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HIGHLIGHTS

• Indium-based metal–organic framework (In-MOF) is proposed as a multifunctional promoter to create poly(vinylidene fluoride–hex-
afluoropropylene) (PVH)/In-MOF (PVH-IM) composite solid polymer electrolyte, synchronously achieving a high ionic conductivity 
of 1.23 ×  10−3 S  cm−1 and excellent electrochemical stability against Li anodes.

• In-MOF not only can adsorb and convert free residual solvents into bonded states to prevent their side reactions with Li anodes, but 
also induce inorganic-rich solid electrolyte interphase layers to prevent PVH from reacting with lithium anodes and promote uniform 
lithium deposition without dendrite growths.

• The Li|PVH-IM|Li symmetric cells maintain stable cycling for 5550 h at the current density of 0.2 mA  cm−2. In addition, all-solid-
state LFP|PVH-IM|Li full cells deliver a significant capacity retention of 80.0% at a rate of 0.5C after 280 cycles at 25 °C.

ABSTRACT Fluoropolymers promise all-solid-state lithium metal batteries 
(ASLMBs) but suffer from two critical challenges. The first is the trade-off 
between ionic conductivity (σ) and lithium anode reactions, closely related to 
high-content residual solvents. The second, usually consciously overlooked, is 
the fluoropolymer’s inherent instability against alkaline lithium anodes. Here, 
we propose indium-based metal–organic frameworks (In-MOFs) as a mul-
tifunctional promoter to simultaneously address these two challenges, using 
poly(vinylidene fluoride–hexafluoropropylene) (PVH) as the typical fluoropoly-
mer. In-MOF plays a trio: (1) adsorbing and converting free residual solvents into bonded states to prevent their side reactions with lithium 
anodes while retaining their advantages on  Li+ transport; (2) forming inorganic-rich solid electrolyte interphase layers to prevent PVH 
from reacting with lithium anodes and promote uniform lithium deposition without dendrite growth; (3) reducing PVH crystallinity and 
promoting Li-salt dissociation. Therefore, the resulting PVH/In-MOF (PVH-IM) showcases excellent electrochemical stability against 
lithium anodes, delivering a 5550 h cycling at 0.2 mA  cm−2 with a remarkable cumulative lithium deposition capacity of 1110 mAh  cm−2. 
It also exhibits an ultrahigh σ of 1.23 ×  10−3 S  cm−1 at 25 °C. Moreover, all-solid-state  LiFePO4|PVH-IM|Li full cells show outstanding 
rate capability and cyclability (80.0% capacity retention after 280 cycles at 0.5C), demonstrating high potential for practical ASLMBs.
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1 Introduction

The energy density of traditional Li-ion batteries has 
approached their theoretical limits, and using liquid elec-
trolytes has raised widespread safety concerns [1–4]. All-
solid-state Li metal batteries (ASLMBs) are considered 
the "holy grail" of next-generation electrochemical energy-
storage technologies due to their theoretically high energy 
density and intrinsic safety [5–7]. Solid-state electrolytes are 
one of the most fundamental components that determine the 
electrochemical performance of ASLMBs, requiring high 
ionic conductivity (σ), interfacial contact, electrochemical 
stability, high strength, etc. [8–10]. Among various can-
didates, solid-state polymer electrolytes (SPEs) stand out 
because they showcase excellent flexibility enabling decent 
interfacial compatibility with electrodes, good processabil-
ity promising large-scale production, and tailored physical/
chemical properties endowing multifunctionality [11, 12]. In 
particular, fluoropolymers provoke great attention because 
they have high dielectric constants (εr = 8–12) that signifi-
cantly enhance the dissolution and dissociation of Li salts, 
resulting in higher σ compared to other SPEs [13–15]. In 
addition, fluoropolymers show excellent elasticity, mechani-
cal strength (~ 50 MPa), and thermal stability (Td: 400 °C) 
[16, 17]. With these merits, fluoropolymers are promising 
for developing high-performance SPEs [18, 19]. However, 
fluoropolymers suffer from two critical problems, hindering 
their implementation in next-generation ASLMBs.

The first problem is the compromise between the σ and 
Li anode side reactions, which strongly correlate with 
residual solvents [20, 21]. Generally, solution casting is the 
most common approach for preparing fluoropolymer SPEs, 
which involves polar solvents such as N,N-dimethylforma-
mide (DMF) and N-methylpyrrolidone (NMP) [22, 23]. 
These solvents have high polarity and boiling points, mak-
ing them difficult to completely remove upon drying. As 
a result, fluoropolymer SPEs usually exhibit high residual 
solvent content of 10–17 wt% [24–26]. On the one hand, 
the residual solvents act as plasticizers and form complexes 
with  Li+ (e.g., Li(DMF)x+), thereby accelerating  Li+ migra-
tions and enhancing σ to  10−4 S  cm−1 [27–30]. On the other 
hand, the polar residual solvents thermodynamically and 
kinetically favor reacting with Li metal anodes [31, 32]. 
The side reactions continuously consume Li metal anodes 
and form thick solid electrolyte interphase (SEI) layers, 

significantly boosting interfacial impedances and speeding 
up battery failures. In other words, reducing residual solvent 
content diminishes the side reactions with Li metal anode 
but will inevitably decrease the σ to  10−6–10−5 S  cm−1 [20]. 
Therefore, it is essential to minimize the side reactions of 
high-content residual solvents with Li metal anode, without 
compromising their beneficial effects on σ.

The second problem, which is much more critical but 
intentionally overlooked, is the unexplored stability of fluo-
ropolymers against Li metal anodes. As is well known in 
organic chemistry, fluoropolymers usually showcase excel-
lent chemical stability except for alkali chemicals [33, 34]. 
In this regard, they undergo dehydrofluorination under alka-
line environments, leading to severe structure and perfor-
mance degradation [35]. In this sense, Li, as a representative 
alkali metal, typically exhibits strong alkalinity, which will 
definitely influence the stability of fluoropolymers. Unfor-
tunately, this problem has been neglected in ASLMBs to 
date. To reveal this phenomenon, we employ poly(vinylidene 
fluoride–hexafluoropropylene) (PVH), one of the most typi-
cal fluoropolymers, to assemble symmetric Li cells. They 
are only able to cycle for 50 h at a small current density 
of 0.1 mA  cm−2 (Fig. 1a). After cycling, the Li foil loses 
metallic luster, and the PVH turns dark brown (Figs. 1b, S1). 
The PVH also sticks to Li foils, making them very difficult 
to separate. Moreover, the uniform PVH spheres gradually 
merge into large particles with inhomogeneous size distribu-
tions as cycling continues (Fig. 1c). The diffraction peaks of 
PVH also gradually disappear, indicating its structural deg-
radation (Fig. S2a). Similar results are also observed in opti-
cal spectroscopy profiles, where the characteristic peaks of 
–CF2– and –CH2– vanish (Figs. 1d, S2b) with the emergence 
of distinct carbon bands (Fig. 1e). These changes imply the 
dehydrofluorination and the formation of amorphous car-
bon [36, 37]. Note that carbon is a good electron conductor, 
which causes continuous decomposition of PVH. Therefore, 
it is of great importance to optimize the chemical and elec-
trochemical stability of PVH against Li metal anodes, with 
the combination of breaking the residual solvent-induced 
compromise between σ and Li anode side reactions.

Herein, we propose one-dimensional (1D) indium 
metal–organic frameworks (In-MOFs) as a multifunctional 
promoter to simultaneously address these challenges, result-
ing in a composite SPE involving PVH and In-MOF (labeled 
as PVH-IM). Note that the In-MOF is employed because 
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of its highly porous structures, open metal sites, and 1D 
morphology [38, 39]. Specifically, the microporous and 
mesoporous structure of In-MOF is conducive to adsorb-
ing and immobilizing the residual solvent (i.e., DMF in this 
case), thereby preventing side reactions between DMF and 
Li metal anodes while maintaining the capability to facili-
tate  Li+ transport. In addition, compared to the other MOFs 
(e.g., Fe-MOF, Cr-MOF), the In-MOF exhibits the lowest 
adsorption energy (Fig. S3). Furthermore, the 1D morphol-
ogy of In-MOF optimizes its interfacial contacts with the 
PVH matrix, allowing fast  Li+ transport at the PVH/In-MOF 
interfaces [40]. More importantly, the In-MOF has a much 
smaller LUMO (i.e., lowest unoccupied molecular orbital) 
energy level compared to PVH, Li salt, and DMF. Accord-
ingly, the surface In-MOFs faced to Li metal anodes are 
the first to react with Li metal and generate a thin uniform 
inorganic-rich SEI layer, which, in turn, prevents the side 
reactions between PVH and Li metal anodes.

As a result, the PVH-IM demonstrates significant cycling 
stability against Li metal anodes, delivering an ultralong 
cycle life of 5550 h at the current density of 0.2 mA  cm−2, 
which overwhelms most previous fluoropolymer and other 
polymer-based SPEs. In addition, the PVH-IM exhibits a 
high critical current density (CCD) of 1.7 mA  cm−2 and an 
excellent σ of 1.23 ×  10−3 S  cm−1 at 25 °C, outperforming 
most previous reports. Furthermore, the enhancement mech-
anism is comprehensively revealed using various experimen-
tal and theoretical techniques. Finally, when assembled with 
 LiFePO4 (LFP) cathode and Li metal anode, the PVH-IM-
based all-solid-state full cells demonstrate stable operation 
over 280 cycles at the current density of 0.5C under 25 °C, 
exhibiting an extraordinary capacity retention of 95.7%. 
This work sheds a bright future for accelerating the practi-
cal applications of high-performance fluoropolymer-based 
SPEs for next-generation ASLMBs.

Fig. 1  Electrochemical stability of PVH against Li metal anode. a Galvanostatic voltage profiles of Li|PVH|Li symmetric cells at 0.1 mA  cm−2. 
b Photographs of PVH and Li metal after 50 h cycling at 0.1 mA  cm−2. c Scanning electron microscopy (SEM) images, d Fourier transform 
infrared spectroscopy (FT-IR) profiles, and e Raman spectra of PVH after 0, 1, 10, and 50 h cycling at 0.1 mA  cm−2. The scale bars in c are 
5 μm. All tests are conducted at 25 °C unless otherwise stated
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2  Results and Discussion

2.1  Preparation and Characterization of PVH‑IM

The synthesis of PVH-IM involves two steps (see details in 
the Experimental Section). Briefly, the first step contains the 
preparation of In-MOF using a previously reported method, 
which exhibits the 1D rod-like morphology and good crys-
tallinity (Fig. S4) [38, 39, 41]. In the next step, PVH-IM 
was obtained by mixing PVH and In-MOF through a sim-
ple solution-casting method, as shown in Fig. S5. PVH was 
also prepared as contrast samples using the same procedure 
without adding In-MOF.

Figure S6 shows that the PVH displays interconnected 
microsphere morphology. After introducing In-MOF, the 
morphology of PVH remains unchanged, while the In-MOF 
nanorods are uniformly dispersed in the PVH matrix (Fig. 
S7). Additionally, the crystal structure of In-MOF does 
not alter in the PVH-IM, as XRD results show in Fig. S8, 
indicating that the preparation process is nondestructive. 
Moreover, incorporating In-MOF significantly decreases the 
crystallinity of PVH, indicating the increase in amorphous 
regions in the PVH matrix, which effectively facilitates  Li+ 
transport (as discussed later) [19].

2.2  Effect of In‑MOF on Electrochemical Stability 
of PVH against Li Metal Anodes

Li symmetric cells are assembled using Li foils and PVH-
IM as electrodes and SPE, respectively, in order to verify 
the enhancement of In-MOF on PVH’s electrochemical sta-
bility against Li metal anode. Figure 2a presents that the 
Li|PVH-IM|Li symmetric cells maintain stable cycling for 
5550 h at the current density of 0.2 mA  cm−2, delivering a 
remarkable cumulative Li stripping/plating capacity of 1110 
mAh  cm−2. In addition, the polarization voltage Li|PVH-
IM|Li is small and keeps stable upon cycling. In contrast, the 
Li|PVH|Li cells fail quickly after only 34 h under the same 
current density (inset of Fig. 2a). Moreover, the Li|PVH-
IM|Li cells exhibit stable operation for 500 h even at a high 
current density of 0.5 mA  cm−2, while the Li|PVH|Li cells 
fail to work at all (Fig. S9). We subsequently observe the 
cycled PVH-IM and Li metal anodes by disassembling the 
Li|PVH-IM|Li cells. The metallic luster of Li metal anodes 

is well retained, and the white color of PVH-IM remains 
unchanged after 50 h cycling (Figs. 2b, S10). On the con-
trary, the PVH and Li metal anodes suffer significant deg-
radation with noticeable color change in the case of cycled 
Li|PVH|Li cells (Fig. 1b). These results firmly demonstrate 
that In-MOF remarkably improves the electrochemical sta-
bility of PVH against Li metal anodes.

CCD is recorded to evaluate the maximum available cur-
rent density of a SPE, as displayed in Fig. 2c. The PVH-IM 
exhibits a high CCD of 1.7 mA  cm−2, which is 4.25 times 
that of PVH (0.4 mA  cm−2). Note that the CCD and total 
Li stripping/plating capacity of our PVH-IM surpass those 
reported in previous studies (Fig. 2d) [35, 42–54]. Further-
more, Tafel tests are conducted to calculate the exchange 
current density. In general, a higher exchange current density 
indicates faster ion transport kinetics at the SPE/Li metal 
interface. Figure 2e shows that the exchange current density 
of PVH-IM is 0.067 mA  cm−2, which is 1.37 times that of 
PVH (0.049 mA  cm−2), demonstrating that In-MOF signifi-
cantly promotes  Li+ transport [25, 32].

The influence of In-MOF on the states of residual solvent 
DMF is firstly studied to reveal the reason for the excellent 
electrochemical stability of PVH-IM. Thermogravimet-
ric (TG) analysis shows that the residual DMF content in 
PVH and PVH-IM is 14.9% and 14.3%, respectively, with 
a negligible difference (Fig. S11). As mentioned above, the 
residual DMF improves σ but reacts seriously with Li metal 
anodes. FT-IR is used to characterize the form of residual 
DMF (Fig. 2f). In the case of PVH, the two characteristic 
peaks at 1655.1 and 1392.4  cm−1 correspond to the C=O 
and  CH3 groups of DMF. These two peaks shift to 1657.5 
and 1389.0  cm−1 after introducing In-MOF, indicating the 
strong interactions between In-MOF and DMF. In addition, 
the PVH shows a characteristic peak of free DMF molecules 
at 656.6  cm−1, which disappears in the case of PVH-IM 
[31, 55, 56]. These findings imply that the overwhelming 
majority of free DMF molecules are bonded by interacting 
with In-MOF.

Subsequently, we conduct density functional theory 
(DFT) calculations to confirm the strong interaction 
between In-MOF and residual DMF molecules by calculat-
ing the adsorption energy of DMF with PVH and In-MOF. 
As shown in Fig. 2g, the adsorption energy of DMF with 
PVH chain is −0.27 eV. In contrast, the adsorption energy 
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of DMF with In-MOF is as low as −0.93 eV, indicating 
the strong adsorption DMF capability of In-MOF. In addi-
tion, the distance between two In-ion chains of In-MOF is 
10.89 Å, which is significantly larger than the molecular 
diameter of DMF (1.74 Å), making it structurally possible to 
absorb DMF molecules [31, 38, 39]. As a result, the strong 
adsorption of In-MOF to DMF minimizes the side reactions 
between residual DMF and Li metal anodes, contributing 
partially to the excellent enhancements in the electrochemi-
cal stability of PVH-IM.

2.3  Mechanism of In‑MOF to Protect PVH 
from Reacting with Li Metal Anodes

In addition to suppressing side reactions between residual 
DMF and Li metal anodes, the In-MOF also partially sac-
rifices to form a thin yet robust SEI layer, thereby isolating 
PVH and Li metal anode to prevent their inherent reactions. 
To demonstrate this hypothesis, we first perform various 
experimental characterizations and theoretical simulations 

Fig. 2  Electrochemical stability of PVH-IM against Li metal anode. a Galvanostatic voltage profiles of Li|PVH-IM|Li symmetric cells at 
0.2 mA  cm−2. b Photographs of PVH-IM and Li metal anode after 50 h cycles at 0.1 mA  cm−2. c CCD curves of PVH and PVH-IM. d Com-
parison of the cumulative Li striping/plating capacity and CCD values of PVH-IM with other reported SPEs. e Tafel plots and corresponding 
exchange current densities of PVH and PVH-IM. f FT-IR spectra of PVH and PVH-IM. g Adsorption energies of PVH/DMF and In-MOF/DMF. 
To simplify the adsorption energy calculation, only one vinylidene fluoride unit and one hexafluoropropylene unit are used to represent the PVH 
chains. All tests are conducted at 25 °C unless otherwise stated
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on the PVH-IM side after cycling, as illustrated in Fig. 
S12. SEM is used to observe the morphological changes of 
PVH-IM upon cycling (Fig. 3a). After 1 h cycling, part of 
the In-MOF nanorods on the surface disappear. In addition, 
the PVH microspheres tend to merge, resulting in increased 

PVH diameter and smaller pores. As the cycling continues, 
the In-MOF nanorods on the surface disappear entirely, 
while the microsphere morphology of PVH is retained. The 
disappearance of In-MOF on the surface is attributed to its 
reactions with Li metal anodes, generating a thin, uniform, 

Fig. 3  Characterizations of cycled PVH-IM. a SEM images of PVH-IM after 0, 1, 10, and 50 h cycling at 0.1 mA  cm−2. b Schematic and c 
corresponding patterns of the in situ XRD measurements of PVH-IM. XPS spectra of d PVH and e PVH-IM after 0, 1, 10, and 50 h cycling 
at 0.1 mA  cm−2. f LUMO energy diagrams of DMF, PVH, LiTFSI, and In-MOF. To simplify the LUMO energy calculation, the numbers of 
vinylidene fluoride units and hexafluoropropylene units in the PVH molecular chains are fixed as one
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and robust inorganic-rich SEI layer (as proved later). This 
inorganic-rich SEI layer acts as an ion-conducting binder to 
connect PVH microspheres and form a smooth and dense 
surface, resulting in tight PVH-IM/Li contact and homog-
enous Li deposition. This inorganic-rich SEI layer also 
serves as an electron isolator to efficiently prevent PVH from 
reacting with Li metal anodes. In contrast, the PVH under-
goes severe reactions against Li metal anodes without In-
MOF, resulting in uneven and rough surfaces after cycling 
(Fig. 1c), which is unfavorable for its contact with Li metal 
anode and uniform Li deposition.

The disappearance of In-MOF on the surface and the pres-
ervation of PVH crystal structure in the case of PVH-IM 
are further confirmed by in situ X-ray diffraction (XRD). 
To enable X-ray penetration through the lithium metal sym-
metric cell, a small hole is drilled in the center of the Li 
foil, as schematically illustrated in Fig. 3b. The correspond-
ing in situ XRD patterns are plotted in Fig. 3c. The pro-
nounced peak at 19.2° corresponds to the In-MOF, which 
shows decreased intensity upon cycling [38, 39]. This result 
indicates that only part of In-MOF nanorods are reacted 
and converted, leading to decreased peak intensity. At the 
same time, the weak peak around 20.9°, which is attributed 
to PVH, remains almost unchanged in intensity [27]. This 
result shows that the structure and crystallinity of PVH are 
not destroyed upon cycling. The in situ XRD findings are 
also verified by ex situ FT-IR and Raman analyses, where 
the characteristic peaks of In-MOF gradually disappear, and 
the characteristic peaks of PVH remain unaltered, as shown 
in Figs. S13 and S14. In contrast, in the case of PVH without 
In-MOF, the PVH’s characteristic peaks vanish, and new 
phases (such as carbon) emerge as cycling goes on (Fig. 1d, 
e). In addition, the cross-sectional SEM images of PVH-IM 
after 0, 1, 10, and 50 h cycling at 0.1 mA  cm−2 are shown 
in Fig. S15. The 1D rod-like In-MOFs are still visible in 
the PVH-IM. These results demonstrate that the In-MOF 
on the PVH-IM surface preferentially reacts with Li metal 
anodes during cycling, thus protecting the PVH matrix from 
degradation.

Postmortem XPS examinations are subsequently 
employed to reveal the reaction products between SPEs 
and Li metal anodes. In the case of PVH (Fig. 3d), the F 
1s spectrum shows that the peak of C-F bonds gradually 
disappears, suggesting intensive side reactions of PVH and 
LiTFSI with Li metal anodes as the cycling goes on. The 

side reactions lead to the gradual formation and increased 
contents of LiF,  SO2F, and C=O on the surface of PVH [25, 
27]. In contrast, the peak intensity of C-F bonds remains 
slightly changed, with a small broad LiF peak appearing. 
In addition, the contents of LiF,  SO2F, and C=O are stable 
upon cycling (Fig. 3e). These findings imply that the In-
MOF on the surface acts as a sacrificial agent to react with 
Li metal anodes, thereby protecting the PVH matrix from 
the attack of alkaline Li.

We also perform molecular orbital calculations to theo-
retically unravel the favorable reaction thermodynamics 
between In-MOF and Li metal anodes. Generally, the low-
est unoccupied molecular orbital (LUMO) level represents 
electron-accepting properties, associating the resistance 
to reduction [57]. Figure 3f shows that In-MOF exhibits a 
LUMO energy of −2.55 eV, which is significantly smaller 
than those of DMF (0.36 eV), PVH (−0.93 eV), and LiTFSI 
(−1.14 eV). This result indicates that In-MOF has a strong 
tendency to accept electrons and react with Li metal anode 
at low potentials, thus forming a stable inorganic-rich SEI 
layer to prevent the reaction between PVH matrix and Li 
metal anodes.

In addition to the characterizations on the PVH-IM side 
after cycling, we also conduct various investigations on the 
cycled Li metal anode side (as illustrated in Fig. S12), in 
order to disclose the inorganic-rich SEI layer induced by 
In-MOF. The in-depth XPS test was first used to charac-
terize the chemical composition of the SEI layers, and the 
corresponding spectra are depicted in Fig. 4a, b. In the F 1s 
spectra, the peak at 688.4 eV corresponds to the organic C-F 
bonds, and the peak at 685.4 eV is attributed to the inorganic 
LiF [31, 32]. In both cases of PVH and PVH-IM (Fig. S16a), 
as the etching lasts (viz., etching depth rises), the content 
of organic C-F bonds decreases while the content of inor-
ganic LiF increases. This result implies that the inorganic 
LiF mainly distributes in the deep SEI layer. In addition, the 
SEI layer of PVH-IM has higher inorganic LiF ratio than that 
of PVH-IM at all etching depths. For instance, at an etch-
ing depth of 10 nm, the LiF content in PVH-IM is 73.3%, 
whereas in PVH, it is only 57.2% (Fig. S15a). Similar find-
ings are also observed for the O 1s and S 2p spectra, where 
the SEI layer of PVH-IM shows a higher content of  Li2O 
and  Li2S when compared to PVH (Fig. S16b, c) [19, 47]. 
Moreover, intensive peaks attributed to the In-containing 
inorganic species are observed in PVH-IM (Fig. 4b), which 
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does not appear in PVH. The In 3d peaks on the SEI surface 
at 452.9 and 445.5 eV are attributed to In 3d5/2 and In 3d3/2, 
respectively, and their positions align with those in In-MOF 
(Fig. S17). As the etching depth increases, these peaks shift 
toward higher binding energies. This phenomenon indicated 
a decrease in In electron density in the deep SEI layer, which 
is likely due to the transformation of In from its original 
coordination environment into fluorides, oxides, sulfides, 
etc., resulting in electron loss.

It is worth noting that the inorganic components are ion 
conducting but electron insulating. Besides, they have higher 
mechanical strength and modulus than their organic counter-
parts [48]. Therefore, in the cases of PVH-IM, the inorganic-
rich SEI layers play three critical roles: (1) inhibiting side 
reactions between PVH and Li metal anodes by preventing 
electron conduction, (2) inducing uniform Li deposition by 
allowing fast  Li+ transport across the electrolyte/Li inter-
faces, and (3) suppressing Li dendrite growth. In contrast, in 
the case of PVH, the organic-rich SEI layer fails to prevent 

Fig. 4  Characterizations of cycled Li metal anodes.  Ar+-sputtering XPS profiles of SEI layers on Li metal surfaces from a Li|PVH|Li and b 
Li|PVH-IM|Li cells after cycling for 50 h at 0.1 mA  cm−2. ToF–SIMS results of SEI layers on Li metal surfaces from Li|PVH|Li and Li|PVH-
IM|Li cells after cycling for 50 h at 0.1 mA  cm−2: c depth profiles and d 3D reconstruction images. SEM images of Li metal anode surfaces from 
e Li|PVH|Li and g Li|PVH-IM|Li cells after cycling for 50 h at 0.1 mA  cm−2. In situ optical microscope images of f Li|PVH|Li and h Li|PVH-
IM|Li cells during Li plating. The scale bars in f and h are 1 mm
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the side reactions between PVH and Li metal anode, result-
ing in uneven Li deposition and Li dendrite growth.

Time of f light secondary ion mass spectrometry 
(ToF–SIMS) with  Cs+ ion beam is also employed to fur-
ther characterize the components and distribution of SEI 
layers. The depth profile in Fig. 4c shows that all signals of 
PVH remain stable even after 600 s of sputtering, while the 
signals of PVH-IM remain stable in the first 100 s and then 
gradually decrease over the sputtering time. These results 
suggest that the SEI layer of PVH is much thicker than that 
of PVH-IM, leading to a fast increase in interfacial resist-
ance and cell failure of the PVH during cycling [20]. Fig-
ure 4d presents 3D reconstruction images. In the case of 
PVH, the LiF,  Li2O, and  Li2S-based species are unevenly 
distributed along the thickness direction of the SEI layer, 
forming band-like patterns. This result suggests that the SEI 
layer of PVH is thick and inhomogeneous. On the contrary, 
in the case of PVH-IM, these signals are uniformly distrib-
uted in the near-surface areas along the thickness direction 
of the SEI layer and then gradually weaken, demonstrating 
that a thin but uniform SEI layer is induced by In-MOF.

Based on the above investigations on the composition 
and distribution of SEI layers, their impacts on Li stripping/
plating behavior are disclosed. Figure 4e observes massive 
Li dendrites with moss-like morphologies on the Li foils 
that are cycled with PVH, which is likely due to the uneven 
Li deposition caused by the inhomogeneous organic-rich 
SEI layers. To further confirm this phenomenon, we use 
optical microscopes to in situ observe the Li deposition in 
Li|PVH|Li symmetric cells and the results are displayed in 
Fig. 4f. As the Li plating goes on, distinct dendrites form 
and grow into large particles with sub-millimeter size. In 
addition, the gap between PVH and Li metal anode becomes 
more and more noticeable, indicating uneven Li deposition 
deteriorated interfacial contact. In contrast, no obvious 
Li dendrites are witnessed on the Li metal anode surface 
after cycling in the case of Li|PVH-IM|Li (Fig. 4g), which 
shows an ordered Li deposition pattern similar to fresh Li 
foils (Fig. S18). Also, no Li dendrites and interfacial gap 
are found during the in situ optical observation (Fig. 4h). 
These results confirm the uniform Li stripping/plating in the 
Li|PVH-IM|Li cells, resulting from the thin homogeneous 
inorganic-rich SEI layer induced by In-MOF.

To further unveil the Li deposition behaviors, we use 
COMSOL Multiphysics to simulate the Li dendrite growth 
on the Li metal anode surfaces with PVH and PVH-IM for 

a duration of 150 s. Figure 5a shows the  Li+ concentration 
distribution of PVH, in which pronounced  Li+ concentra-
tion gradients are observed at the tips. In this circumstance, 
 Li+ tends to deposit at the tips, causing intensive Li den-
drite propagation (Fig. 5c) [57]. After introducing In-MOF, 
the  Li+ concentration is uniformly distributed, significantly 
reducing the tip concentration gradient and suppressing the 
tip effect (Fig. 5b) [57]. As a result, only a few small Li 
dendrites are formed in the case of PVH-IM (Fig. 5d). The 
COMSOL results again validate that introducing In-MOF 
nanorods promotes a smooth and uniform Li deposition 
on the Li metal surface and effectively avoids Li dendrite 
growth.

Based on the above-mentioned experimental and simula-
tion findings, we summarize the effect of In-MOF on the 
PVH’s electrochemical stability against Li metal anodes as 
follows (Fig. 5e, f). First, the In-MOF nanorods adsorb the 
residual DMF molecules, making them from free states to 
bonded states and suppressing their side reactions with Li 
metal anodes. Second, the In-MOF nanorods on the elec-
trolyte surface serve as a sacrificial agent to preferentially 
react with Li metal anodes, forming a thin, uniform, and 
inorganic-rich SEI layer. This SEI layer not only protects 
the PVH matrix from reacting with Li metal anodes but also 
inhibits Li dendrite growth by inducing fast and uniform Li 
deposition. In contrast, in the case of PVH, the free residual 
DMF molecules and PVH matrix undergo intense side reac-
tions with Li metal anodes, resulting in a thick, inhomoge-
neous, and organic-rich SEI layer that induces uneven Li 
deposition and Li dendrite formation.

2.4  Ion‑Conducting Properties of PVH‑IM

In addition to its high electrochemical stability against Li 
metal anodes, PVH-IM also exhibits outstanding ion-con-
ducting properties. Figure 6a presents that PVH exhibits 
an σ of 0.36 ×  10−3 S  cm−1 at 25 °C, which is significantly 
increased to 1.23 ×  10−3 S  cm−1 after introducing In-MOF. 
At the same time, the activation energy (Ea) decreases from 
0.21 eV for PVH to 0.18 eV for PVH-IM (Figs. 6b, S19). 
These values surpass most previously reported SPEs, as 
compared in Fig. 6c [24–26, 29–31, 49–51, 53, 54, 58–60]. 
The DC polarization was employed to measure the electronic 
conductivity (Fig. S20). The PVH-IM displays an electronic 
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conductivity of 1.80 ×  10−9 S  cm−1, which is lower than that 
of PVH (9.13 ×  10−7 S  cm−1). Therefore, the improvement 
of ionic conductivity is not attributed to the electronic con-
ductivity. In addition, Figs. 6d and S21 demonstrate that the 
PVH-IM exhibits a high  Li+ transference number ( t

Li
+ ) of 

0.49, which is much larger than that of PVH (0.19). These 
results indicate that the presence of In-MOF effectively 
accelerates  Li+ transport with a low energy barrier [61, 62].

To disclose the reasons for ion transport enhancement 
by In-MOF, we employ DSC and Raman to investigate the 
crystallinity change of the PVH matrix and the dissociation 
degree of LiTFSI, respectively. As Figs. 6e and S22 pre-
sent, PVH showcases a high crystallinity of 34.1%, which 
dramatically declines to 19.2% in the case of PVH-IM. The 
reduced crystallinity suggests that introducing In-MOF 
brings about more amorphous regions in the PVH matrix, 
which is conducive to fast  Li+ transport [63, 64]. In addition, 
our previous work demonstrated that  Li+ is thermodynami-
cally and kinetically favorable to migrate to and transport 

at the polymer/filler interfaces, suggesting that the fast-ion-
conducting behaviors of PVH-IM also come from the accel-
erated  Li+ conduction at the PVH/In-MOF interfaces [65].

Figure 6f, g displays the Raman spectra and their quanti-
fied analyses on LiTFSI dissociation. In general, there are 
three  TFSI− forms, including free  TFSI−, contact ion pairs 
(CIP), and aggregated ion pairs (AGG), corresponding to the 
Raman bands at 740.9, 744.2, and 748.7  cm−1, respectively 
[63, 66]. Among them, the free  TFSI− represents the LiTFSI 
dissociation degree, which undergoes an enormous increase 
from 49% to 64% after introducing In-MOF nanorods, 
thereby showing a considerable contribution to improving 
σ. Furthermore, Lewis acid–base interactions between In-
MOF and the Li salt immobilize the  TFSI− anions, result-
ing in improved t

Li
+ [48]. As a result,  TFSI− anions will not 

accumulate on the one side of electrolytes and deplete on 
the other side, thereby immensely reducing the space charge 
layer effects from and inhibiting the growth of Li dendrites 
[67, 68].

Fig. 5  COMSOL Multiphysics simulations and SEI formation schematics. Simulated  Li+ concentration distribution in a PVH and b PVH-IM. 
Simulated Li dendrite growth in c PVH and d PVH-IM. Schematics of SEI formation in e PVH and f PVH-IM. The simulation time of COM-
SOL Multiphysics is 150 s
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Fig. 6  Ion-conducting behavior and all-solid-state full cell performance. a Ionic conductivities and b Arrhenius plots and corresponding activa-
tion energies of PVH and PVH-IM. c Comparison of σ and Ea of PVH-IM with previously reported SPEs [24–26, 29–31, 49–51, 53, 54, 58–60]. 
d t

Li
+ , e crystallinities, f Raman spectra, and g contents of free TFSI.−, CIP, and AGG of PVH and PVH-IM. h Rate capability at different cur-

rent densities and cycling stability at the current density of i 0.1C and j 0.5C of all-solid-state LFP|PVH|Li and LFP|PVH-IM|Li full cells. k 
Cycling performance of all-solid-state LFP|PVH-IM|Li pouch cells at the current density of 0.1C. l Photographs showing LED bulbs powered by 
all-solid-state LFP|PVH-IM|Li pouch cells under different testing states: flat, folded, unfolded, and cut. All tests are conducted at 25 °C unless 
otherwise stated. The crystallinities in c are calculated from the corresponding DSC curves in Fig. S22
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2.5  All‑Solid‑State Full Cell Performance of LFP/
PVH‑IM/Li

Linear sweep voltammetry (LSV) is employed to investigate 
the oxidative stability of PVH-IM. Figure S23 shows that 
the current rises at approximately 4.10 V and then reaches 
a small but distinct oxidation peak at ca. 4.30 V in the case 
of PVH, suggesting its poor oxidation resistance at high 
voltages. Previous works also observe this peak but with a 
much smaller current intensity [63]. In contrast, the PVH-
IM remains stable up to 4.90 V with almost zero current, 
indicating its excellent anti-oxidation capability at high volt-
ages, which is important for practical applications for next-
generation ASLMBs [69–71].

We then assemble all-solid-state full cells using  LiFePO4 
(LFP) as the cathodes, PVH and PVH-IM as solid-state elec-
trolytes, and Li foil as the anodes. No liquid electrolytes or 
ionic liquids are added to the full cells. All cells are tested 
at 25 °C. Figure 6h presents the rate performance of all-
solid-state full cells at different current densities. LFP|PVH-
IM|Li delivers high reversible specific capacities of 141.7, 
137.8, 126.9, and 103.5 mAh  g−1 at the current density of 
0.1C, 0.2C, 0.5C, and 1C, respectively. Once the current 
density returns to 0.5C, 0.2C, and 0.1C, the specific capac-
ity immediately recovers to its initial values. On the con-
trary, LFP|PVH|Li exhibits much lower specific capacities 
at each current density than LFP|PVH-IM|Li. For instance, 
LFP|PVH|Li only delivers small specific capacities of 103.4 
and 76.7  g−1 at the current density of 0.1C and 1C, respec-
tively. In addition, LFP|PVH-IM|Li shows higher Coulom-
bic efficiency than LFP|PVH|Li, confirming its excellent 
capacity reversibility (Fig. S24) [72, 73]. Moreover, the 
galvanostatic charging/discharging (GCD) profiles imply 
that LFP|PVH-IM|Li has lower polarization voltages than 
LFP|PVH|Li at all current densities (Figs. S25, S26), once 
again demonstrating the excellent ion conducting and elec-
trochemical stability of PVH-IM.

Figure  6i presents the cycling performance of 
LFP|PVH-IM|Li and LFP|PVH|Li at the current density 
of 0.1C. After 130 cycles, LFP|PVH-IM|Li maintains a 
high specific capacity of 133.9 mAh  g−1, corresponding 
to an excellent capacity retention of 95.7%. In contrast, 
the specific capacity of LFP|PVH|Li quickly decreases 
after the 7th cycle and finally reaches only 22.6 mAh 
 g−1 at the 100th cycle. When the current density rises 
to 0.5C, the specific capacity of LFP|PVH-IM|Li shows 

almost no decline after 280 cycles with a high capacity 
retention of 80.0% (Fig. 6j). However, the specific capac-
ity of LFP|PVH|Li gradually drops to 25.8% of its initial 
value. In addition, the LFP|PVH-IM|Li full cells exhibit 
more stable Coulombic efficiency than that of LFP|PVH-
IM|Li at the current densities of 0.1C and 0.5C, demon-
strating their excellent capacity reversibility (Fig. S27). 
These results demonstrate the outstanding cyclability of 
LFP|PVH-IM|Li.

We further assemble all-solid-state LFP|PVH-IM|Li 
pouch cells to verify the potential of PVH-IM for practi-
cal applications. The pouch cells demonstrate a high initial 
specific capacity of 131.8 mAh  g−1 at the current density of 
0.1C and undergo stable cycling for 30 cycles with a high 
capacity retention of 94.7% (Figs. 6k, S28). The pouch cells 
also successfully light up 36 light-emitting diodes (LEDs) 
(Fig. 6l). The LEDs remain powered when the pouch cells 
are folded and unfolded back and forth, suggesting their 
good flexibility. Even cut into several small pieces, the 
pouch cell continues to function properly without fuming 
or burning, demonstrating their high safety under extreme 
conditions.

To investigate the compatibility of PVH-IM with 
high-voltage cathode materials, the  LiNi0.6Co0.2Mn0.2O2 
(labeled as NCM622) was employed as a typical nickel-
rich oxide cathode. The rate and cycling performance of 
NCM622|PVH-IM|Li full cells are shown in Fig. S29a, b. 
The all-solid-state NCM622|PVH-IM|Li full cells show 
excellent rate performance with high reversible specific 
capacities of 142.0, 132.1, 115.0, and 100.9 mAh  g−1 at 
0.1C, 0.2C, 0.5C, and 1C, respectively. In addition, the 
NCM622|PVH-IM|Li full cells exhibit a high initial specific 
capacity of 140.0 mAh  g−1, which still maintains 138.5 mAh 
 g−1 after 50 cycles at the current density of 0.1C under 25 °C 
(Fig. S29c, d). These results suggest that the PVH-IM holds 
excellent potential for various cathodes toward all-solid-state 
Li metal batteries.

3  Conclusions

By proposing In-MOF as a multifunctional promoter, we 
have successfully overcome the poor electrochemical sta-
bility against Li metal anodes and the trade-off between 
residual solvent and σ for PVH. The intrinsic porous In-
MOF enables efficient adsorption of residual DMF solvent, 
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making them from free states into bonded states through 
interaction, thereby suppressing their side reactions with Li 
metal anodes. The In-MOF on the electrolyte surface also 
serves as a sacrificial agent to preferentially react with Li 
metal anodes, owing to its ultralow LUMO energy level. As 
a result, on the PVH-IM side, the reaction products act as 
a binder to bond PVH microspheres together, making the 
PVH-IM surface smoother and denser. The improved surface 
facilitates excellent interfacial contact between PVH-IM and 
Li metal anodes, promoting uniform Li deposition. On the Li 
metal anode side, In-MOF induces the formation of a thin, 
uniform, inorganic-rich SEI layer, which not only isolates 
the PVH matrix from Li metal anodes to avoid their reac-
tions but also promotes uniform Li deposition to hinder Li 
dendrite growth. Moreover, In-MOF significantly reduces 
the crystallinity of the PVH matrix and promote LiTFSI 
dissociation. Consequently, the PVH-IM-based symmetric 
Li cells work properly for 5500 h at 0.2 mA  cm−2, deliver-
ing a remarkable cumulative Li stripping/plating capacity 
of 1110 mAh  cm−2. In addition, the PVH also achieves an 
excellent CCD of 1.7 mA  cm−2, σ of 1.23 ×  10−3 S  cm−1, and 
Ea of 0.18 eV at 25 °C. Owing to these merits, the all-solid-
state LFP|PVH-IM|Li full cells demonstrate outstanding rate 
capability (103.5 mAh  g−1 at 1C) and cycle performance 
(95.7% and 80.0% capacity retention after 130 and 280 
cycles at 0.1C and 0.5C, respectively) at 25 °C. Furthermore, 
the all-solid-state LFP|PVH-IM|Li pouch cells operate stably 
at different bending states and remain safe under extreme 
conditions. This work provides a facile and effective strategy 
to develop advanced fluoropolymer-based SPEs with both 
high σ and excellent stability against Li metal anodes, paving 
the way for the practical application of ASLMBs.
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