is 
still in its infancy. High concentrations of formic acid might 

Fig. 18  Schematic illustration represents the perspectives of the future development of the direct formic acid fuel cell (DFAFC)
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also potentially alter the dominant reaction pathways; thus, 
there is a heightened risk of undesirable side reactions that 
produce species which can adsorb onto the catalyst surface 
and block its active sites. Furthermore, it is unclear whether 
concentrated formic acid can lead to rapid physical degrada-
tion of the catalyst. With a higher fuel concentration, the rate 
of reactions at the catalyst surface might increase. While this 
could potentially lead to higher immediate power outputs, 
it might also result in accelerated wear and tear of the cata-
lyst over time, reducing its lifespan. The corrosive nature 
of formic acid can also erode the substrate and the binder 
materials, leading to a loss of catalyst material or reduced 
surface area available for the reactions. This requires further 
studies to answer these questions.

Another significant factor preventing the use of more 
concentrated formic acid in DFAFCs is the membrane. 
Its performance and stability are vital for the efficient 
operation of the fuel cell. However, when exposed to high 
concentrations of formic acid, the membrane encounters 
fatal issues. Formic acid, as a strong organic solvent 
with corrosive properties, can interact with the polymer 
matrix of the membrane, leading to accelerated chemi-
cal degradation, especially at elevated temperatures. This 
interaction can lead to the dissolution and swelling of 
the membrane material, and even cleavage of polymer 
chains. This can alter the membrane’s ionic conductiv-
ity, increase its permeability and lead to a reduction in 
its mechanical strength. Over time, these adverse effects 
can culminate in the thinning or the formation of pinholes 
in the membrane, ultimately leading to breaches [349]. 
Excessive fuel crossover can result in the FAOR happen-
ing at the cathode, which not only wastes fuel but also 
degrades the cathode’s performance over time. A more 
severe compromise in the membrane integrity could lead 
to direct contact between the anode and cathode, resulting 
in a short-circuiting of the entire DFAFC system. Thus, 
using diluted formic acid becomes a pragmatic approach. 
It mitigates the direct exposure of the membrane to high 
concentrations of formic acid, thus extending its lifespan 
and maintaining the overall efficiency of the DFAFC. 
Therefore, it is necessary to develop more resilient and 
chemically stable membrane materials that can withstand 
higher concentrations of formic acid, potentially unlock-
ing greater efficiencies and power densities for DFAFC.

In addition to using highly concentrated formic acid, 
another potential approach is to use concentrated formate 

salts, such as HCOOK and HCOONa. This could effec-
tively avoid the issues associated with highly concentrated 
acid. Some studies have already utilized diluted formate 
salts as a direct fuel supply for DFAFCs [350]. However, 
formate fuels typically require the addition of KOH [95], 
creating an alkaline environment, which presents a greater 
challenge. On the one hand, current research indicates that 
the peak current for FAOR is lower in alkaline conditions 
[61], necessitating the development of tailored electrocata-
lysts. On the other hand, the PEM must be replaced with 
an anion exchange membrane (AEM) due to the lack of 
protons, yet most AEMs are still at the experimental stage 
and lack sufficient durability. Consequently, this approach 
faces a long development pathway.

6.2  Limited Catalyst Loading

Structural engineering shows a significant effect on the 
catalytic performance of a catalyst through controlling the 
nanostructures during the synthesis. As shown in Fig. 6, 
the activity of catalysts toward FAOR is critically affected 
by their ECSA. However, the studies by the RDE meas-
urement usually use a very low catalyst loading to main-
tain good dispersion and prevent aggregation to obtain 
intrinsic activities. This will become a challenge when 
incorporating such catalysts to fabricate electrodes. The 
fabrication of electrodes needs significant quantities of 
catalysts using intricate procedures. In such scenarios, 
the benefits of the superior catalysts and the issue of their 
retention within the practical electrodes become some-
what unclear. This is one of the major challenges that 
prevent the scale-up of the catalysts with novel structures 
to achieve a high-performance electrode, thus resulting in 
the commonly known catalyst-device gap. In hydrogen-
PEMFCs, some progress has been achieved to bridge 
this gap between the highly active electrocatalysts and 
the poor performance device, including both the catalyst 
evaluation technique, such as with the half-cell test using 
the floating electrode technique and the gas diffusion 
electrode test approaches [244, 351], and the distribu-
tion of proton conducting ionomer on the catalyst inter-
face by nitrogen-doping catalyst support, catalyst surface 
modification and hydrophobic feature control of the cata-
lyst layer structure [352]. These techniques might also 
be explored for their applications in the development of 
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novel electrocatalysts for DFAFCs. Besides, direct growth 
methods show some possibility for addressing this gap 
issue, but fine control over the structure of the fabricated 
catalyst layer can still not meet the practical application 
requirements. This demands further investigations in both 
the process control and the fundamental understanding 
to really understand the formed catalyst structure-perfor-
mance relationship.

6.3  Diffusion Layer and Mass Transfer

For fuel cells operated at a high current density region, the 
efficiency of mass transport determines the performance 
of DFAFCs. Without adequate fuel supply to the catalyst 
layer, even the most exceptional catalyst would be ren-
dered ineffective. It is widely known that the challenge of 
oxygen mass transfer resistance in the cathode of PEMFCs 
is complex, comprising bulk/molecular, Knudsen and cata-
lyst/ionomer interfacial transport resistances [98]. How-
ever, the mass transport in DFAFCs might be even more 
complicated. This needs consideration not only on the dif-
fusion of formic acid molecules, but also the expulsion of 
the produced carbon dioxide. Contrary to alcohols, which 
can readily permeate hydrophobic diffusion layers even at 
low concentrations, formic acid exhibits poor permeability 
at low concentrations, thus heavily relies on superhydro-
philic diffusion layers. Despite some studies have initiated 
discussions on the fuel transport and bubble distribution 
[345, 346], research focused on diffusion layers for formic 
acid remains in its nascent stages. Recent advancements 
in numerical simulation techniques [347], especially in 
the development of machine learning-based optimization, 
offer promising avenues for designing optimized transfer 
channels, highlighting the significant potential for break-
throughs in this domain.

6.4  Development of DFAFC Stack

Stacking is an indispensable step toward the commercializa-
tion of DFAFCs, while it has not received enough attention. 
Whereas this can be ascribed to the numerous challenges 
that individual MEAs still face, system-level research often 
aligns more closely with commercial applications. Advance-
ments in this domain can attract increased attention, which 

in turn can spur research into individual MEAs and various 
subsystems. A prime example of this is the DMFC. Despite 
the many challenges associated with using methanol as a 
fuel, there are still some instances of its successful com-
mercialization. DMFC stacks have been employed in vari-
ous areas, encouraging researchers and industries to invest 
more efforts into the study of different components, such as 
the development of catalysts and membranes. This virtu-
ous cycle offers a valuable pathway for the progression of 
DFAFCs.

6.5  Establishment of a Standard Testing Protocol

The current testing conditions for DFAFCs are highly 
diverse, leading to a wide variation in the power outputs 
obtained. This makes it challenging to compare the results 
from different studies. There is an urgent requirement to 
establish a standard testing protocol. For instance, in 
the case of hydrogen-PEMFCs, the DoE (Department of 
Energy, USA) has released the standard “Procedure for 
Performing PEM Single-Cell Testing.” This not only lays 
a foundation for evaluating the performance of different 
MEAs, but also aids in setting further research targets. 
Such a move can provide researchers worldwide with a 
clear research direction, subsequently enabling targeted 
optimization of DFAFCs.

7  Conclusions

Formic acid has been demonstrated to be a new class of 
safety fuel for the fuel cell, attributed to its properties of 
easy storage and transport, high cell potential and low 
crossover. The research on formic acid over the past cen-
tury has provided insights into the mechanism of FAO. 
Dual parallel pathways, as a widely accepted mechanism, 
prove the presence of adsorbed CO as an intermedi-
ate during the oxidation process. This is considered the 
main cause of catalyst poisoning. With the help of mod-
ern in situ/operando and simulation technologies, more 
intermediates have been identified, among which formate 
is considered an important intermediate. The adsorption 
of its two forms (monodentate and bidentate) was found 
can regulate the reaction rate, while related research is 
gradually improving. Based on the understating of the 
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mechanism, many studies were reported to propose strat-
egies to improve the catalytic activity toward FAOR, and 
develop new synthesis routes to obtain designed catalysts. 
Significant progress has been achieved from three main 
aspects. (i) Optimizing electronic structure through the 
preparation of alloys; (ii) obtaining high surface area 
through the design of nanostructures; and (iii) enhanc-
ing stability through the application of supports. Benefit-
ing from these achievements, formic acid was proposed 
for use in fuel cells, and made great progress, including 
the development of high-performance catalysts and suc-
cessful demonstration of the DFAFC stack. However, to 
promote the commercialization and be used as an indus-
trial-scale fuel cell, several challenges in different scales 
cannot be overlooked; in particular, the power output of 
DFAFC is relatively low, as it restricts its wider applica-
tion. Exploring the use of higher concentration formic acid 
fuel emerges as a potential strategy. This approach places 
more demanding requirements on catalyst development to 
meet the increased challenges of catalyst poisoning and 
stability.
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