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HIGHLIGHTS 

• An interconnected structure is developed by evaporation of zinc species using a  ZnCo2O4 precursor as the cobalt resource, enabling 
communications between channels as well as homogeneous loading of active sites.

• A shell structure of  Co3O4 is formed on the surface of a zero-valent  Co0 core during a stepwise carbothermic reduction of  ZnCo2O4.

• The Co-embedded multichannel carbon nanofibers exhibit not only a superior half-wave potential, but also an excellent durability 
compared to those of the commercial 30% Pt/C.

ABSTRACT A novel nonprecious metal material consisting of Co-
embedded porous interconnected multichannel carbon nanofibers (Co/
IMCCNFs) was rationally designed for oxygen reduction reaction (ORR) 
electrocatalysis. In the synthesis,  ZnCo2O4 was employed to form inter-
connected mesoporous channels and provide highly active  Co3O4/Co 
core–shell nanoparticle-based sites for the ORR. The IMC structure with 
a large synergistic effect of the N and Co active sites provided fast ORR 
electrocatalysis kinetics. The Co/IMCCNFs exhibited a high half-wave 
potential of 0.82 V (vs. reversible hydrogen electrode) and excellent 
stability with a current retention up to 88% after 12,000 cycles in a cur-
rent–time test, which is only 55% for 30 wt% Pt/C.

KEYWORDS Nonprecious metal material; Multichannel carbon nanofiber; Oxygen reduction reaction; Core–shell nanoparticle; 
Synergistic effect

1 Introduction

Fuel cells are considered as ideal alternatives to fossil fuels 
owing to their high energy conversion efficiencies and environ-
mental friendliness. An  H2–O2 fuel cell exhibits a thermody-
namic efficiency of approximately 80% at 25 °C, significantly 
higher than that of an internal combustion engine (10–20%) 

[1–3]. Nevertheless, the sluggish kinetics of the oxygen reduc-
tion reaction (ORR) on the cathode hinder the large-scale 
industrial application of the fuel cells [4, 5]. Currently, Pt and 
Pt-based alloys exhibit superior electrocatalytic properties in 
acid and alkaline media. However, owing to the high costs and 
unsatisfactory stabilities of Pt and Pt-based alloys, it is required 
to develop cheap efficient ORR catalysts [6–9].
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Transition metal-based materials, such as transition metal 
and metal oxides/carbides/nitrides, are ideal ORR alterna-
tives to Pt-based precious metal materials [10–13]. The 
transition metal-based materials exhibit very high catalytic 
activities, long-term durabilities, and high tolerances to the 
crossover effect by methanol for the ORR owing to their low 
activation energies for the absorption and dissociation of  O2 
[14, 15]. Although these candidates exhibit reasonable ORR 
activities, the low conductivities and unsatisfactory agglom-
eration hinder their application as ORR catalysts. Extensive 
studies have been carried out to combine transition metals 
with carbon materials to enhance the electric conductivity 
as well as the dispersion of metal-based active sites [16, 17]. 
Moreover, theoretical calculations suggested that dopants of 
heteroatoms in the sp2 lattice of graphitic carbon can turn 
the oxygen adsorption mode into diatomic adsorption, which 
changes the electron cloud of the graphite carbon and signifi-
cantly enhances the kinetics of the ORR [18–20].

Carbon nanotubes (CNTs), one-dimensional graphitized 
carbon structures with a high suppleness, satisfactory spe-
cific surface area, and high electrical conductivity, have been 
widely employed in gas adsorption, electrocatalysis, energy 
storage, and conversion applications [21]. Unlike CNTs, 
which are regularly composed of graphene layers rolled up 
into circular tubes with flats parallel to the vertical axis, 
carbon nanofibers (CNFs) can be engineered into various 
morphologies such as dendritic, core–shell, and hollow 
structures, particularly by electrospinning [22–26]. In addi-
tion, CNFs with parallel channels are promising for elec-
trocatalysis applications owing to the high exposure as well 
as utilization of active sites in the fibrous carbon skeleton. 
Recently, Kim et al. [27] have employed the electrospin-
ning strategy to fabricate multichannel CNFs (MCCNFs) 
using the thermal stability difference between polyacry-
lonitrile (PAN) and poly(methyl methacrylate) (PMMA). 
Similarly, David et al. [28] fabricated parallel channels in 
CNFs by a controllable decomposition of a dispersion phase 
of polystyrene (PS) in PAN for Li–S battery applications. 
The generation of parallel channels within the skeleton of 
nanofibers (NFs) significantly increases the specific surface 
area. However, the disconnection among the channels lim-
its the transmission of electrons and mass during the ORR 
electrocatalysis, which is addressed by developing intercon-
nected multichannel (IMC) structures for CNF-based ORR 
electrocatalysts.

In this study, Co-embedded interconnected porous multi-
channel carbon nanofibers (Co/IMCCNFs) were fabricated 
through the electrospinning strategy. During the synthesis 
process, zinc salt was added into polymeric precursors of 
PS and PAN, yielding interconnected porous MCCNFs 
after pyrolysis at 950 °C. To further improve the ORR cata-
lytic activity of the MCCNFs, the electrochemically active 
cobalt was efficiently incorporated into the MCCNFs using 
 ZnCo2O4 as the intermediate. Owing to the interconnected 
porous frameworks as well as the improved electron and 
mass transmission pathways, the Co/IMCCNFs exhibited a 
satisfactory half-wave potential and excellent electrochemi-
cal durability for the ORR.

2  Experimental Methods

2.1  Chemicals

PAN (molecular weight (MW) = 210,000) was purchased 
from Goodfellow Cambridge Limited. PS (MW = 28,000) 
particles were obtained from Aladdin Ltd. Zinc (II) acet-
ylacetonate (Zn(acac)2) and cobalt (II) acetylacetonate 
(Co(acac)2) were purchased from Alfa Aesar Ltd. Ammo-
nium hydroxide  (NH3·H2O), N, N’-dimethylformamide 
(DMF), and ethanol absolute (EtOH) were purchased from 
Sinopharm Chemical Reagent Co. All reagents were used 
without further purification.

2.2  Preparation of Co/CNFs

For the synthesis of Co/CNFs, 500 mg of PS and 400 mg 
of Zn(acac)2 were blended into 10 mL of DMF to obtain a 
homogeneous solution under stirring for 12 h at room tem-
perature. The PS/Zn(acac)2 solution was then electrospun 
into NFs at a high voltage of 10 kV and appropriate col-
lection distance of 15 cm. The collected fibers were then 
transferred into a vacuum drying oven at 60 °C for 24 h. 
In the second step, spinel  ZnCo2O4 was employed as the 
intermediate to incorporate cobalt. Typically, 0.319 g of 
Co(acac)2 and 0.163 g of Zn(acac)2 were dissolved in 96 mL 
of ethanol and 4 mL of distilled water. 0.494 g of fibers pre-
oxidized at 250 °C in air were added to the above solution, 
followed by the addition of 1 mL of  NH3·H2O. The reaction 
was carried out at 60 °C under stirring for 2 h. Subsequently, 
the reaction mixture was transferred to a 100-mL autoclave 
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for a solvothermal reaction at 150 °C for 3 h. The resulting 
product was collected by filtration, washed several times 
with ethanol and water, and then dried in vacuum at 60 °C. 
Finally, the obtained product was heated in Ar at 950 °C for 
4 h; the heating rate was 5 °C min−1.

2.3  Preparation of Co/IMCCNFs

The Co/IMCCNFs were prepared by the same method as 
that for the Co/CNFs except the addition of 500 mg of PAN 
in the PS/Zn(acac)2 solution.

2.4  Preparation of Co/MCCNFs‑D

PS (500 mg), PAN (500 mg), and Co(acac)2 (400 mg) were 
blended into 10 mL of DMF to obtain a homogeneous solu-
tion. The PS/PAN/Co(acac)2 solution was then electrospun 
into NFs under the same conditions. The collected fibers 
were dried in the vacuum oven at 60 °C for 24 h. In the 
second step, the fibers were preoxidized at 250 °C in air and 
then pyrolyzed at 950 °C for 4 h in Ar (the heating rate was 
5 °C min−1).

2.5  Characterization

The physical properties of the prepared samples were ana-
lyzed by X-ray diffraction (XRD, SIEMENS Diffractometer 
D5000 with a Cu  Kα radiation source), X-ray photoelectron 
spectroscopy (XPS, ESCALab 220i-XL electron spectrome-
ter), field emission scanning electron microscopy (FE-SEM, 
ULTRA-55), transmission electron microscopy (TEM, JSM-
2100), and Brunauer–Emmett–Teller (BET) measurement 
(3H-2000PS1/2 static volume method, China).

2.6  Electrochemical Measurements

The electrochemical characteristics were measured in a 
three-electrode system with a glass carbon loading with the 
electrocatalyst (0.25 mg cm−2) as the working electrode, 
platinum sheet as the counter electrode, and saturated 
calomel electrode (SCE) as the reference electrode. Cyclic 
voltammetry (CV) and linear sweep voltammetry tests of 
a rotating disk electrode (RDE) and rotating ring–disk elec-
trode (RRDE) were carried out in an  O2-saturated 0.1 M 

KOH electrolyte at room temperature using a CHI760D elec-
trochemical workstation equipped with a modulated speed 
electrode rotator (Pine Research Instrumentation). The tested 
electrode potential (E (SCE)) was calibrated to the revers-
ible hydrogen electrode potential (E (RHE)) according to the 
equation: E (RHE) = E (SCE) + 0.059 × pH + 0.241 [29, 30].

For the RRDE measurement, the ring potential was set at 
1.4 V (vs. RHE). %HO2

− and electron transfer number (n) 
were evaluated by Eqs. (1) and (2):

where Id is the disk current, Ir is the ring current, and N 
(= 0.37) is the current collection efficiency of the Pt ring.

3  Results and Discussion

The MCCNFs with an interconnected structure were fabri-
cated by electrospinning using the polymer mixture of PS 
and PAN. The differential scanning calorimetry and ther-
mogravimetric curves in Fig. S1 confirm that PS begins 
to decompose at 289.1 °C and completely decomposes at 
423.1 °C, achieving MC structures in the carbon skeleton. 
Furthermore, in order to improve the connection proper-
ties between the parallel channels for enhanced oxygen 
reduction kinetics, extra zinc salt was incorporated into the 
polymer mixture. After preoxidation at 250 °C followed by 
a high-temperature carbonization at 950 °C, the metallic 
zinc formed by the carbothermic reduction was completely 
evaporated, leading to IMCs in the skeleton of the CNFs, as 
shown in Fig. 1a.

SEM and TEM analyses were performed to investigate 
the structures of the porous MCCNFs. The parallel chan-
nels with diameters of approximately 60 nm were success-
fully fabricated; no residual zinc-containing particles were 
observed on the surfaces of the NFs (Fig. 1b, c). A BET 
measurement confirmed that abundant mesoporous struc-
tures (with sizes of approximately 3.5 nm) were successfully 
generated in the porous MCCNFs owing to the reduction 
and evaporation of zinc species (Fig. 1d). Such unique IMC 
structures with enhanced mass transfer kinetics and exposed 
surfaces can be not only a metal-free ORR electrocatalyst 
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but also an ideal support to construct transition metal-loaded 
nonprecious metal ORR electrocatalysts.

Highly active Co nanoparticles were then incorporated 
into the porous MCCNFs using  ZnCo2O4 as the intermedi-
ate. Figure 2 shows a schematic of the synthesis and SEM 
and TEM images of the prepared Co/IMCCNFs. Precursor 
polymer NFs with a homogeneously dispersed zinc salt were 
prepared by electrospinning. After a hydrothermal reaction, 
a well-defined spinel  ZnCo2O4 intermediate was grown on 
the surface (Fig. 2b). As shown in Fig. 2c, d, cobalt nanopar-
ticles with diameters of approximately 50 nm were uniformly 
anchored on the porous MCCNFs. Compared to the MCC-
NFs directly prepared in one step without  ZnCo2O4 as the 
intermediate (Co/MCCNFs-D), the Co/IMCCNFs exhibited 
a higher surface roughness (Fig. S2), which could be attrib-
uted to the reduction and evaporation of zinc species from 
the  ZnCo2O4 intermediate. Furthermore, a core–shell struc-
ture can be observed in the high-resolution TEM (HRTEM) 
image in Fig. 2e, which confirms the formation of the shell 
structure of  Co3O4 on the surface of the metallic  Co0 core 
during the stepwise carbothermic reduction of  ZnCo2O4. In 

addition, some graphitic carbon shells with a lattice spac-
ing of 3.5 Å were generated on the cobalt-containing nano-
particles (Fig. S3), leading to an increased graphitization 
compared to that of the MCCNFs [31–34]. Such a stable 
nanostructure with double metal oxide and graphitic carbon 
shells is expected to provide excellent ORR electrocatalysis 
properties with high catalytic activity and stability [35, 36].

The structures of the prepared  ZnCo2O4/precursor NFs 
and Co/IMCCNFs were further analyzed by XRD meas-
urements. Figure 3a shows a typical XRD pattern of the 
face-centered cubic  ZnCo2O4 (PDF#23-1390). After the car-
bonization at 950 °C, high diffraction peaks are observed 
at 44°, 51°, and 75°, corresponding to the (1 1 1), (2 0 0), 
and (2 2 0) crystal planes of zero-valent cobalt (PDF #89-
4307), respectively. Simultaneously, the diffraction peak of 
carbon is observed at 26°, while no extra peaks correspond-
ing to zinc species are observed, suggesting the complete 
removal of zinc species by the carbothermic reduction and 
evaporation.

Further, nitrogen adsorption/desorption isotherms are 
shown in Fig. 3b. The prepared Co/IMCCNFs exhibited a 
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large BET specific surface area of 298.5 m2 g−1. Moreover, 
they exhibited a typical mesoporous structure with pore sizes 
of approximately 3.5 nm. The mesoporous structure facili-
tates the channel interconnection and promotes the mass 
transfer toward the ORR [37, 38].

An XPS analysis was carried out to observe the sur-
face electronic states and compositions of the products. 
In the high-resolution N 1 s XP spectrum in Fig. 3c, four 
peaks at 398.59, 399.79, 401.40, and 402.87 eV can be 
deconvoluted corresponding to pyridinic N, pyrrolic N, 
graphitic N, and oxidized N, respectively [39, 40]. Among 
the different types of N, the graphitic N is dominant, sug-
gesting a stable C–N hexatomic ring originated from the 
cyanide moieties in the PAN skeleton during the preoxi-
dation, which exists after the high-temperature pyrolysis. 
The high-resolution Co 2p XP spectrum in Fig. 3d shows 

two peaks at 780.56 and 795.43 eV, corresponding to the 
Co 2p3/2 and Co 2p1/2 states, respectively. Furthermore, 
the Co 2p3/2 signal can be deconvoluted to two different 
peaks centered at 780.15 and 781.92 eV, corresponding to 
Co (II) and Co (III), respectively [41–44]. These results 
further verify the existence of cobalt oxides on the sur-
faces of the Co/IMCCNFs, which is consistent with the 
HRTEM images.

The RDE voltammogram shows that the optimized 
interconnected channel structure can enhance the ORR 
electrocatalytic activity (half-wave potential or limiting 
current). However, it is still far from that of the commer-
cial Pt/C catalyst (Fig. S4). Cobalt, regarded as a highly 
catalytic metal toward the ORR, was successfully incor-
porated into the IMC structure by a stepwise solvothermal 
growth and carbothermic reduction.
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To assess the ORR catalytic activities, CV analyses were 
performed in  O2- and  N2-saturated 0.1 M KOH electrolytes. 
Remarkably, the Co/IMCCNFs exhibited a significantly 
larger positive ORR onset potential of 0.896 V (vs. RHE) 
and higher cathodic current, suggesting an enhanced ORR 
electrocatalysis through anchoring of the highly active cobalt 
sites on the unique MC structure. As shown in Fig. 4a, the 
Co/IMCCNFs exhibit a larger peak potential than that of the 
Co/CNFs, suggesting a lower overpotential for the ORR of 
the former structure. The RDE voltammograms show that 
the Co/IMCCNFs have a larger ORR onset potential and 
higher limiting current density (Fig. 4b) than those of the 
Co/CNFs. Moreover, the Co/IMCCNFs exhibit a high half-
wave potential of 0.82 V, equal to that of the commercial 
30% Pt/C (0.82 V) and larger than that of the Co/CNFs. 
These excellent electrocatalysis properties could be attrib-
uted to the highly active cobalt sites efficiently anchored on 
the MC structures, which not only ensure a fast mass trans-
fer, but also significantly enhance the exposure and effective 
utilization of the Co active sites [45]. Moreover, the ORR 

performances of Co/IMCCNFs pyrolyzed at different tem-
peratures (850, 950, and 1050 °C) during the synthesis were 
also evaluated. As shown in Fig. S6, the Co/IMCCNFs pyro-
lyzed at 950 °C exhibited the largest half-wave potential and 
limiting current among those of the three samples. When the 
sample was pyrolyzed at 850 °C, the connection between 
channels was reduced owing to the incomplete evaporation 
of zinc. On the other hand, the decrease in nitrogen content 
led to a decrease in the catalytic performance of the catalyst 
for the ORR with the increase in the pyrolysis temperature 
to 1050 °C.

The excellent ORR activity can also be verified through a 
Tafel diagram (Fig. 4c). The Co/CNFs exhibit a satisfactory 
Tafel slope of 51.3 mV  dec−1, significantly lower than that 
of 30% Pt/C (63.7 mV  dec−1) at the half-wave potential. Fur-
thermore, the Co/IMCCNFs exhibit a superior Tafel slope 
of 43.1 mV dec−1, indicating the most favorable kinetic for 
the ORR among those of the considered samples [46–48]. 
As shown in Figs. 4d–f and S5, RRDE measurements were 
carried out to monitor the formation of peroxide species 
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 (HO2
−) during the ORR [49–51]. The measured  HO2

− yield 
for the Co/IMCCNFs in the potential range of 0.2–0.8 V 
(vs. RHE) is below ~ 10%, corresponding to a large electron 
transfer number of ~ 3.90, similar to that of 30% Pt/C (~ 3.96) 
but significantly larger than those of the Co/CNFs (~ 3.65), 
porous MCCNFs (~ 3.72), and Co/MCCNFs-D (~ 3.73). This 
indicates that the introduction of Co nanoparticles and MC 
structures significantly enhanced the four-electron process 
toward the ORR.
I–t tests were then carried out to evaluate the stabilities of 

the catalysts, as shown in Fig. 5a. The prepared Co/IMCCNF 
catalyst maintained up to 88% of the initial current after 
12,000 cycles, which is a larger retention than that of 30% 
Pt/C (55%) [40]. To reveal the origin of the high stability of 
the Co/IMCCNFs, a high-resolution TEM analysis of the 
Co/IMCCNFs was performed after the I–t test. As shown 
in Fig. 5b, the integrated Co core–Co3O4 shell structure is 
well maintained after the I–t test. This can be attributed to 
the unique structure with the metal oxide shell, which is 
inactive in the alkaline solution and protects the Co core 

from corrosion, and graphitic degree-enhanced CNFs, which 
well maintained the excellent dispersion of Co active sites.

4  Conclusion

We developed a stepwise strategy to synthesize novel 
CNFs with IMC structures anchored with  Co3O4/Co 
core–shell nanoparticles as efficient catalysts for the 
ORR. Moreover, the incorporation of cobalt using the 
 ZnCo2O4 intermediate further increased the mass loading 
of zinc, which promoted the connectivity of the MCC-
NFs in the subsequent pyrolysis process, leading to the 
larger specific surface area and faster mass transfer of the 
Co/IMCCNFs than those of the porous MCCNFs. Conse-
quently, the Co/IMCCNFs exhibited a superior half-wave 
potential (~ 0.82 V), limiting current of ~ 5.08 mA cm−2, 
low  HO2

− yield (below ~ 10%), large electron transfer 
number (~ 3.90), and satisfactory long-term durability. 
The proposed stepwise strategy paves the way for novel 
carbon fiber modification techniques for carbon-based 
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