Supporting Information for

Stepwise Fabrication of Co-Embedded Porous Multi-Channels

Carbon Nanofibers for High-Efficiency Oxygen Reduction

Zeming Tang¹, Yingxuan Zhao¹, Qingxue Lai^{1, *}, Jia Zhong¹, Yanyu Liang^{1, 2, *}

¹Jiangsu Key Laboratory of Materials and Technology for Energy Conversion, College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, People's Republic of China

²Jiangsu Collaborative Innovation Center for Advanced Inorganic Function Composites, Nanjing 211816, People's Republic of China

*Corresponding authors. E-mail: laiqingxue@126.com (Qingxue Lai); liangyy403@126.com (Yanyu Liang)

Supplementary Figures

Fig. S1 a DSC curves of PS fibers (N₂), PS fibers (Air) and PAN+PS fibers (N₂) with the temperature range of 50-600 °C. **b** TGA curve of PAN+PS fibers (N₂) with the temperature range of 50-600 °C

Nano-Micro Letters

Fig. S2 SEM images of a, b Co/MCCNFs-D and c, d Co/IMCCNFs

Fig. S3 High-resolution TEM images of **a** MCCNFs and **b** Co/IMCCNFs; **c** Lattice-distance profile of the red frame in the image **b**

Nano-Micro Letters

Fig. S4 Rotating-disk voltammograms of 30% Pt/C, MCCNFs and porous MCCNFs in 0.1 M KOH

Fig. S5 a Rotating ring-disk electrode voltammograms recorded with porous MCCNFs, Co/IMCCNFs and Co/MCCNFs-D. b Percentage of peroxide (lower line) and the electron transfer number (n) (upper line) of porous MCCNFs, Co/IMCCNFs, and Co/MCCNFs-D at various potentials, based on the corresponding RRDE data in **a**

Fig. S6 Rotating-disk voltammograms of Co/IMCCNFs which were pyrolyzed at different temperatures