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HIGHLIGHTS

• This review describes various types of low-power memristors, demonstrating their potential for a wide range of applications.

• This review summarizes low-power memristors for multi-level storage, digital logic, and neuromorphic computing, emphasizing their 
use as artificial synapses and neurons in artificial neural network, convolutional neural network, and spiking neural network, along 
with 1T1R and 1S1R crossbar array designs.

• Further exploration is essential to overcome limitations and unlock the full potential of low-power memristors for in-memory comput-
ing and AI.

ABSTRACT As an emerging memory 
device, memristor shows great potential 
in neuromorphic computing applica-
tions due to its advantage of low power 
consumption. This review paper focuses 
on the application of low-power-based 
memristors in various aspects. The con-
cept and structure of memristor devices 
are introduced. The selection of func-
tional materials for low-power memris-
tors is discussed, including ion transport 
materials, phase change materials, mag-
netoresistive materials, and ferroelectric 
materials. Two common types of memris-
tor arrays, 1T1R and 1S1R crossbar arrays are introduced, and physical diagrams of edge computing memristor chips are discussed in detail. 
Potential applications of low-power memristors in advanced multi-value storage, digital logic gates, and analogue neuromorphic computing 
are summarized. Furthermore, the future challenges and outlook of neuromorphic computing based on memristor are deeply discussed.
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1 Introduction

Von Neumann architecture is the basic architecture of mod-
ern computers, proposed by mathematician John von Neu-
mann in 1945. Its core idea is to store program instructions 
and data in the same memory block and process the data by 
reading and executing these instructions through a central 
processing unit (CPU). This architecture’s primary benefit 
lies in its adaptability and malleability, allowing the com-
puter to undertake various tasks by altering programs stored 
in its memory [1]. However, von Neumann structure has its 
inherent flaws, where data storage and computing share the 
same channel. Such working mode limits processing speed 
of computer, especially if it uses dynamic random access 
memory (DRAM) as its primary memory. DRAM access 
not only requires high energy consumption, but also requires 
periodic refreshing. During data processing, the processor 
has to run continuously even while waiting for data, leading 
to additional energy consumption. As a result, the so-called 
“energy wall” and “speed wall” are formed.

As internet technology rapidly evolves, the demand for 
artificial intelligence is experiencing exponential growth. 
Artificial intelligence has achieved numerous breakthroughs 
in various domains, including image processing, natu-
ral language processing, and big data analysis [2–4]. The 
amount of data that need to be trained and processed are also 
increasing daily. To address this problem, complex hardware 
systems consisting of numerous CPUs and graphics process-
ing units (GPUs) have been developed. As semiconductor 
technology is approaching its physical limits, Moore’s law 
is also facing failure [5, 6], and researchers must examine 
the constraints of von Neumann architecture through the lens 
of computer architecture and software algorithms. In this 
regard, researchers have proposed various approaches, such 
as the introduction of multi-level caches [7], the introduc-
tion of data streaming [8], and the proposal of in-memory 
computing. Among emerging technologies, in-memory 
computing, first conceptualized by W.H. Kautz in 1969 [9], 
seamlessly integrates computational functions within stor-
age, drastically reducing the delay for data transfer. This 
integration further leads to reduced power consumption 
and improved efficiency and is hailed as the next-generation 
computer architecture poised to transcend the barriers of 
von Neumann architecture. In recent years, there has been a 
swift advancement in the development of novel non-volatile 

memory and in-memory computing technology. With high 
speed, low power consumption and high-density integra-
tion capability, memristor is becoming a research hotspot 
in in-memory computing fields. Inspired by human brain, 
memristors with weights updating functions are considered 
ideal for developing in-memory computing and artificial 
intelligence [10].

This paper summarizes the research progress of memris-
tors in the field of in-memory computing and artificial intel-
ligence from the perspective of power consumption, cov-
ering the aspects of the device structure, mechanism, and 
key performance parameters of memristors, as well as the 
introduction of memristor arrays. Then, the low-power func-
tional materials applied in memristors are categorized and 
discussed. Afterward, the review focuses on discussion of 
reducing power consumption in several compelling applica-
tion areas of memristors, especially in multi-bit memories, 
logic gates, and neuromorphic computing. By summarizing 
the principles of memristors applied therein, the low-power 
implementation mechanism is well analyzed. Furthermore, 
the existing research progress, future challenges and outlook 
are discussed in detail. Figure 1 shows the overview of this 
review article. Figure 2a shows the von Neumann architec-
ture diagrams mentioned above. Figure 2b shows a schematic 
diagram of the “energy wall” and the “speed wall”.

1.1  Memristor

The concept of memristor was first proposed by Professor 
Chua in 1971, which was the fourth basic passive circuit 
element after resistance, capacitance, and inductance, fill-
ing the gap in the description of the relationship between 
electric charge and magnetic flux [11]. Its mathematical 
model is expressed as the ratio of magnetic flux to electric 
charge,M = d�∕dq , the resistance is determined by the mag-
netic flux. It is a nonlinear resistance element with memory 
characteristics. However, in actual physical systems, direct 
coupling of magnetic flux and charge is not easy to achieve, 
and ideal memristors remain more at the theoretical level. 
Although many devices do not strictly meet the definition 
of ideal memristors, they exhibit similar characteristics, 
especially the non-volatile characteristic and adjustability. 
The realization of generalized memristors is usually based 
on ion migration, the formation and breaking of conductive 
filaments (CFs), phase change or magnetic spin effects, etc. 
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Fig. 1  Overview of memristors for low-power storage and computing: including devices, materials, artificial synapses and neurons, and neural 
networks. From the device level, resistive random access memory (RRAM), phase change random access memory (PCRAM), magnetoresistive 
random access memory (MRAM) and ferroelectric device are potential low-power neuromorphic computing electronics. From materials system 
level, ion transport materials, phase change materials, magnetoresistive materials and ferroelectric materials are main functional material layers 
for low-power memristors. These novel memristors could be used to act as artificial synapses and neurons for low-power neuromorphic comput-
ing, including artificial neural network (ANN), spiking neural network (SNN) and convolutional neural network (CNN)

Fig. 2  a Schematic illustration of the segregation structure. b Schematic representation of the “energy wall” and “speed wall” facing the von 
Neumann structure. c Schematic diagram of RRAM device structure. d Schematic diagram of PCRAM device structure. e Schematic diagram of 
MRAM device structure. f Schematic diagram of ferroelectric device structure
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RRAM, PCRAM, MRAM and ferroelectric memristor have 
emerged.

RRAM is one of the typical representatives of memristors. 
Its resistance state is determined by the distribution of oxy-
gen vacancies or CFs inside the material. The resistance can 
be changed by voltage pulses and be retained after remov-
ing pulses. The structure is usually divided into electrodes 
and functional layers, presenting a sandwich structure of 
electrode-functional layer-electrode, as shown in Fig. 2c.

PCRAM uses phase change materials between crystal-
line and amorphous states to achieve resistance change. The 
material can be heated to different states under different cur-
rent pulses, with low resistance in the crystalline state and 
high resistance in the amorphous state, thereby achieving 
data writing and storage. The PCRAM device structure is 
generally mushroom-shaped, with a wider top electrode, 
a narrower bottom electrode, and a layer of phase change 
material in the middle. The device structure is shown in 
Fig. 2d.

MRAM uses the non-volatile magnetic materials and spin 
electronics for storage. It stores data through a magnetic tun-
nel junction (MTJ), which consists of two layers of magnetic 
material and an insulating layer. One magnetic layer is fixed, 
and the magnetization direction of the other free layer can be 
changed by current. The resistance state of the MTJ repre-
sents the data, with low resistance corresponding to parallel 
magnetization and high resistance corresponding to antipar-
allel magnetization. The device structure is shown in Fig. 2e.

Different from early MRAM relying on magnetic field 
induced switching, spin-transfer torque (STT) technology 
directly changes the magnetization direction of the free layer 
through current, reducing power consumption and suitable 
for high-density storage. Spin-transfer torque random access 
memory (STT-RAM) is developed based on STT technol-
ogy. Similarly, there is spin–orbit torque random access 
memory (SOT-RAM) that uses the spin–orbit torque (SOT) 
effect.

Ferroelectric memristor uses the polarization character-
istics of ferroelectric materials to regulate the resistance 
state of the device. Ferroelectric materials have reversible 
polarization direction. When an external electric field is 
applied, the polarization direction of ferroelectric materials 
can be flipped, thereby changing the barrier height or inter-
face charge distribution. This change affects the tunneling 
behavior of the current and the conductivity characteristics 

and ultimately manifests as different resistance states, as 
shown in Fig. 2f.

1.2  Functional Materials

According to the common memristor types, memristor 
functional layer materials can be divided into ion transport 
materials, phase change materials, magnetoresistive mate-
rials and ferroelectric materials, as shown in Fig. 3. Ion 
transport materials are mainly targeted at RRAM. In recent 
years, research in this area has mainly focused on inorganic 
and organic materials, specifically oxides, perovskites, two-
dimensional (2D) materials and organic materials. Inorganic 
oxides have excellent performance and mature preparation 
technology and are currently widely used, but traditional 
binary oxides still have problems such as large leakage 
current and large power consumption. By doping or con-
structing multi-layer oxide heterojunctions, the formation 
and dissolution of conductive filaments can be improved 
for low-power-consumption storage. Perovskites and two-
dimensional materials have unique structures, so they have 
excellent ionic conductivity and low-voltage operation [12, 
13, 14, 15]. Organic materials are regarded as strong com-
petitors for the next generation of memory due to their flex-
ibility, adjustability and low-cost potential, especially in 
flexible devices [16]. Typical research performance reports 
are summarized in Table 1.

Phase change materials are mainly chalcogenide alloys, 
with Ge–Sb–Te (GST) as the core. Recent PCRAM devices 
are also based on GST for heterogeneous doping and propor-
tion alloying. When evaluating the impact of phase change 
materials on the performance of PCRAM devices, crys-
tallization temperature, thermal conductivity, etc. are key 
indicators [17]. Khan et al. introduced GeTe/Sb2Te3 super-
lattice structure in PCRAM, reducing heat loss and power 
consumption by 25–30 times [18]. Yang et al. introduced 
a conductive bridge phase change mechanism into a het-
erogeneous Ge-Sb-O alloy, which achieved fJ-level energy 
consumption (43 fJ) [19]. These works provide evidence for 
low-power-consumption applications of PCRAM.

Magnetoresistive materials with spin polarization charac-
teristics are mainly used for MRAM, where the free layers 
and fixed layers are made of ferromagnetic materials. As a 
king of typical ferromagnetic material, CoFeB can form a 
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good interface with the insulating layer and has a low mag-
netization reversal energy. MgO usually acts as an insulator 
in the magnetic tunnel junction and can achieve a high tun-
nel magnetoresistance ratio. Most applications require MTJ 
to have perpendicular magnetic anisotropy (PMA), that is, 
the magnetization direction of the material is more likely to 
be arranged in a direction perpendicular to the plane of the 
film. PMA is related to the interface effect, lattice structure 
and stress of the material. The general methods to improve 
PMA include stacking materials with strong spin–orbit cou-
pling such as ruthenium, cobalt or platinum in the buffer 
layer, or using an external voltage to regulate the magnetic 
anisotropy of the magnetic material.

STT-RAM has been partially commercialized, but due 
to high current requirements and material degradation, 
researchers introduce SOT-RAM to reduce power consump-
tion and increase write speed through the spin–orbit torque 
effect. The most studied SOT materials are heavy metal 
materials and topological insulators with strong spin Hall 

effect or Rashba effect [20]. Heavy metal materials such as 
Ta, W and Pt are used for the SOT layer, which have a high 
spin Hall angle and can efficiently generate spin currents. 
The surface states of topological insulators (such as  Bi2Se3, 
 Bi2Te3) have high spin polarization rates and can achieve 
efficient spin injection at low currents.

Ferroelectric materials can achieve reversible polariza-
tion reversal under electric field, thereby regulating tun-
neling current or interface charge distribution and realizing 
resistance state storage. Classical ferroelectric materials 
include bismuth titanate (BTO) and barium strontium 
titanate (BST), which are widely used in ferroelectric tun-
neling junctions due to their high remanent polarization 
and low leakage current. Because of excellent complemen-
tary metal–oxide–semiconductor (CMOS) compatibility, 
hafnium oxide-based materials (such as doped  HfO2) have 
become a research hotspot in recent years, especially in 
low-power and high-density memories. Two-dimensional 
ferroelectrics is a kind of emerging ferroelectric materials, 

Table 1  Summary of the characteristics of the four functional materials of RRAM related to device research

Structure Thickness Operating voltage Programming power consump-
tion

Endurance Year of 
publica-
tion

Inorganic oxides and heterojunctions
ITO/Bi:SnO₂/TiN [21] 20 nm  − 0.5 V/0.4 V The SET operating power is 

16 µW
10⁷ 2020

Ag/SiO₂/Ta₂O₅/Pt [22] 6.5 nm 0.14 V to 
0.24 V/− 0.06 V 
to − 0.14 V

N/A  > 1000 2020

Pd/BaTiO3:Nd2O3/
La0.67Sr0.33MnO3 (LSMO)/
STO [23]

BNO: 34 nm LSMO:12 nm  − 1 V/2 V 0.45 fJ per synaptic event  >  1010 2024

Two-dimensional materials
Au/h-BN/Ti [24] 5 nm  − 0.5 V/0.5 V 1.2 pJ/pulse, 30 ns pulse width 

and 45 µA current
 > 6000 2023

Ti /h-BN/Au [25]  ~ 2.3 nm 2.75 V  < 2 pJ 600 2024
Pt/WSe2/HfxZr1−xO2 (HZO)/

TiN [26]
WSe2: ~ 0.7 nm HZO:10 nm  − 1.2 V / 1.5 V N/A  > 2000 2025

Au/CuInS2/Cu [27] N/A 0.6 V 10 nW 1000 2025
Perovskite materials
Ag/CH3NH3PbI3/FTO [28] 350 nm − 0.2 V/0.2 V  ~ 47 fJ μm−2  >  103 2020
Ag/BA2MA5Pb6I19/Pt [29]  ~ 300 nm − 0.15 V/0.15 V  ~ 150 μW,  Icc = 1 mA  > 5 ×  106 2024
Organic Materials
Al/Cu-doped pMSSQ/Al [30]  ~ 80 nm  < 0.9 V  < 0.5 pJ per pulse 500 2017
Ag/PFC-73/ITO [31] 114 nm 0.86 V N/A 60 2023
ITO/PEDOT:PSS/D:A/PDINN/

Ag [32]
The light intensity used (rang-

ing from 0.51 to 194.01 mW 
 cm−2)

2023
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such as  In2Se3 and  MoTe2, which have ultra-thin thick-
nesses and are suitable for high-density integration and 
flexible electronics. Figure 4 summarizes the power con-
sumption of various memristors when completing synaptic 
operations. RRAM and ferroelectric memristors can reach 
a lower level than biological levels of 10 fJ. The reported 

lowest power consumption is 4.28 aJ of HfAlOx-based 
RRAM, indicating that RRAM exhibits great potential in 
low-power neuromorphic computing. Therefore, the fol-
lowing content will be expanded on low-power-consump-
tion RRAM.

Fig. 3  Schematic diagram of memristor classification of different functional materials, including ion transport, phase change, magnetoresistive 
and ferroelectric. Among them, ion transport materials include organic and inorganic types [33]. Copyright (2014) American Chemical Society 
[34]. Copyright (2019) Wiley‐VCH, phase change materials are mainly chalcogenide alloys [35]. Copyright (2022) The Authors [36]. Copyright 
(2020) The Authors, magnetoresistive materials mainly constitute MTJ [37]. Copyright (2023) Science China Press [38]. Copyright (2024) The 
Authors, and ferroelectric materials mainly have spontaneous polarization characteristics [39]. Copyright (2020) The Authors [40]. Copyright 
(2024) Wiley‐VCH
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1.3  Memristor Array

Two typical structures of memristor array are the 1 tran-
sistor 1 resistor (1T1R) array and the crossbar array. As 
illustrated in Fig. 5a, 1T1R arrays are active arrays where 
each memristor is connected in series with a transistor. 
The word lines connect to the gate electrode of transistor, 
and the source lines connect to the source of the transistor. 
The bit lines connect to the top electrode of the memris-
tor, and the bottom electrode connects to the drain of the 
transistor. The cell area of a 1T1R array is typically  12F2 
(F is the minimum feature size). As illustrated in Fig. 5b, 
crossbar arrays are passive arrays with  4F2, consisting of 
perpendicular word lines and bit lines that form a cross-
bar structure. Memristors are arranged at the cross-points, 
which is more suitable for integration than a 1T1R and 
has no quiescent power dissipation. However, crossbar 
structure is prone to latent path currents. The latent path 
currents will flow through the other path resistors, thus 
causing inaccurate readings in the calculations, as well as 
additional power losses. In contrast, the 1T1R array, with 
its larger cell area and better isolation of neighboring cells, 

has no risk of sneak currents, which has higher computa-
tional read accuracy. For the crossbar array, a common 
approach to solving this problem is increasing the I–V non-
linearity by connecting a selector in series with one end of 
each memristor cell. The selector can use either a diode a 
resistor (1D1R) for unipolar memristors or a two-terminal 
selector device for bipolar memristors (1S1R). The com-
bined device effectively suppresses the leakage currents 
caused by the unipolar memristor’s reverse bias or bipolar 
memristor’s low bias, resulting in much lower currents 
[59–61]. In recent years, prototype chips based on memris-
tor arrays have been widely developed. Figure 5c–h shows 
recent studies of memristors arrays, which summarize the 
structures, the types, the sizes and the realized functions.

2  Low‑Power Memristor Applications

2.1  Multi‑level Storage

A key application of the memristor is non-volatile mem-
ory for data storage. The number of states corresponds to 

Fig. 4  Power consumption of different low-power memristors when performing synaptic plasticity [40–58], where biological synaptic power 
consumption is ~ 10 fJ. The reported power consumption of novel memristors range from 5 nJ to 4.28 aJ, exhibiting great potential in neuromor-
phic computing
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discrete resistors that can be read, reflecting the storing abil-
ity of memory. Generally, the more storage states there are, 
the higher the storage density of advanced multi-level mem-
ories. In multi-level memories, each resistance state repre-
sents a stored value. The dynamic range refers to the ratio 
of memristor between the maximum conductance and the 
minimum conductance. Large dynamic range ensures that 
these states are well separated and differentiated, thereby 
reducing the possibility of read errors due to noise or drift 
in the resistance value. In addition, a larger dynamic range 
also simplifies the peripheral circuit design, which does not 
need excessively high resolution. Table 2 lists several multi-
level storage memristors reported in recent years. In practi-
cal applications, as device size decreases or the number of 
switching cycle increases, material changes and degrada-
tion over time also need to be considered. Recent researches 
focus on improving these aspects in order to achieve higher 
storage density in memristors.

2.2  Digital Logic Gate

Borghetti et al. [85] first proposed using two memristors 
in series and parallel to a resistor for implication (IMP) 
operations. This circuit takes the initial state of the mem-
ristor as input and the final state as output, as illustrated 
in Fig. 6a, where the high-resistance state is ’0’ and the 
low-resistance state is ’1’. The voltage across the memristor 
is influenced by ’Input1’ and ’Input2’ together. By setting 
Input1 <  Vset < Input2 and the resistance of memristor B as 
output, the truth table was obtained as shown in Fig. 6b. 
Afterward, Kvatinsky et al. [86] developed a memristor-
aided logic (MAGIC) gate, integrating two parallel input 
memristors with a series output memristors. Memristors 
are installed for input and output separately, circumvent-
ing the issue of logic gate’s output overwriting the input’s 
value. Huang et al. [87] configured multiple logic functions 
such as NAND, OR, and XOR by changing the trigger signal 

Fig. 5  Physical diagram based on 1T1R and crossbar memristor arrays. a Schematic diagram of a basic 1T1R array [62]. Copyright (2023) The 
Authors. b Schematic diagram of a basic crossbar array [63]. Copyright (2019) The Authors. c 128 × 64 1T1R array for handwritten digit classi-
fication [64]. Copyright (2018) The Authors. d 32 × 32 1T1R reconfigurable memristor array for analog computing tasks [65]. Copyright (2022) 
The Authors. e 2K memristor chips and an FPGA board, which mainly uses memristor arrays to achieve high-precision medical image recon-
struction [62]. Copyright (2023) The Authors. f Schematic diagram of 32 × 32  WOx memristor array realize temporal information processing and 
handwritten digit recognition [66]. Copyright (2017) The Authors. g SEM image of a 20 × 20 crossbar array, used for neuromorphic computing 
with each memristor acting as a synapse [67]. Copyright (2018) The Authors. h 12 × 12 crossbar memory array composed of self-selective van 
der Waals heterostructure memory cells [63]. Copyright (2019) The Authors
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without changing the original circuit. Luo et al. [88] imple-
mented two-input or multi-input AND, OR, NAND, and 
NOR operations, as well as single-input COPY and NOT 
operations. Other Boolean logic operations are also execut-
able through a mix of IMP operations (Fig. 6c) [89]. In this 
way, the memristor acts as a logic unit, providing new path 
for in-memory computing.

The main power consumption issues in the implemen-
tation of memristive digital logic are continuous leakage 
current loss in the off state, dynamic switching energy loss 
during resistance state transition, and sneak path current in 
the cross-structure of digital logic. Researchers are mainly 
looking for solutions in optimizing switching layer materials 
and developing new architectures. Liu et al. [90] developed 
a  HfSexOy/HfSe2 device with a low operating voltage of less 
than 3 V and an operating current of 100 pA. Four-variable 
sequential logic method was used to achieve various digital 
logic gates, including XOR, IMP, and NAND, as illustrated 
in Fig. 6d. Raab et al. [91] studied a single magnetic mem-
ristor within a confined triangular geometry, which can per-
form various digital logic gates including XOR (Fig. 6e). 
The logic gate has a low current density of about 5 ×  107 A 
 m−2, which is four orders of magnitude lower than previous 
methods and critical for achieving reliable computing with 
minimal energy consumption. Kho et al. [92] investigated 
a novel switching phenomenon in  HfO2 FTJs, precisely 

controlling the FTJs in four different resistance states (00, 
01, 10, and 11), the switching process is shown in Fig. 6f. 
Xu et al. [93] developed a memristor with a low voltage 
of 0.3 V and power consumption of 100 pW. The device 
uses DNA as an active layer binding to Ag nanoparticles. 
IMP and NAND logic gates were implemented with a series 
of memristors and pulses (Fig. 6g). Hajisadeghi et al. [94] 
designed a random memory computing architecture based 
on STT-RAM, using 2 T-1MTJ units. The detailed steps 
of random multiplication operations are shown in Fig. 6h. 
This architecture achieved a 135.7-fold acceleration and a 
1.5-fold reduction in energy consumption.

2.3  Artificial Synapse

Biological synaptic regulation changes the synaptic weights 
through the presence of specific ions (e.g.,  Ca2+,  Na+, etc.) 
inside and outside the cell membrane to achieve the learning 
and memory functions, as shown in Fig. 7a. Memristors can 
mimic the plasticity of synapses through adjustable resist-
ance characteristics based on the frequency and strength 
of the input signal, which play important roles in realizing 
large-scale neural networks and hardware learning systems 
[95]. In recent years, researchers have extensively explored 
various types of memristors and achieved the simulation of 
a variety of synaptic behaviors, such as short-term plasticity 

Table 2  Summary of some multi-value memory device materials, state values, dynamic range, operating voltage

Material State Number Dynamic Range Operating Voltages

HfxZr1−x  O2 [68] 60 10  ± 0.1 V/ ± 2.4 V
Hf0.5Zr0.5O2 (HZO) [69] 8 1500 − 1.6 V/1.4 V
AlOx/CeOx [70] 5 22.37 − 1 V/1 V
ZnO [71] 3 6.39 − 0.22 V/0.22 V
HfO2/Al2O3/HfO2 [72] 7 10 − 0.3 V/0.8 V
HfOx/ZnO [73] 4 330 Less than 3.5 V
Ti3C2Tx MXene [74] 25 103 1.0 V
HfAlOx [75] 5 50 − 2.03 V/2.02 V
NiO [76] 5 104 − 1.23 V/0.79 V
BN [77] 300 102 − 0.79 V/0.81 V
TiO2/NiO [78] 4 104 1.0 V
MoS2/HfAlOx [79] 6 106 N/A
Ge2Sb2Te5 (GST) [80] 5  ~ 13 − 3.5 V/2 V
Y-Sb–Te [81] 3  ~ 1000 − 2.5 V/1 V
Ge2Sb2Te5 (GST) [82] 8 200 0.5 V
Pb(Zr,Ti)O3 (PZT) [83] 5 29 1.5 V
La:HfO2 [84] 8  ~ 4  ± 1 V/ ± 2.5 V
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Fig. 6  Low-power digital logic gates. a Classic IMP gate structure: two memristors in parallel and a series resistor [77]. Copyright (2021) Royal 
Society of Chemistry. b IMP logic gate truth table. “True” is 1, “False” is 0. c Schematic diagram of a multi-functional Boolean logic circuit 
that can simultaneously perform AND, OR, NAND, NOR, COPY, and NOT operations by using a shared set of memristors [88]. Copyright 
(2020) Institution of Engineering and Technology. d The truth table of the XOR logic operation based on memristor of  HfSe2 [90]. Copyright 
(2021) The Authors. e The output of the linear read-out optimized for various Boolean operations, including AND, NAND, OR, NOR, XOR, 
and XNOR [91]. Copyright (2022) The Authors. f The switching relationships between the four resistance states (00, 01, 10, and 11) in a paral-
lel 2-bit logic-in-memory configuration [92]. Copyright (2023) The Authors. g A proof-of-concept all-fabric data-processing system, enabling 
the real-time output of logic gates [93]. Copyright (2020) Wiley–VCH. h The three-step implementation of a stochastic multiplication operation 
using the 2T-1MTJ IMC method [94]. Copyright (2024) Elsevier
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(STP), long-term plasticity (LTP), spike-timing-dependent 
plasticity (STDP), spike-rate-dependent plasticity (SRDP) 
and paired-pulse facilitation (PPF) [47, 96, 97].

2.3.1  Short‑Term/Long‑Term Plasticity

The main function of STP in human brain is to process tem-
porary information. LTP is mainly responsible for long-term 
memory and learning. At the device level, STP and LTP are 
modeled by applying pulses to the memristor, where the dura-
tion of the synaptic weight change defines STP or LTP. This 
is related to the size of the CFs in the RRAM, as illustrated in 
Fig. 7b [79], for PCRAM, the degree of crystallization state 
transition of the phase change material is the decisive factor, 
which is controlled by the local temperature change caused 
by Joule heating. In ferroelectric memristors, the influence 
is the stability and polarization strength of the ferroelectric 
domain. In STP, when removing the applied voltage, synaptic 
weights gradually decrease to initial state. LTP refers to the 
gradual and progressive stabilization of the conductive state 
under continuous pulses. When removing the applied volt-
age, the synaptic weight remains stable over time. STP has 
the potential to be converted into LTP, which can be achieved 
through repeated stimulation. For example, Wang et al. [98] 
applied a series of pulses to a memristor (N = 10, 30, 60, 90, 
120), and the memory retention of the device improved with 
more pulses, indicating that STP could be converted into LTP 
through repeated stimulation. The experimental results are 
illustrated in Fig. 7c.

In biological synapses, PPF mainly reflects the accumula-
tion effect of residual  Ca2⁺ in the presynaptic neuron. For two 
adjacent pulse potentials, the first pulse releases neurotransmit-
ters and causes  Ca2+ influx. The second pulse leads to more 
 Ca2+ entry, increasing neurotransmitter release and creating 
a stronger response in the postsynaptic neuron. PPF is a form 
of short-term synaptic plasticity, which refers to the phenom-
enon that when two action potentials (pulses) arrive succes-
sively at the presynaptic neuron within a short time interval 
(10–100 ms), as shown in Fig. 7d. The PPF exponent decreases 
with the increase of the interval. When the interval exceeds 
500 ms, there is no significant difference in the amplitude 
of the two pulses, indicating that the conductive states have 
recovered to their initial state. In recent years, many memris-
tors have been able to simulate most functions of biological 
synapses. For example, Yan et al. [99] designed a ferroelectric 

memristor with 12 different resistance states (Fig. 7e) for simu-
lating PPF (Fig. 7f). Sahu et al. [42] developed an Ag conduc-
tive filaments-based memristor for simulating synaptic plas-
ticity, as shown in Fig. 7g. By applying the voltage of 0.6 V, 
the CF is formed and the current increased. Subsequently, the 
current gradually decays due to the reflux of Ag atoms from 
the CF, as illustrated in Fig. 7h.

2.3.2  Spike‑Timing‑Dependent Plasticity

Hebb proposed a theory in 1949 [100], which states that 
when two neurons are excited simultaneously, the connec-
tion between them will strengthen. STDP builds on this 
foundation by emphasizing the influence of time sequence, 
i.e., the regulatory effect of the relative timing of pre- and 
postsynaptic pulses on synaptic connection strength. The 
postsynaptic current is enhanced when the stimulation of the 
presynaptic neuron is earlier than the postsynaptic neuron. 
On the contrary, the postsynaptic current will be inhibited. 
At the device level, the time difference between the pre- and 
postsynaptic neuron pulses can be simulated by controlling 
the timing sequence of voltage pulses. For example, Fig. 7i 
shows the actual effect graph, where ΔG expresses the rela-
tive conductance before and after the applied pulse. A pre-
pulse of − 1.5 V/50 ms and a post-pulse of + 1.5 V/50 ms 
were applied to the device at  tpre and  tpos, and the time differ-
ence between presynaptic neuron and postsynaptic neuron is 
defined as Δt = tpos − tpre. The results show that the synap-
tic weights increase for Δt > 0, corresponding to long-term 
potentiation. On the contrary, the synaptic weight decreases 
when the current pulse precedes Δt < 0, corresponding to 
long-term depression in biological synapses.

2.3.3  Optoelectronic Synergy and Heterosynapses

In addition to pure electrical control, optical pulses can 
also modulate the properties of artificial synapses, which 
offers a richer functionality than a single stimulus [101, 102, 
103]. Zhu et al. [104] designed a light-emitting memristor 
(LEM), which combines the functions of a light receiver, 
a light transmitter, and an optoelectronic synapse within a 
single circuit, as illustrated in Fig. 7j. In this system, light 
signals from the pre-LEM were used as input signals to 
the post-LEM, realizing dynamically synaptic plasticity. 
In particular, PCRAM enables multi-level optical state 
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transitions that are highly similar to the plasticity of bio-
logical synapses, allowing for rich optical transmission lev-
els by controlling crystallinity [105]. The researchers used 
optical structure design to reduce optical switching energy 

consumption. Zhang et al. [106] used a directional coupler 
structure and phase change material  Sb2Se3 to realize an 
adjustable optical power divider, which allows an adjust-
able power distribution ratio from 1 to 97% with zero static 

Fig. 7  Low-power artificial synapses. a Schematic diagram of a biological synapse. b The switching mechanism for short-term and long-term 
memory in an artificial synapse, where the conductance of the memristor changes in response to applied electrical pulses [79]. Copyright (2022) 
The Authors. c The transition from STP to LTP is induced by repetitive pulse stimulation, showing a gradual decay in synaptic weights, consist-
ent with the memory forgetting curve observed in the human brain [98]. Copyright (2017) The Authors. d Typical schematic of PPF index varia-
tion with time interval [109]. Copyright (2018) American Chemical Society. e The 12 multi-level resistive states with long retention times. f The 
PPF index of artificial synapse changes with interval times [99]. Copyright (2023) Elsevier. g The EPSC response of artificial device with pulse, 
indicating the formation and relaxation of CFs. h The current decay, which is fitted to a stretched exponential function to model the relaxation 
process [42]. Copyright (2023) American Chemical Society. i Schematic representation of the STDP synaptic learning rule [109]. Copyright 
(2018) American Chemical Society. j The circuit diagram of an optoelectronic artificial efferent nerve system, consisting of a photoelectric syn-
apse with pre- and post-LEMs [104]. Copyright (2021) American Chemical Society. k Light control mod-synapse for different excitation wave-
lengths from 250 to 600 nm. l Optoelectronic synergistic control of heterogeneous synaptic potentiation and pure electrical controlled synaptic 
depression [108]. Copyright (2020) The Authors
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power consumption. Nohoji et al. [107] used GST’s photonic 
crystal waveguide for optical neuromorphic synapses, which 
achieved 81% transmission in the amorphous state and 13% 
transmission in the crystalline state with low transmission 
loss.

However, the above studies mainly focused on simple con-
nections in a single device, which is known as homogeneous 
synapses. In contrast, the synaptic activity of one neuron in 
neural networks can affect multiple synaptic connections in 
another neuron, this is classified as a heterogeneous synapse. 
The role of heterogeneous synapses in neural networks is 
more complex. Wang et al. [108] developed a multi-type 
signal modulated artificial synapse that consumes ultra-
low energy (< 30 aJ per pulse). By applying electrical and 
optical signals, excitatory postsynaptic current (EPSC) and 
biological learning models were mimicked for short-term 
and long-term memory, as shown in Fig. 7k. Researchers 
also created four co-modulation modes to enhance synaptic 
weights modulation range and simulate complex learning 
algorithms (Fig. 7l).

2.4  Artificial Neuron

A single synapse is not sufficient to perform the complex 
computations of the brain, and neural network formation 
is essentially related to the presence of neurons. Figure 8a 
shows a schematic of biological neuron, inspiring the design 
of neural circuits by memristors. Memristor-based artificial 
neuron could reduce the power efficiency significantly com-
pared to previous attempts to build neuron circuits using 
CMOS [110, 111]. Artificial neurons are constructed to 
simulate biological characteristics, relying on biophysical 
neuron models. These models include the Hodgkin–Hux-
ley (H–H) model [112], the leaky integrate-and-fire (LIF) 
model [113], the FitzHugh–Nagumo model [114], the Mor-
ris–Lecar model [115], the Theta neuron model [116], and 
the Wilson–Cowan model [117], etc. Among these, the H–H 
model is the most classic type, describing how ion channels 
affect membrane potential changes. With simplified char-
acteristics, the LIF model focuses on the accumulation of 
membrane potential and the discharge behavior triggered 
by the threshold, offering higher computational efficiency 
[118–124]. Zhang et al. [125] created an artificial neuron 
on a single memristor that simulates neuronal properties 
like leakage integration and threshold-triggered excitation. 

Figure 8b shows that the self-recovery process completes 
within 1 ms, similar to biological neurons, with an energy 
consumption of 10 fJ per excitation cycle, comparable to 
biological neurons. In addition, Xu et al. [126] created an 
adaptive H–H neuron circuit, as shown in Fig. 8c, which 
simulates the behavior of biological visual systems under 
different lighting conditions. By controlling the tempera-
ture of the  VO2 memristors, the circuit mimics the adaptive 
response of retinal cells and high-frequency firing states. 
Zhang et al. [127] created a memristor with  NbOx layer, 
utilizing its negative differential resistance to generate neu-
ron-like pulses for spiking neural processing, as shown in 
Fig. 8d, e.

Yang et al. [128] used  NbO2 memristors to create a neural 
circuit model for obstacle avoidance in robots, as shown in 
Fig. 8f, g. The circuit, based on H–H neurons, processes dis-
tance information from light detection and ranging (LiDAR) 
sensors and enables quick adjustments in the robot’s steer-
ing and speed. Compared to traditional computing plat-
forms such as GPUs, memristor-based neural circuit reduces 
latency by more than 50 times and consumes only 5% of 
the power of traditional platforms. Jung et al. [129] created 
a monolithic 3D artificial nervous system by integrating 
piezoelectric sensors, FTJs, and signal processing circuits 
to simulate sensory neurons for tactile perception (Fig. 8h). 
The nervous system could detect pressure in the range of 
1–50 kPa with a sensitivity of 0.35 mV  kPa−1, while FTJs 
can provide frequency-modulated synaptic signals with low 
power consumption. Cui et al. [130] constructed a spintronic 
artificial neuron based on a domain wall magnetic tunnel 
junction, integrating the domain wall inside the magnetic 
tunnel junction to represent the membrane potential, and 
reliably performed integration and excitation operations with 
low power consumption (Fig. 8i, j).

2.5  Artificial Neural Network

ANN is a computational model formed by simulating bio-
logical neural networks. ANNs are composed of input layer, 
hidden layer and output layer, interconnected to create a 
complex network structure, as shown in Fig. 9a. The input 
layer receives external data, which can be mathematical 
vectors and physical voltage. The hidden layers are located 
between the input and output layers and are responsible 
for processing the input data. The computational process 
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is typically a weighted summation, whereby each neuron 
applies a specific weight value to the received data, sums 
it, and then through an activation function, converts it into 
an output signal. During training, the network calculates 

the error between the output and the actual target, which is 
called backpropagation. It gradually reduces this error by 
adjusting the weights of the neuron connections to achieve 
the target calculation.

Fig. 8  Low-power memristors to construct artificial neurons. a Schematic diagram of a biological neuron. b The statistical analysis of the self-
recovery duration of the Pt/FeOx/Ag-based memristors, showing that most recovery processes are completed within 1 ms [125]. Copyright 
(2018) Wiley‐VCH. c  VO2 memristors constructed for an HH artificial neuron retinal circuit [126]. Copyright (2018) Wiley–VCH. d The bio-
logical afferent nerve system, where action potentials are generated in the skin and transmitted to the brain, with spiking frequency increasing 
with stimulus intensity, but decreasing under high stimuli due to protective inhibition. e The artificial spiking somatosensory system, which 
uses a resistor and  NbOx memristor to mimic the biological system’s frequency response [127]. Copyright (2020) The Authors. f Schematic of 
the neural inspired sensorimotor control neural circuit (SCNC). Two descending memory H–H neurons undergo (Bursting-detection neuron, 
BDN, Spiking-detection neuron, SDN) decoding distance information, which controls the robot’s steering and driving. g The robot’s obstacle 
avoidance system, where the input voltage is processed by the SCNC to generate mixed firing patterns in neurons [128]. Copyright (2024) The 
Authors. h The schematic of the fabrication process for a monolithic three-dimensional artificial sensory system, including pressure sensors, FTJ 
memory, and a silicon-based ring oscillator [129]. Copyright (2024) Elsevier. i The relationship between pulse amplitude and resistance states 
of two devices, where the nucleation of a domain in the domain wall racetrack is followed by a sequence of write, integrate, fire, and reset steps. 
j Similar switching characteristics confirm the directionality of the domain motion during the integration and emission cycles [130]. Copyright 
(2024) American Chemical Society
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Fig. 9  a Schematic of a three-layer ANN with input, hidden and output layers [138]. Copyright (2022) The Authors. b Schematic illustration of 
image encoding in a conventional memristor crossbar array based on matrix–vector multiplication, where input voltage is applied to each row 
[139]. Copyright (2022) The Authors. c The spatiotemporal modulation of postsynaptic current in the device using three different presynaptic 
spikes. d Schematic of an ANN constructed for fashion pattern recognition, utilizing the dendritic devices to simulate neural network con-
nections [131]. Copyright (2024) American Chemical Society. e Ultra-low-power-consumption characteristics of the memristor, where 4.28 aJ/
spike was achieved under voltage pulses of 50 ns. f Schematic diagram of the ANN used for MNIST pattern recognition, which consists of an 
input layer (784 neurons), a hidden layer (64 neurons), and an output layer (10 neurons) [44]. Copyright (2020) American Chemical Society. g 
Schematic showing how resistance drift in PCRAM-based memristors influences weight-change, where the weights increase continuously [132]. 
Copyright (2021) The Authors. h Schematic diagram of an intelligent robotic touch system divided into pressure sensor and memristor comput-
ing arrays [137]. Copyright (2022) American Chemical Society
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In traditional computer systems, neural network weights 
are stored in RAM, hard disk drives, or solid-state drives as 
floating-point numbers. The processor reads these weights 
during calculations and updates them by backpropagation. 
This process requires many read-and-write operations, 
which slow down performance and consume energy. In 
contrast, memristor array stores each weight as a resistance 
value, allowing for high energy-efficient computing. As 
shown in Fig. 9b, the input signal is applied to raw of the 
array as a voltage and is transmitted to column, resulting in 
a summed output current. The output current is proportional 
to the product of the input signal and the conductance. In 
this way, the memristor array performs matrix multiplication 
directly at the hardware level, replacing large-scale CMOS 
adders, multipliers, and SRAMs, improving computational 
efficiency and significantly reducing energy consumption.

Recent studies constructed memristor-based ANNs, where 
the power consumption is lower than biological levels. For 
example, Meng et al. [131] developed a dendritic memristor 
device that simulates synaptic behavior and can communi-
cate through multiple channels. This device can reproduce 
biological processes, such as Pavlov’s conditioning and syn-
aptic cooperation, as shown in Fig. 9c. By adjusting syn-
aptic activities, they created ANNs for pattern recognition, 
where the device improved recognition accuracy from 91 
to 95.2%, as seen in Fig. 9d. This approach in ANNs helps 
reduce power consumption while enhancing performance. 
Wang et al. [44] developed a three-dimensional wearable 
ANN with each spike consuming only 4.28 aJ, far lower than 
biological energy consumption, as shown in Fig. 9e. The 
ANN achieves 88.8% recognition accuracy without noise 
and maintained 80.9% accuracy even with noisy images, as 
shown in Fig. 9f.

Specifically, PCRAM devices experience spontaneous 
resistance drift in the amorphous state, where the resist-
ance value gradually increases over time. Resistance drift 
has been viewed as a reliability issue for PCRAM devices, 
but Lim et al. [132] proposed a new perspective that makes 
resistance drift as a spontaneous weight enhancement mech-
anism. As shown in Fig. 9g, spontaneous resistance drift 
allows the weights to change over time, reflecting the con-
sistency of the weight state during training. By encoding in 
this way, the 39 nm PCRAM network automatically controls 
the sparsity of the weights without additional computational 
overhead. Based on the results of in-depth research on low-
power neural networks, significant breakthroughs have been 

made in some resource-constrained application scenarios, 
such as lightweight robots, wearable devices, and the Inter-
net of Things [133–135]. At the same time, combining the 
memristor neural network with external high-sensitivity 
sensors creates a lightweight sensing-memory-computing 
system [136], inspiring new paradigm for the application of 
memristors. Zhao et al. [137] developed a 64 × 64 flexible 
tactile sensor array with high-pressure sensitivity and fast 
response time, integrating it with a computing-in-memory 
(CIM) chip for recognition tasks. As shown in Fig. 9h, the 
hardware system achieves accuracy of 98.8% for digits and 
97.3% for Chinese characters.

2.6  Convolutional Neural Network

CNN is designed to process data with a grid-like structure, 
such as images. CNNs use convolutional layers to extract 
features from input data. As shown in Fig. 10a, the data are 
processed through filters and activation functions, followed 
by pooling layers to reduce size. The resulting feature maps 
are flattened and passed through a fully connected layer 
to generate the final output using functions of Softmax or 
Sigmoid. Memristor arrays are mainly deployed in convo-
lutional and fully connected layers, which perform multipli-
cation-accumulation operations. As shown in Fig. 10b, the 
external magnetic field (Hext) is mapped as the input image, 
and the bias current (Ibias) is applied to each STT-MTJ device 
as a weight. The output voltage of STT-MTJ device is added 
through the summing circuit to form the output of the non-
linear convolution kernel [140]. In the activation layer, nor-
malization layer, and pooling layer, traditional CMOS-based 
implementations are still used because the operations do not 
naturally match the analog computing paradigm of mem-
ristors. Therefore, the power consumption challenges faced 
by current memristor-based CNN implementations include 
not only the losses of the memristor array itself, but also 
the overhead of peripheral circuits. During the training pro-
cess of CNN, high-voltage pulse programming operations 
and high signal-to-noise ratio read operations need to be 
performed multiple times. In addition, analog memristors 
are highly dependent on high-precision weighting, which 
significantly increases the chip area and resistance losses.

In terms of training calculation, Yao et al. [141] inte-
grated eight 1T1R memristor arrays containing 2,048 cells 
to implement a five-layer CNN with > 96% accuracy on 
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MNIST through a hybrid training methodology, including 
incorporating initial offline weight parameter establishment, 
subsequent memristor array mapping, and online fully con-
nected layer retraining of non-idealities. Such architecture 
demonstrates energy efficiency in two orders of magnitude, 

which is superior to contemporary GPUs. Lee et al. [142] 
applied ferroelectric memristor arrays for reservoir comput-
ing (RC), the system architecture is shown in Fig. 10c. By 
adjusting polarization direction, ferroelectric memristors 
are suitable for multi-dimensional mapping and low-power 

Fig. 10  a Schematic diagram of the CNN network [144]. Copyright (2024) The Authors. b Schematic of in-sensor nonlinear convolutional 
processing using STT-MTJ arrays [140]. Copyright (2024) Elsevier. c CNN model used in a reservoir computing system for pattern recognition, 
where initial image was mapped through the reservoir layer and training in the read-out layer [142]. Copyright (2025) Elsevier. d Schematic of 
SNN used for MNIST handwritten digit recognition, incorporating synapse arrays and neurons with simulation parameters [145]. Copyright 
(2023) The Authors. e Structure of the device array designed for the SNN using voltage-controlled multi-level MTJs, where the green dotted 
square represents the MAC operation [146]. Copyright (2024) The Authors. f Classification accuracy of the SNN on the MNIST dataset based 
on PCMs at temperatures of 300 K, 77 K, and 12 K. g Performance of the SNN for MNIST classification after 2 years of drift, where drift has 
a greater impact at room temperature [147]. Copyright (2024) The Authors. h Schematic of the SNN hardware testing platform, consisting of a 
probe card, FPGA-based hardware, and software algorithms [148]. Copyright (2022) Wiley–VCH
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parallel computing in RC systems. In terms of high preci-
sion, Song et al. [143] introduced a novel circuit architecture 
utilizing multi-stage compensation across memristor subar-
rays to achieve high-precision computation. The methodol-
ogy implements sequential error correction through dynamic 
conductivity matrix programming. The cascaded compen-
sation mechanism mitigates cumulative errors and device 
variability while maintaining energy efficiency, ultimately 
achieving numerical computation-grade precision through 
iterative refinement across the subarray hierarchy.

2.7  Spiking Neural Network

With the extensive development of biological neurosci-
ence, the SNN is gradually demonstrating its outstanding 
performance, which transmits and processes information 
through spike signals. In SNN, the activation of a neuron 
depends not only on the strength of the input signal but also 
on the timing of the pulse arrival. The introduction of time 
series enables SNNs to process dynamic, time-sensitive data 
such as sensory inputs like sound and vision. Another key 
feature of SNNs is low-power computations for dynamic 
information. Neurons only emit pulses when necessary and 
can enter standby mode when there is no input signal. This 
sparse activity pattern gives it a significant advantage in 
terms of low power consumption. Describing SNN requires 
more complex biological dynamic models, this involves 
the construction of well-designed artificial neuron circuits. 
However, in the field of algorithm learning, the sequence of 
pulses introduced by SNN is more difficult to understand 
than the layer-by-layer calculation method of ANN. Most 
learning rules of ANN do not apply to SNN, while the most 
widely adopted rule for SNN is STDP.

Reconfigurable memristor makes it possible to construct 
SNN with artificial synapses and neurons in the same device 
array [79]. Based on biological neural models such as H–H 
or LIF, small-scale SNN based on memristor arrays could 
be realized. Wang et al. [79] proposed reconfigurable fiber 
memristor of  HfAlOx/MoS2 functional layer for the first 
time. With different compliance currents, resistive switch-
ing for synaptic behavior and threshold switching for neu-
ral behavior were achieved. Han et al. [145] developed a 

configurable  NbOx memristor that functions as either an arti-
ficial synapse or neuron based on forming compliance cur-
rent (FCC). The researchers demonstrated dual functionality 
through Pavlov’s dog experiment and MNIST recognition 
with accuracy of 91.45%, as shown in Fig. 10d.

Various types of memristor exhibit application potential in 
SNN. As shown in Fig. 10e, Jeong et al. [146] used multi-layer 
magnetic states to study spin electronic synapses, achieving 
energy saving of 28% in SNN operations compared with tradi-
tional networks. Palhares et al. [147] studied the performance 
of GST-based embedded phase change memory (ePCM). At 
low temperatures, the resistance drift of ePCM is significantly 
reduced. There is almost no drift at 12 K, ensuring the long-
term stability for 2 years. In addition, ePCM in low-tempera-
ture environments can reduce power consumption by simplify-
ing the coding scheme while maintaining efficient computing 
performance. Figure 10f, g shows the impact of ePCM on SNN 
classification accuracy at different temperatures. Cheong et al. 
[148] developed a 32 × 32 memristive dot product engine with 
self-rectifying properties, illustrated in Fig. 10h. The SNN 
implementation utilized a novel ‘staging system’ that tempo-
rarily removes well-trained neuronal connections before re-
merging them during inference, which achieved 37% improved 
energy efficiency with maintained MNIST performance.

2.8  Neural Network Summary

ANNs, CNNs, and SNNs represent different architectural para-
digms in neuromorphic computing, each with unique opera-
tional characteristics and computational efficiency, as shown 
in Table 3. ANNs implement fully connected layers of neurons 
with a feedforward propagation mechanism, utilizing weighted 
synaptic connections modulated by a backpropagation algo-
rithm, demonstrating robust performance in pattern recogni-
tion across different input domains. CNNs utilize spatially 
localized convolution operations through a hierarchical feature 
extraction mechanism to implement a shared weight architec-
ture, which is able to efficiently process spatially correlated 
data through translation-invariant operations and hierarchical 
feature abstraction. SNNs embody the principles of biomi-
metic computing through a temporal pulse coding mechanism, 
achieving energy-efficient asynchronous processing through 
leaky integration and stimulating neuronal dynamics.
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3  Conclusion and Perspectives

Overall, memristors represent progress in neuromorphic 
computing architectures, bringing significant advantages with 
their inherent physical properties and operational character-
istics. First, non-volatile resistance state allows them to store 
information without additional data transmission power con-
sumption. Second, many memristors achieve stable switch-
ing characteristics at feature sizes below 10 nm, with great 
potential for expansion. In-memory computing eliminates the 
traditional von Neumann bottleneck and greatly reduces the 
energy consumption associated with data movement between 
independent processing and storage units. The adjustable 
multi-level storage state enables matrix multiplication and 
weight updates for neuromorphic computing. With excellent 
CMOS compatibility, memristors facilitate integration into 
existing semiconductor manufacturing workflows, while sup-
porting new computing paradigms such as logic-in-memory 
and brain-inspired neuromorphic computing. Recent demon-
strations of memristor-based neural networks have achieved 
remarkable energy efficiencies below 1 fJ per synaptic opera-
tion, which is orders of magnitude better than conventional 
digital implementations and biological computing.

The development of new materials remains key to improv-
ing the performance of memristors. Researchers are explor-
ing 2D materials such as graphene and transition metal 
dichalcogenides, which have unique electrical properties and 
atomic-level thickness. These materials can achieve more 
precise resistance modulation and lower power consumption. 
Research on metal oxides continues, focusing on design-
ing defect states and interface properties to achieve better 
switching characteristics and reliability. Array structure 

optimization is to minimize sneak current and improve read/
write margins. Advanced selectors can be developed, includ-
ing volatile switch selectors and engineered tunnel barriers. 
At the same time, three-dimensional integration strategies 
are explored to increase storage density while maintaining 
low power consumption levels.

For storage applications, researchers are developing more 
complex programming schemes and error correction methods. 
Research on new switching mechanisms such as phase change 
and magnetoresistance effects may produce hybrid devices 
that combine the advantages of different storage mechanisms. 
For the digital logic computing, future research focuses on 
optimizing device characteristics for logic operations, devel-
oping more efficient programming schemes, and creating new 
circuit topologies that exploit the unique properties of mem-
ristors. In neuromorphic computing, future research will focus 
on developing ultra-low-power devices and systems, achiev-
ing extremely low programming currents to achieve ultra-
low-power-consumption pulse generation and transmission. 
In terms of training schemes, future development schemes 
need to take into account the non-ideality of the device and 
optimize the power-performance balance through approximate 
computing techniques and multi-device architectures.

The development of multi-functional memristor is also 
advancing, which can perform synaptic and neural func-
tions at the same time, thereby achieving more compact 
and efficient neuromorphic systems. In response to the 
challenges of neuromorphic applications, researchers are 
improving energy efficiency through innovative program-
ming schemes and adaptive precision techniques. Future 
work will also implement online learning algorithms under 
low-power operation and explore the use of complementary 

Table 3  Summary of technical characteristics of ANN, CNN and SNN

Feature ANN CNN SNN

Architecture Fully connected layers Convolutional layers Spiking neurons with event-driven 
processing

Energy Efficiency Moderate (depends on backpropaga-
tion)

High (sparse weight matrices and 
filters)

Great (event-driven and sparse activa-
tion)

Training Complexity Low (backpropagation with gradient 
descent)

Moderate (backpropagation in convo-
lution layers)

High (based on spike-timing dependent 
plasticity)

Memristor Role Weight storage and in-memory com-
putation

Weight storage and in-memory 
computation

Spike encoding and synaptic weight 
storage

Low-Power Advantage Reduction in power consumption for 
weight updates

In-memory processing for convolu-
tions

Event-based firing reduces unnecessary 
computation

Use Case General-purpose tasks, classification Image processing, object recognition Event driven tasks, real-time decision
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memristor devices to simplify the weight update process. In 
addition, the integration of memristor neuromorphic sys-
tems with CMOS circuits is also being optimized, espe-
cially interface circuits operating at low voltages.
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