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Note S1 How the proximity sensing layer works in non-contact mode 

The movement of the human body can induce spatial electrostatic induction with dynamic non-

contact sensing characteristics. Initially, the human body and the frictional electronic skin are 

separated. Once the human body approaches the frictional electronic skin, the potential 

difference between the electrode layer and the ground induces electron flow, thereby generating 

a voltage signal. As the human body begins to move away from the frictional electronic skin, 

electrons flow in the opposite direction from the ground to the electrode layer, completing a full 

signal generation cycle. 

Note S2 Training set, validation set and test set for 1DCNN 

In terms of data preparation, we strictly divide the training set, validation set and test set to 

ensure the generalization ability and reliability of the model. The training set accounts for 70% 

of the data, which is used for the optimization of model weights; the validation set accounts for 

15%, which is used for real-time assessment of the model's performance during the training 

process to prevent overfitting; and the test set accounts for 15%, which is used for the final 

assessment of the model's practical application effect. After the data is processed by 1D CNN, 

five values are finally output, representing the probability of each of the five sleep states, and 

the state with the highest probability is determined as the current sleep state. 

Note S3 Rapid temperature recovery mechanism 

In our temperature sensing system, carriers in the hydrogel play a key role in the temperature 

change process. Specifically, ion transport in hydrogels is a thermally activated process, i.e., as 

the temperature increases, the ion transport rate increases rapidly, which leads to a rapid 

decrease in the resistance of the hydrogel. Correspondingly, when the temperature decreases, 
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the ion transport rate decreases rapidly, resulting in a rapid increase in the resistance of the 

hydrogel. The increase and decrease in temperature also triggers a microscopic phase transition 

within the hydrogel. This phase change process helps to improve the response and recovery 

speed of the temperature sensor. When the temperature changes, the microstructure within the 

hydrogel adapts to the temperature difference and responds quickly or recovers quickly. 

Supplementary Figures and Tables 

 

Fig. S1 Flow chart for the preparation of hydrogel-based pressure-temperature sensors 

 

Fig. S2 Stress-strain curves of hydrogels 

 

Fig. S3 (A) Bending test for sensing patches. (B) Twisting test on sensing patches 
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Fig. S4 Water retention test of hydrogels over eight days 

 

 

Fig. S5 Weight change over eight days for glycerin-containing and non-glycerin-free hydrogels 

 

 

Fig. S6 After freeze-drying, the porous structure inside the hydrogel 
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Fig. S7 Preparation of hydrophobic layer TPU film with micro-cone structures 

 

Fig. S8 Performance comparison of the sensor with previously reported works [S9-S17] 

 

Fig. S9 SEM image characterization of spherical microstructures on the surface of hydrogels 

 

Fig. S10 Schematic diagram of the working principle of a hydrogel-based pressure sensor 
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Fig. S11 Hydrogel-based pressure sensor ~16500 cycles stability test 

 

Fig. S12 Stable performance of the pressure sensor at different temperatures 

 

Fig. S13 Hydrogel-based pressure sensors are used to detect pressure changes at different angles 

of bending of the wrist. (A) Signal change at 30° wrist flexion. (B) Signal change at 60° wrist 

flexion. (C) Signal change at 90° wrist flexion 

 

Fig. S14 The process of downward transfer when a 0.5 ml drop of water falls on the 

hydrophobic side 
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Fig. S15 SEM characterization of the microstructure of the prepared proximity sensing layer. 

(A) SEM image of the Ag/nanofiber electrode layer. (B-C) SEM images of the spherical MXene 

on the surface of the proximity sensing layer 

 

Fig. S16 XRD analysis of proximity sensing layers 

 

Fig. S17 (A) PEDOT:PSS mixed with MXene non-contact detection distance of 1.2m. (B) 

PEDOT:PSS mixed with MXene and Graphene with a non-contact detection distance of 1 m 

 

Fig. S18 Cyclic stability of the proximity sensing layer after 4000 crash-separation friction tests 
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Fig. S19 (A) Effect of humidity on the sensitivity of pressure sensors. (B) Effect of humidity 

on the voltage signal of the proximity sensing layer. (C) Effect of humidity on the sensitivity of 

the temperature sensing layer 

 

Fig. S20 (A) Hemolysis rate test. (B) Mouse skin red and swollen test. (C) Cytotoxicity test. 

(D) Cell viability test 

 

Fig. S21 Optical microscopy image of the “seamless” interface between the sensing patch and 

the pillow cloth 
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Fig. S22 The human sleep monitoring system detects the temperature of the human body in 

different states of lying down and getting up 

 

Fig. S23 The human sleep monitoring system is able to accurately capture and record changes 

in signals when snoring 

Table S1 Comparison of performance of capacitive sensors based on different nanomaterials 

Sensing material 
Sensitivity 

(kPa-1) 

Maximum 

detection 

pressure (kPa) 

Response 

time (ms) 
Stability Refs. 

CNTs/Pure ethanol/Ecoflex 2.13 3 100 100 [S1] 

AgNWs/PDMS 0.831 10 30 10000 [S2] 

PVA/PDMS/Salt 0.18 50 52 1000 [S3] 

PDMS/PVDF/BaTiO3 5 50 25 10000 [S4] 

AgNWs/graphene 1.9 20 100 1000 [S5] 

Ecoflex/PEN/ITO 1.277 0.4 100 10000 [S6] 

PVA/KOH/KI/GL 0.3199 65 80 1400 [S7] 

PVA/H3PO4 20.98 37.5 30 6000 [S8] 
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