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HIGHLIGHTS

• The  Mo2C modified carbon nanosheets produce a graphene wave structure to form localized charges and further enhance the N-doping 
effect.

• The optimal sample shows a Tafel slope as low as 60.6 mV dec−1 and high durability up to 10 h in acidic media.

ABSTRACT Charge engineering of carbon materials with many 
defects shows great potential in electrocatalysis, and molybdenum 
carbide  (Mo2C) is one of the noble-metal-free electrocatalysts 
with the most potential. Herein, we study the  Mo2C on pyridinic  
nitrogen-doped defective carbon sheets (MoNCs) as catalysts for the 
hydrogen evolution reaction. Theoretical calculations imply that the 
introduction of  Mo2C produces a graphene wave structure, which 
in some senses behaves like N doping to form localized charges. 
Being an active electrocatalyst, MoNCs demonstrate a Tafel slope as  
low as 60.6 mV dec−1 and high durability of up to 10 h in acidic 
media. Besides charge engineering, plentiful defects and hierarchi-
cal morphology also contribute to good performance. This work 
underlines the importance of charge engineering to boost catalytic 
performance.
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1 Introduction

With the intensification of global energy consumption and 
severe environmental deterioration, sustainable and environ-
mentally friendly approaches have aroused increasing inter-
est [1]. Among ongoing attempts to produce clean fuels, the 
electrolysis of water to produce  H2 is attractive [2–6]. The 
key to this problem is to seek an effective electrocatalyst to 
minimize the overpotential for hydrogen evolution reaction 
(HER). To replace Pt-based noble metals, abundant earth 
catalysts have received great attention [7–11]. Because of 
their similar electronic structure and catalytic behaviors to 
Pt [12], Mo-based compounds [13, 14], especially molyb-
denum carbide [15], have drawn tremendous fascination. On 
the other hand, the electronic structure significantly affects 
the interaction between the catalyst surface and reactants 
[4, 16–20]. Charge engineering is an important strategy to 
regulate the surface/interface behaviors involved in catalysis. 
For example, Sasaki et al. [21] found that carbide ligand 
changed the d-electron configuration of  Mo2C to moderate 
Mo–H binding energy, leading to enhanced-HER activity.

Recently, researchers have paid great attention to nitro-
gen-doped defective carbon materials for electrocatalysis 
[22–26]. The defects not only play an important role in the 
adsorption/desorption during reaction, but also change the 
electrical conductivity of the catalysts to regulate the elec-
tronic structure [27]. However, related work on the appli-
cation of  MO2C to pyridinic N-doped carbon is limited. 
Furthermore, for gas-involving electrocatalysis, the hierar-
chical morphology is also important to optimize the gas/
mass transport [16].

Considering the above-mentioned observations,  Mo2C@ 
defect-rich N-doped carbon nanosheets (MoNCs) were 
developed. The theoretical results imply that the introduc-
tion of  Mo2C produces a graphene wave structure, which to 
a degree behaves like N doping to form localized charges. 
As expected, the catalyst shows high-electrocatalytic HER 
activity with a Tafel slope as low as 60.6 mV dec−1 and 
stability up to 10 h in acidic media, making it one of the 
best  Mo2C electrocatalysts. The multifold design, includ-
ing charge engineering and nanoarchitecture construction, 
contributes to the HER performance.

2  Experimental Section

2.1  Materials

Ammonium heptamolybdate ((NH4)6Mo7O24·4H2O), mela-
mine  (C3H6N6), sucrose, and sulfuric acid  (H2SO4, 98%) 
were bought from Tianjin Kaida Chemical Factory, Tian-
jin Kermel Chemical Factory, Sinopharm Chemical Rea-
gent Co., Ltd., and Beijing Chemical Factory, respectively. 
Nafion solution (5 wt.%, Dupont D520) and Pt/C (20 wt.%, 
JM) were bought from Shanghai Hesen Electric Co., Ltd.

2.2  Synthesis

Graphitic carbon nitride (g-C3N4) was prepared by simple 
calcination. A certain quantity of melamine was placed in 
an alumina crucible (100 mL) with a cover and then heated 
at 550 °C for 4 h in a muffle furnace (2.3 °C min−1). Subse-
quently, the obtained light-yellow solid product was milled 
into a powder state and sealed for later use. Next, ammonium 
heptamolybdate, sucrose, and g-C3N4 were mixed together 
(1:2:2, mass ratio). The homogeneous mixture was placed in 
an alumina crucible and then transferred to the center of the 
tube furnace. After pumping and purging the system three 
times with  N2 flow, it was heated to 800 °C (3 °C min−1) 
and maintained at 800 °C for 6 h under flowing  N2. The 
obtained black sample, called MoNCs  (Mo2C@N-doped 
carbon sheets; the mass ratio of g-C3N4 and ammonium hep-
tamolybdate is 2), was then ground to a fine powder without 
further treatment. For comparison, MoNCs-0, MoNCs-1, 
and MoNCs-5 (the mass ratio of g-C3N4 and ammonium 
heptamolybdate is 0, 1, 5), as counterparts, were also pre-
pared in the same way.

2.3  Materials Characterization

X-ray diffraction (XRD) was applied on Siemens D-5005 
with Cu Kα radiation (2θ = 0.02° per step). X-ray photo-
electron spectra (XPS) were performed with an Al Kα 
source (Thermo Scientific ESCALAB Ka+). The transmis-
sion electron microscope (TEM) operated on JEM-2100 at 
200 kV. The nitrogen adsorption isotherm (ASAP 2020 at 
77 K, USA) was recorded by the Brunauer–Emmett–Teller 
(BET) equation and Barrett–Joyner–Halenda (BJH) model. 
The Raman spectrum was measured on LabRAM HR800. 
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Thermogravimetric analysis (TGA) was carried out on an 
SDT Q600 (TA) instrument under air flow (10 °C min−1) up 
to 700 °C. The product transformed according to the follow-
ing reaction:  Mo2C + 4O2 = 2MoO3 + CO2 [28].

2.4  Computational Details

In this work, nanosheets with  Mo2C nanoparticles have been 
modeled as single-layer graphene in a 6 × 6 × 1 supercell, and 
 Mo2C in a 5 × 5 × 2 supercell. The cell and atomic coordi-
nates are fully relaxed based on the density functional theory 
implemented in the Vienna Ab-initio Simulation Package 
(VASP) v5.3.5 [29–31] with grimme-D2 correction [32], 
where the PBE functional [33] and PAW pseudopoten-
tial [34, 35] have been used. The criteria of convergence 
of energy and force have been taken as 1 × 10−6 eV and 
0.01 eV Å−1, respectively, the energy cutoff is set to 450 eV, 
and a 3 × 3×1 k-mesh is used to sample the Brillouin zone 
[36, 37]. The parameters are comparable to those in Refs. 
[36, 37]. In the core-level shift (CLS) calculation, the final 
state approximation has been adopted.

2.5  Electrochemical Measurements

The HER measurements were performed in a typical three-
electrode cell in 0.5 M  H2SO4 using a CHI 660e electro-
chemical station (Shanghai Chenhua Co., China) at room 
temperature. A glassy carbon electrode (GCE) 8 mm in 
diameter, a saturated calomel electrode (SCE), and a graph-
ite rod electrode were used as the working electrode, refer-
ence electrode, and counter electrode, respectively. All of the 
potentials were converted to the potential versus the revers-
ible hydrogen electrode (RHE) according to E (RHE) = E 
(SCE) + 0.241 + 0.059 pH. The working electrode was fab-
ricated as follows: A catalyst ink was prepared by dispers-
ing 6 mg of catalyst into a mixed solution including 40 μL 
Nafion solution and 1 mL of 3:1 v/v water/isopropanol via 
sonication for at least 1 h to form a homogeneous ink. Then, 
20 μL of well-dispersed catalyst ink was drop-casted on the 
glassy carbon electrode, producing a ~ 0.23 mg cm−2 load-
ing for all samples, and the modified GC electrode was then 
dried at 50 °C in a drying oven for the following test. Before 
data collection, all working electrodes were pretreated by 
cyclic voltammetric scanning in 0.5 M  H2SO4 solution to 
activate the electrodes. The electrochemical impedance 

spectroscopy (EIS) measurements were tested in 0.5 M 
 H2SO4 solution with open-circuit voltage at a frequency 
from 10 mHz to 100 kHz at an amplitude of 5 mV.

3  Results and Discussion

We combined  Mo2C and N-doped graphene and theoretically 
simulated its atomic structure with first-principles calcula-
tion. Due to the limitation of computations, we used a slab 
of  Mo2C covered with one layer of graphene to simulate part 
of the interface region of  Mo2C and graphene. The vacuum 
was added in the direction perpendicular to the graphene 
plane, and periodicity was kept in the other two directions. 
According to the literature [37, 38], the β-Mo2C is a meta-
stable structure at high temperature, where the Mo atoms 
are packed in a hexagonal close-packed structure, and the 
C atoms randomly occupy half of the octahedral interstitial 
sites (Fig. 1). As noted, the  Mo2C@N-doped graphene has 
two types of structures: The Mo-terminated surface adhered 
to the graphene, and the C-terminated surface adhered to the 
graphene. We found that in Mo-terminated  Mo2C@N-doped 
graphene, the graphene was approximately 2.22 Å above 
the  Mo2C (Fig. 1b). Interestingly, the phenomenon of a gra-
phene wave was observed, which should be attributed to 
the mismatch of the graphene and  Mo2C unit cell. We have 
reason to believe that the graphene wave could introduce 
more localized charge density on some C sites, as indicated 
by the yellow circles (Fig. 1f), leading to the redistribution 
of electrons on the graphene and formation of a gradient 
of charge density to increase active sites. For C-terminated 
 Mo2C@N-doped graphene, the graphene is found to be self-
reorganized in the bulk defect region and approximately 3.96 
Å above  Mo2C (Fig. 1d).

Here, a  Mo2C slab covered with one layer of graphene 
was used to simulate the real case, in which  Mo2C nanopar-
ticles are enclosed in nanosheets. Given that the nanoparti-
cles have various shapes and sizes, the structural change and 
charge localization on the graphene should be more signifi-
cant, as the nanoparticles have curved and highly indexed 
surfaces. On the other hand, with the increase in the number 
of nanosheets, the effect weakens. However, for a nanopar-
ticle with two or three layers of nanosheets, the predicted 
phenomena should occur and contribute to the catalysis. 
Moreover, to clarify the influence of  Mo2C on N-doped car-
bon sheets (NCS) further, we computed the N1s CLS within 
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Fig. 1  The a top and b side views of Mo-terminated  Mo2C@N-doped graphene with pyridinic N dopant; the c top and d side views of C-ter-
minated  Mo2C@N-doped graphene with pyridinic N dopant; the charge distribution of e the unpaired electron of pyridinic N-doped graphene; 
and f Mo-terminated  Mo2C@N-doped graphene with pyridinic N dopant. The N atom is circled in red. The locations of charge accumulation on 
graphene are circled in yellow. The figures are plotted with VESTA [39]
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pyridinic N-doped graphene and  Mo2C@N-doped graphene. 
For Mo-terminated  Mo2C@N-doped graphene, the CLS 
moves forward to a higher energy (Figs. 1e, f and S1). The 
N1s core level deepens, which means that N achieved more 
electrons localized on the N atom. This will strengthen the 
N-doping effect and further promote the HER activity. Apart 
from these, we also calculated three more types of N dop-
ing in the  Mo2C region within  Mo2C@N-doped graphene, 
as shown in Fig. S1b–d. All three types of structures yield 
rather smaller binding energies for N1s core electrons.

The synthesis route of MoNCs is shown in Fig. 2a. The 
carbonization of sucrose and the decomposition of ammo-
nium heptamolybdate and g-C3N4 were integrated, ren-
dering the simultaneous formation of uniformly dispersed 
 Mo2C and N-doped carbon nanosheets. The synthesis avoids 
sophisticated or hazardous processes and expensive precur-
sors. Figure 2b clearly displays the diffraction peaks at 34.4°, 

38.0°, and 39.4°, attributed to the (100), (002), and (101) 
plane of hexagonal β-Mo2C (PDF# 35-0787), respectively 
[40]. No additional peaks were observed except for the 
(002) diffraction peak of graphite at ~ 26° [41]. Then, the  N2 
adsorption–desorption measurement (Fig. 2c) was carried 
out to investigate the specific surface area and pore struc-
ture. The typical type-IV isotherm curve is noted accord-
ing to the Brunauer–Deming–Deming–Teller classification 
[42], verifying the presence of mesopores [43]. The BET 
surface area (SBET) is evaluated as 216.4 m2 g−1. The pore 
size distribution curve indicates the presence of micropores 
and mesopores, which are probably caused by the released 
molecules  (H2O,  CO2,  C2N2

+,  C3N2
+,  C3N3

+, etc.) during 
the carbonization of sucrose [44, 45] and the decomposition 
of g-C3N4 [46]. There is no doubt that the hierarchically 
porous structure will supply adequate diffusion passageways 
to strengthen the mass transfer [47].
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In Fig. 3a, b, the typical TEM and HRTEM images 
reveal that MoNCs mainly consisted of a large amount of 
1–3-nm  Mo2C (inset in Fig. 3b) particles wrapped in thin 
carbon nanosheets. The lattice spacing is ~ 0.23 nm, corre-
sponding to the distance between the (101) crystal planes 
of β-Mo2C. The thin carbon nanosheets (3–5 graphene 
layers) with lattice spacing of ~ 0.34 nm not only inhibit 
the agglomeration of  Mo2C, but also guarantee the fast 
electron transfer and effective exposure of active phases. 
Massive defects were also noted (white arrows). The ele-
mental mapping (Fig. 3c–f) result indicates that the Mo, N, 
and C atoms were homogeneously distributed. The Raman 
spectrum (Fig. 3g) also displays the typical D-band and 
G-band at 1341 and 1583 cm−1, respectively. The D1, D3, 
D4, and G peaks were fitted [48]. The high value (2.16) 
of ID1/IG implies abundant defects, which are believed 
to enhance the electrocatalytic activity [49]. The  Mo2C 

content in MoNCs determined by TGA is ~ 50.0 wt.% (Fig. 
S2). X-ray photoelectron spectroscopy (XPS) was used to 
further characterize the composition and chemical state of 
each element. As seen in Fig. S3, the survey XPS spectrum 
of the MoNCs shows obvious signals of elemental Mo, 
C, and N, which is consistent with the elemental map-
ping result above. The Mo 3d XPS spectrum (Fig. 3h) 
was deconvoluted into six peaks, corresponding to  Mo2+ 
(228.6 and 232.4 eV),  Mo4+ (229.3 and 232.8 eV), and 
 Mo6+ (233.2 and 235.9 eV) species [50].  Mo2+ comes 
from  Mo2C, which serves as the active sites for HER [51, 
52]. In Fig. S4, the main peak at 284.6 eV in the decon-
voluted C1s spectrum implies that graphite carbon is the 
majority species [53]. The N1s XPS spectrum was decon-
voluted into two peaks at 401.3 and 398.6 eV (Fig. 3i), 
corresponding to the quaternary N (20%) and pyridinic N 
(80%), respectively. The high pyridinic N content will be 
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favorable for HER [54]. Moreover, the element contents in 
the MoNCs were calculated and summarized in Table S2.

The electrocatalytic HER performance was investigated. 
For comparison, control samples synthesized with different 
mass ratios of starting materials were also tested. In Fig. 4a, 
the MoNCs show a low onset overpotential of 83 mV and the 
lowest overpotential of 157 mV @ 10 mA cm−2, exhibiting 
the best HER activity among the four control samples. In 
addition, the influence of loading mass on the HER activity 
was also studied (Fig. S5). The linear sweep voltammetry 
(LSV) curves of the MoNCs are also provided when the 
loading mass increased from 0.115 to 0.460 mg cm−2, indi-
cating the enhanced-HER performance with more loadings. 
To demonstrate the HER mechanism, the linear sections of 
the Tafel plots were fitted to the Tafel equation (η = a + b log 

(j), where a is the intercept, b is the Tafel slope, and j is the 
current density), as shown in Fig. 4b. The MoNCs achieve 
the smallest Tafel slope of 60.6 mV dec−1 among the four 
samples (Table S3), suggesting that HER can likely proceed 
through the Volmer–Heyrovsky mechanism [55]. Remarka-
bly, the exchange current density (j0) for MoNCs, calculated 
by extrapolating the Tafel plot to an overpotential of 0 mV 
(Fig. S6), was also the highest (2.65 × 10−2 mA cm−2). Com-
pared to the previously reported  Mo2C-based non-precious-
metal catalysts, the excellent HER performance makes our 
sample one of the most promising electrocatalysts (Fig. 4c, 
Table S3). MoNCs show almost no current loss after 1000 
CV cycles (Fig.  4e). Furthermore, the current density 
exhibits a negligible degeneration at a static overpotential 
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of 157 mV after 10 h of constant operation, verifying the 
high durability.

The effective electrochemical surface area (ECSA) was 
evaluated by the electrochemical double-layer capacitance 
(EDLC, Cdl) (Figs. 4d, 5). The Cdl measured at 0.10 V for 
MoNCs was the highest (14.31 mF cm−2), indicating more 
active sites. The EIS was also tested (Fig. S7). The Nyquist 
plot of the MoNCs displays a small semicircle among them, 
suggesting lower impedance to accelerate the charge transfer 
during HER. Furthermore, the turnover frequency (TOF) of 
MoNCs was estimated [56] (see more details from support-
ing information). In Fig. S8, the MoNCs achieved a TOF 
of 0.07 and 1.12 s−1 at overpotential of 150 and 250 mV, 
respectively. The values were much higher than those of 
other catalysts, indicating more active sites.

4  Conclusion

In summary, we illustrate charge engineering of  Mo2C@ 
defect-rich N-doped carbon nanosheets for electrocatalytic 
 H2 evolution. The calculation result indicates that the intro-
duction of  Mo2C induces a graphene wave structure, which 
behaves like N doping to form localized charges for the first 
time. The thin carbon nanosheets, combined with plenti-
ful defects, facilitate the fast electron transfer and effective 
exposure of active phases. As a result, the sample displays a 
Tafel slope as low as 60.6 mV dec−1 and high durability up 
to 10 h in acidic media, featuring excellent HER catalytic 
activity and stability. Our work emphasizes the importance 
of charge engineering in electrocatalysis.
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