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HIGHLIGHTS

• Sensors for smart Lithium-based batteries (LiBs) are classified based on their application into safety monitoring (i.e., temperature, 
pressure, and strain) to detect hazardous conditions and performance optimization (i.e., optical and electrochemical sensors) for 
monitoring factors such as state of charge and state of health.

• The potential for innovation in LiB sensor technology is driven by advancements in nanotechnology, miniaturization, machine learn-
ing algorithms, and wireless sensor networks, all of which contribute to enhanced sensor performance.

• Key challenges faced in developing LiB sensors include miniaturization, power consumption, cost efficiency and scalability, and 
compatibility with existing battery management systems.

ABSTRACT Lithium-based batteries (LiBs) are integral components in operating electric vehi-
cles to renewable energy systems and portable electronic devices, thanks to their unparalleled 
energy density, minimal self-discharge rates, and favorable cycle life. However, the inherent safety 
risks and performance degradation of LiB over time impose continuous monitoring facilitated by 
sophisticated battery management systems (BMS). This review comprehensively analyzes the 
current state of sensor technologies for smart LiBs, focusing on their advancements, opportunities, 
and potential challenges. Sensors are classified into two primary groups based on their applica-
tion: safety monitoring and performance optimization. Safety monitoring sensors, including tem-
perature, pressure, strain, gas, acoustic, and magnetic sensors, focus on detecting conditions that 
could lead to hazardous situations. Performance optimization sensors, such as optical-based and 
electrochemical-based, monitor factors such as state of charge and state of health, emphasizing 
operational efficiency and lifespan. The review also highlights the importance of integrating these sensors with advanced algorithms and control 
approaches to optimize charging and discharge cycles. Potential advancements driven by nanotechnology, wireless sensor networks, miniaturization, 
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and machine learning algorithms are also discussed. However, challenges related to sensor miniaturization, power consumption, cost efficiency, and 
compatibility with existing BMS need to be addressed to fully realize the potential of LiB sensor technologies. This comprehensive review provides 
valuable insights into the current landscape and future directions of sensor innovations in smart LiBs, guiding further research and development 
efforts to enhance battery performance, reliability, and safety.
Integration of advanced sensor technologies for smart LiBs: integrating non-optical multi-parameter, optical-based, and electrochemical sen-
sors within the BMS to achieve higher safety, improved efficiency, early warning mechanisms, and TR prevention. Potential advancements are 
driven by nanotechnology, wireless sensor networks, miniaturization, and advanced algorithms, addressing key challenges to enhance battery 
performance and reliability.
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Abbreviations
LiB  Lithium-based batteries
mAh  Milliampere-hours
EV  Electric vehicles
BMS  Battery management systems
ML  Machine learning
FBG  Fiber bragg grating
TR  Thermal runaway
CT  Computed tomography
TC  Thermocouple
RTD  Resistance temperature detectors
TFRTD  Thin-film resistance temperature detector
TFTC  Thin-film thermocouples
V  Volt
C-rate  Charge discharge current rates
SoH  State-of-health
SoC  State-of-charge
POF-FBG  Polymer optical fiber-fiber bragg grating
NDIR  Nondispersive infrared
AE  Acoustic emission
UT  Ultrasonic testing
AMR  Anisotropic magnetoresistive
ME  Magnetoelectric
NEM  Noise equivalent magnetic
pT  Picotesla
MNPT  Magnetic nanoparticle thermometer
DC  Direct current
OCV  Open circuit potential
SEI  Solid electrolyte interphase
VOC  Volatile organic component
IC-MOF  Ionically conductive-metal-organic 

framework
RCT  Charge transfer
EIS  Electrochemical impedance spectroscopy
TCM  Terahertz chemical microscopy
AC  Alternating current
DFOS  Distributed fiber optic sensor
DRS  Diffuse reflectance spectroscopy
DFT  Density functional theory

DTW  Dynamic time-warping
AIMD  Ab-initio molecular dynamics
OSV  Organic solvent vapor
EMCCD  Electron-multiplying charge-coupled device
XRS  X-ray Raman scattering
HC  Hollow-core
IR  Infrared
ATR-IR  Attenuated reflectance infrared
CT  Computed tomography
3D-DIW  3D-direct ink writing
ALD  Atomic layer deposition
MEMS  Micro–electro–mechanical system
BIG-MAP  Battery interface genome-materials accel-

eration platform
M2M  Machine-to-machine
RMSE  Root mean squared error
MAE  Mean absolute error
LTCC   Low-temperature co-fired ceramic
LSTM  Long short-term memory
RUL  Remaining useful life
GRR   Gaussian process regression
ANN  Artificial neural networks
SVM  Support vector machines
VTS  Virtual thermal sensors
PHM  Prognostics and health management
CNN  Convolutional neural networks
WSN  Wireless sensor networks
GPR  Gaussian process regression
CAGR   Compound annual growth rate
IoT  Internet of things
UV-vis  Ultraviolet-visible
TM  Transition metals
CNT  Carbon nanotubes
λB  Bragg resonance
BESS  Battery energy storage system
CV  Cyclic voltammetry
λex  Excitation wavelength
CCD  Charge coupled device
RUL  Remaining useful life
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pm με  Picometers per microstrain
µm2  Square micrometers
ppb  Parts per billion
SMF  Single-mode fiber
QRF  Quantile regression forests
MOF  Microstructure optical fiber
PCA  Principal component analysis
LDA  Linear discriminant analysis
DNN  Deep neural networks
SPE  Solid polymer electrolyte
SSE  Solid-state electrolyte
TFB  Thin-film microscale batteries
ΔS  Entropy coefficient
BITS-BMS  Battery internal temperature tensor-based 

BMS
FPI  Fabry–Perot interferometer
BITS-BMS  Battery internal temperature sensor-based 

BMS

1 Introduction

The rapid expansion of energy storage demands, driven by 
electric vehicles (EVs), renewable energy integration, and 
portable electronics, has positioned lithium-based batteries 
(LiBs) as the cornerstone of modern energy solutions [1–3]. 
Renowned for their superior energy density, extended cycle 
life, and minimal self-discharge compared to alternatives 
such as lead-acid or nickel-metal hydride batteries [4–7], 
LiBs nonetheless face critical challenges. Safety risks, per-
formance degradation at elevated temperatures (> 50 °C), 
and capacity fade over time underscore the urgent need for 
advanced battery management systems (BMS) to optimize 
efficiency and mitigate hazards [8–11]. In a related study, 
Yang et al. [12] investigated the thermal characteristics of a 
hybrid solid–liquid battery (solid-state battery) and its signif-
icance for the development of future BMS. The study found 
that the solid-state battery exhibited a higher polarization 
resistance than traditional NMC (Lithium nickel manganese 
cobalt oxide,  LiNiMnCoO2) and LFP (Lithium iron phos-
phate,  LiFePO4) batteries with similar capacity. The higher 
resistance resulted in more heat generation and a higher tem-
perature rise in the solid-state battery, necessitating a BMS 
with stronger cooling capabilities. Their study also found that 
reversible heat is the primary cause of the temperature rise 
plateau in solid-state batteries, while polarization heat is the 
predominant factor in total heat generation [12].

Central to this evolution is sensor innovations, which 
redefine the capabilities of BMS by enabling real-time moni-
toring of temperature, pressure, mechanical strain, etc. These 
advancements enhance safety through early failure detection, 
such as internal temperature spikes or electrode bulging, 
and unlock opportunities for adaptive energy management 
[1, 13]. For example, sensors such as micro-thin-film have 
demonstrated potential in detecting early indicators of fail-
ure, such as mechanical pressure shocks, battery bulging, 
and internal temperature changes [14]. These sensors can 
capture real-time piezoelectric and pyroelectric responses, 
providing valuable insights into battery health and signifi-
cantly improving BMS safety by offering early warnings of 
potential battery damage and preventing catastrophic failures 
[14]. Similarly, fiber Bragg grating (FBG) sensors have been 
explored to monitor mechanical strain and distortion in LiBs 
and all-solid-state batteries. These sensors, embedded within 
battery electrodes, offer real-time performance data, which 
can significantly improve battery durability and safety [1].

Despite these strides, a comprehensive analysis of sen-
sor-driven advancements in smart LiBs, systems capable of 
autonomous adaptation via real-time data, remains absent 
in the literature. The unique aspect of this review lies in 
its focus on the potential benefits of sensor innovations for 
improving the overall performance of smart LiB. Advanced 
algorithms and control approaches can be employed to opti-
mize charging and discharge cycles by obtaining detailed 
information on battery usage patterns and behavior. This 
approach not only improves the overall performance and 
reliability of LiB but also ensures the efficient utilization of 
energy stored within batteries. This optimization of energy 
usage is crucial for ensuring the durability and efficiency of 
LiB, contributing to the sustainability and cost-effectiveness 
of energy consumption. However, there are potential chal-
lenges related to sensor innovations in smart LiB. These 
challenges include sensor miniaturization, power consump-
tion, cost efficiency, and compatibility with the existing 
BMS. Addressing these challenges is critical for effectively 
controlling the full potential of LiB sensor technologies. 
By comprehensively studying advancements and explor-
ing opportunities and challenges, this review article aims 
to provide insights into the potential of sensor innovations 
in smart LiB systems. The insights gained from this study 
can guide further research and development, facilitate the 
integration of advanced sensor technologies, and drive future 
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advancements in energy storage systems for more reliable, 
efficient, and smart LiB systems.

In this review article, the LiB cells typically discussed 
have a nominal voltage of 3.6–3.7 V per cell. The nominal 
capacity of individual cells commonly differs from approxi-
mately 1500–15,000 mAh, depending on the specific LiB 
cell type and its intended application, as discussed in the 
literature [15–18]. The anode electrode is typically made of 
graphite or LiTi (lithium titanate,  Li4Ti5O12), facilitating the 
release and acceptance of lithium (Li) ions during charging 
and discharging cycles. Conversely, the cathode electrode is 
composed of Li metal oxides, such as LCO, LMO (lithium 
manganese oxide,  LiMn2O4), NCM (lithium nickel manga-
nese cobalt oxide,  LiNiCoMnO2), LFP, or NCA (lithium 
nickel cobalt aluminum oxide,  LiNiCoAlO2). These cath-
ode materials enable the insertion and extraction of Li-ions 
during the charge and discharge processes. Moreover, the 
electrolyte material typically consists of a Li salt dissolved 
in an organic solvent, commonly comprising Li hexafluoro-
phosphate  (LiPF6) in a mixture of ethylene carbonate (EC) 
and diethyl carbonate (DEC) [15–19].

2  Sensors Used in Smart LiBs Monitoring

The effective monitoring of LiBs relies on various sensor 
types, broadly classified based on application into two pri-
mary groups, including safety monitoring and performance 
optimization (Fig. 1). Sensors dedicated to safety monitor-
ing (non-optical multi-parameter sensors) primarily focus on 
detecting conditions that could lead to hazardous situations, 
such as thermal runaway (TR), gas generation, or structural 
deformation. These include sensors, such as temperature 
sensors, gas sensors, strain sensors, that provide early warn-
ings of potential failures. On the other hand, sensors aimed 
at performance optimization monitor factors such as state 
of charge (SoC) and state of health (SoH) and emphasize 
enhancing the battery’s operational efficiency, lifespan, and 
overall output. This class typically includes electrochem-
ical-based and optical-base sensors, which offer insights 
into the battery’s internal state and support more accurate 
control strategies. This section aims to comprehensively 
explore the application principles inherent in each sensor 
type, elucidating the advantages and limitations driving their 
performance.

2.1  Sensors for Safety Monitoring

Safety monitoring sensors encompass a range of physical 
measurements, including temperature, pressure, mechani-
cal stresses, etc., preventing catastrophic events such as 
TR and ensuring the battery’s structural integrity. These 
sensors are well-established technologies commonly used 
in various LiB industries and research domains. They are 
typically considered standard or conventional solutions in a 
given LiB monitoring. However, integrating physical meas-
urements, such as strain, acoustic, and magnetic data, with 
electrochemical performance metrics significantly enhances 
diagnostic precision and supports adaptive battery manage-
ment. This integration facilitates real-time monitoring and 
performance optimization of battery systems. For example, 
correlating strain, acoustic, and magnetic measurements 
with electrochemical impedance spectroscopy (EIS) offers 
valuable insights into internal battery dynamics, including 
charge transfer resistance, double-layer capacitance, and 
solid electrolyte interphase (SEI) characteristics during 
charging and discharging cycles. These correlations aid in 
assessing parameters such as the SoH, SoC, and the detec-
tion of potential internal short circuits within batteries.

2.1.1  Temperature Sensors

It has been reported that when a single LiB experiences 
overcharging, short-circuiting, or other abusive condi-
tions, it can generate a substantial amount of heat in a short 
period. Once the battery temperature reaches between 100 
and 130 °C, the separator starts to melt, which can lead 
to an internal short circuit. This increase in internal tem-
perature accelerates the chemical reactions rather than the 
desired galvanic reactions, leading to additional heat pro-
duction, which can degrade the battery components and 
increase the risk of TR, posing a significant hazard of fire 
or even explosion [31, 32]. Once TR occurs in a single cell 
within a battery module, the heat can spread to neighbor-
ing cells through thermal conduction, potentially causing 
TR of the entire battery module. Compared to a single cell, 
the TR of an entire battery module generates significantly 
more heat and presents a greater risk, which can lead to 
catastrophic fire or explosion [32]. However, recent reports 
indicate that Li metal batteries have successfully operated 
within a high-temperature range of 90–170 °C. This range 
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exceeds the decomposition point of organic electrolytes 
(90 °C) while remaining below the melting point of Li 
metal, which is approximately 180 °C [33]. On the con-
trary, at low temperatures, LiBs exhibit diminished dis-
charge capacity and may even fail to discharge, which sig-
nificantly impedes the development of batteries [34]. The 
poor performance of LiBs at low temperatures is associated 
with factors such as reduced electrolyte conductivity, slow 
charge transfer kinetics, increased resistance due to high 
energy barriers for Li-ion desolvation and Li-ion migration 
within the SEI, and sluggish Li diffusion through the sur-
face layers and within the bulk of active material particles 
(i.e., graphite anodes) [35–37]. It has been reported that 
when the temperature drops below 0 °C, Li-ion diffusion 
is significantly reduced, leading to Li-ion depletion and 
severe dendrite formation [38]. The in situ temperature 

monitoring in BMS for EVs and renewable energy systems 
can prevent rapid degradation and ensure optimal battery 
operation and safety [39, 40]. These sensors can be placed 
on the surface of a LiB or embedded within the battery 
cells [14, 40–42]. Thermocouples (TC), thermally sensi-
tive resistors (i.e., thermistors), and resistance temperature 
detectors (RTD) are among the typically used temperature 
sensors for LiB monitoring (Table 1) [2, 13, 43, 44]. In a 
study, Ling et al. fabricated a thin-film sensor using a cop-
per/nickel (Cu/Ni) alloy to develop a high-throughput thin-
film resistance temperature detector (TFRTD) (Fig. 2A, B). 
The devised TFRTD exhibited significant potential for real-
time monitoring of internal LiB heating within the range 
of 30–80 °C at different current rates. The comparative 
analysis demonstrated that the TFRTD delivered 82% faster 
and achieved a 33% accuracy in temperature measurement 

Fig. 1  Classification and contribution of sensor technologies based on application principles for smart LiBs monitoring. The insets include pan-
els reproduced with permission for Magnetic field, ref. [20], from ACS; Gas sensor, ref. [21], from ACS; Acoustic sensor, ref. [22], from ACS; 
Pressure sensor, ref. [15], from Elsevier; Temperature sensor, ref. [23], from Elsevier; Strain sensor, ref. [24], from Elsevier; Fiber-optic sensor, 
ref. [25], from Springer Open; Ultraviolet spectroscopy, ref. [26], from Elsevier; Infrared spectroscopy, ref. [27], from MDPI; Amperometric 
sensor, ref. [28], from ACS; Potentiometric sensor, ref. [29], from ACS; Impedance sensor, ref. [30], from Cell Press
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compared to external RTDs, enabling more accurate track-
ing of dynamic thermal changes [23]. These enhancements 
in speed and accuracy suggest the TFRTD is a promis-
ing alternative for internal LiB temperature monitoring, 
with implications for optimizing battery performance and 
safety. Although this study indicated potential enhance-
ments, the long-term durability and reliability of the Cu/
Ni alloy used in the TFRTD sensor may be affected by sev-
eral factors. For example, the repeated lattice expansion/
contraction, often termed breathing, of electrodes during 
cycling induces mechanical stress, which may compromise 
the structural integrity of the TFRTD elements and their 
electrical connections. Other factors, such as mechanical 
vibration, temperature gradients, and electrolyte exposure, 
could degrade solder joints, wiring, or the alloy itself. 
While platinum can be prone to corrosion in certain RTDs 
[45], the compatibility of RTD materials, such as Cu/Ni 
alloys, with battery electrolytes under operational condi-
tions requires thorough validation to prevent potential cell 
contamination. Moreover, RTDs necessitate precise place-
ment to accurately map thermal gradients within the bat-
tery, which can complicate system integration and increase 
costs [46]. Periodic recalibration is also required to miti-
gate measurement drift, adding to maintenance demands.

The implementation of flexible polymer-embedded thin-
film thermocouples (TFTC), developed from K-type TC, 
in a LiB pouch cell could provide a promising and scalable 
solution for monitoring the in situ temperature during high-
rate charge and discharge cycles (Fig. 2C, D) [42]. A study 
by Gulsoy et al. examined the performance and stability of 
in-cell instrumentation with embedded TC for temperature 
measurements (Fig. 2E) [40]. The cells were modified to 
incorporate a threaded hole for sensor insertion, and cus-
tom fittings were designed to secure the sensors within 
the cells. The results indicated that the instrumentation 
process did not adversely affect cell performance, and the 
embedded TC provided stable and accurate internal tem-
perature measurements [40]. Their findings revealed that 
the internal temperature consistently surpassed the surface 
temperature during cell characterization, even under elec-
trical loading, with a dynamic real-world profile derived 
from EVs [40]. While TCs have a wide temperature range 
and fast response times, they are susceptible to calibra-
tion drift over time, particularly due to the mechanical and 
chemical stresses within the battery environment. Mechani-
cal vibration, temperature cycling, and electrolyte exposure 

can lead to oxidation, corrosion, or chemical reactions in 
TC metals (e.g., nickel, platinum, and chromium) and their 
connections. These factors can result in reduced sensor 
lifespan, compromised measurement accuracy, and pose a 
risk of heavy metal contamination during battery recycling, 
as integrated sensors are difficult to separate [2]. Embed-
ding TCs requires invasive and direct contact procedures 
that may affect battery integrity [61]. Furthermore, their 
reliance on a reference temperature and susceptibility to 
electrical noise can complicate accurate temperature read-
ings, posing challenges for seamless integration with BMS 
[2]. Raijmakers et al. reported that the accuracy of TC may 
not be as high as that of other sensors, and achieving accu-
racy better than 1 ℃ poses a significant challenge [62]. 
Furthermore, although embedded TC may be effective 
for individual battery cells, extending their application to 
larger battery systems poses significant challenges, neces-
sitating additional engineering efforts and cost considera-
tions [2, 63].

Fleming et al. developed a method for embedding flex-
ible, distributed thermistor sensors within commercial bat-
tery cells, both pouch and cylindrical cells, which facili-
tates in-situ and operando temperature data collection 
(Fig. 2F) [57]. Their study utilized raw negative tempera-
ture coefficient (NTC) thermistor elements encapsulated in 
a protective Parylene C coating. The embedded thermis-
tors provided critical insights, revealing significant inter-
nal temperature gradients and identifying instances where 
core temperatures exceeded surface measurements, pos-
ing potential safety risks. Furthermore, their study allowed 
charging currents substantially higher than manufacturer 
recommendations while significantly reduced charging 
times without compromising safety limits, enabling the 
collection of long-term in-situ and operando thermody-
namic data (Fig. 2G, H) [57]. Despite the high sensitivity 
and rapid response of thermistors to temperature changes, 
these sensors are prone to sensitivity drift over time, par-
ticularly when exposed to high temperatures for extended 
periods. Furthermore, the harsh chemical environment 
within LiBs can degrade thermistor materials, potentially 
releasing harmful substances that compromise battery per-
formance. The nonlinear resistance–temperature relation-
ship of thermistors also necessitates complex calibration 
and compensation algorithms within the BMS, adding to 
integration challenges.



Nano-Micro Lett.          (2025) 17:279  Page 7 of 80   279 
Ta

bl
e 

1 
 K

ey
 c

ha
ra

ct
er

ist
ic

s o
f t

em
pe

ra
tu

re
 se

ns
or

s f
or

 sa
fe

ty
 m

on
ito

rin
g 

in
 sm

ar
t L

iB
s

Se
ns

or
 ty

pe
Se

ns
iti

vi
ty

A
cc

ur
ac

y
D

ur
ab

ili
ty

 
(th

er
m

al
/

M
ec

h.
)

C
os

t
Re

sp
on

se
 ti

m
e

Li
B

 c
el

l t
yp

e/
C

at
ho

de
 c

he
m

In
te

gr
at

io
n 

co
m

pl
ex

ity
Po

w
er

 
co

ns
um

p-
tio

n

Ty
pi

ca
l a

pp
li-

ca
tio

ns
Re

fe
re

nc
es

C
us

to
m

 
m

in
ia

tu
re

 T
C

 
(K

-ty
pe

)

H
ig

h 
(~

 0.
03

 ℃
 re

so
lu

-
tio

n)
 ±

 0.
14

3 
℃

 (c
al

i-
br

at
ed

)
H

ig
h 

(th
er

m
al

)
Lo

w
Fa

st 
(~

 0.
7 

s 
fo

r s
ur

fa
ce

 
se

ns
or

s)

21
,7

00
 c

yl
in

-
dr

ic
al

 c
el

ls
, 

N
M

C
81

1

M
od

er
at

e 
(r

eq
ui

re
s 

m
od

ifi
ca

-
tio

n)

Lo
w

In
te

rn
al

 
te

m
pe

ra
tu

re
 

m
on

ito
r-

in
g 

in
 c

el
ls

, 
pa

rti
cu

la
rly

 
fo

r T
R

 d
et

ec
-

tio
n

[4
0]

TC
 (K

-ty
pe

)
H

ig
h 

(p
re

ci
se

, l
in

ea
r)

 ±
 0.

1 
℃

H
ig

h 
(m

ec
ha

ni
ca

l 
an

d 
th

er
m

al
 

re
si

st
an

ce
)

Lo
w

Fa
st

Po
uc

h,
 p

ris
-

m
at

ic
, a

nd
 

cy
lin

dr
ic

al
 

ce
lls

, N
C

M

M
od

er
at

e 
(r

eq
ui

re
s 

m
od

ifi
ca

-
tio

n)

Lo
w

In
te

rn
al

 
te

m
pe

ra
tu

re
 

m
on

ito
rin

g 
du

rin
g 

TR
 

te
sts

[4
7]

Fl
ex

ib
le

 T
hi

n 
Fi

lm
 T

he
r-

m
oc

ou
pl

es
 

(T
FT

C
)

41
.2

 μ
V

 ℃
−

1
 ±

 0.
1 
℃

H
ig

h 
(s

ur
vi

ve
s 

ba
tte

ry
 

as
se

m
bl

y 
pr

oc
es

s, 
st

ab
le

 in
 

el
ec

tro
ly

te
 

en
vi

ro
nm

en
t)

M
od

er
at

e 
(b

as
ed

 o
n 

m
at

er
ia

l 
co

st)

N
/A

 (e
ffe

ct
iv

e 
in

 re
al

-ti
m

e 
m

on
ito

rin
g)

Po
uc

h,
 N

M
C

, 
an

d 
cy

lin
dr

i-
ca

l c
el

ls

H
ig

h 
(r

eq
ui

re
s 

in
te

gr
a-

tio
n 

in
to

 
th

e 
ba

tte
ry

 
as

se
m

bl
y 

pr
oc

es
s)

Lo
w

In
 si

tu
 te

m
-

pe
ra

tu
re

 
m

ea
su

re
m

en
t 

du
rin

g 
hi

gh
-

ra
te

 c
ha

rg
e/

di
sc

ha
rg

e 
cy

cl
es

[4
2]

TC
, K

-ty
pe

 
(in

te
rn

al
 

co
re

)

N
/A

 ±
 0.

1 
℃

H
ig

h 
(m

ec
ha

n-
ic

al
 ro

bu
st-

ne
ss

, c
an

 
w

ith
st

an
d 

ex
tre

m
e 

co
nd

iti
on

s)

Lo
w

Fa
st

C
yl

in
dr

ic
al

 
(2

6,
65

0)
 

LF
P

H
ig

h 
(r

eq
ui

re
s 

co
re

 in
se

r-
tio

n 
an

d 
m

od
ifi

ca
-

tio
n)

N
/A

M
ea

su
r-

in
g 

co
re

 
te

m
pe

ra
tu

re
 

fo
r v

al
id

at
io

n 
of

 im
pe

d-
an

ce
-b

as
ed

 
in

te
rn

al
 

te
m

pe
ra

tu
re

 
es

tim
at

io
n

[4
8]

TC
, K

-ty
pe

, 
(e

m
be

dd
ed

)
N

/A
 ±

 0.
1 
℃

 (c
or

e)
H

ig
h 

(m
ec

ha
n-

ic
al

ly
 ro

bu
st)

Lo
w

Fa
st

C
yl

in
dr

ic
al

 
(2

6,
65

0)
, 

LF
P

H
ig

h 
(r

eq
ui

re
s 

in
se

rti
on

 in
to

 
th

e 
co

re
)

N
/A

C
or

e 
te

m
pe

ra
-

tu
re

 v
al

id
a-

tio
n 

an
d 

co
m

pa
ris

on
 

w
ith

 n
on

-
in

va
si

ve
 IR

 
m

et
ho

d

[4
9]



 Nano-Micro Lett.          (2025) 17:279   279  Page 8 of 80

https://doi.org/10.1007/s40820-025-01786-1© The authors

Ta
bl

e 
1 

 (c
on

tin
ue

d)

Se
ns

or
 ty

pe
Se

ns
iti

vi
ty

A
cc

ur
ac

y
D

ur
ab

ili
ty

 
(th

er
m

al
/

M
ec

h.
)

C
os

t
Re

sp
on

se
 ti

m
e

Li
B

 c
el

l t
yp

e/
C

at
ho

de
 c

he
m

In
te

gr
at

io
n 

co
m

pl
ex

ity
Po

w
er

 
co

ns
um

p-
tio

n

Ty
pi

ca
l a

pp
li-

ca
tio

ns
Re

fe
re

nc
es

TC
, K

-ty
pe

N
/A

 ±
 0.

17
 ℃

H
ig

h 
(s

el
f-

po
w

er
ed

, 
ro

bu
st,

 sm
al

l 
si

ze
)

Lo
w

M
od

er
at

e 
(~

 1.
2 

tim
es

 
sl

ow
er

 ri
se

 
tim

e 
th

an
 

FB
G

s)

C
yl

in
dr

ic
al

, 
LF

P
M

od
er

at
e 

(r
eq

ui
re

s 
at

ta
ch

m
en

t 
to

 su
rfa

ce
)

Lo
w

Te
m

pe
ra

tu
re

 
m

on
ito

rin
g 

fo
r n

or
m

al
 

an
d 

ab
us

iv
e 

co
nd

iti
on

s, 
w

id
el

y 
us

ed
 

in
 c

om
m

er
-

ci
al

 a
pp

lic
a-

tio
ns

[5
0]

TC
, T

-ty
pe

M
od

er
at

e 
(s

en
si

tiv
e 

to
 

su
rfa

ce
 h

ea
t fl

ux
)

 ±
 0.

1 
℃

H
ig

h 
(m

ec
ha

n-
ic

al
ly

 ro
bu

st)
Lo

w
Fa

st
C

yl
in

dr
ic

al
 

18
,6

50
, L

CO
M

od
er

at
e 

(r
eq

ui
re

s a
 

pl
ac

em
en

t 
on

 th
e 

ce
ll 

su
rfa

ce
)

Lo
w

Ex
te

rn
al

 
te

m
pe

ra
tu

re
 

m
on

ito
rin

g 
du

rin
g 

TR

[5
1]

TC
, K

-ty
pe

H
ig

h 
(s

en
si

tiv
e 

to
 te

m
-

pe
ra

tu
re

 c
ha

ng
es

)
 ±

 1 
℃

 (m
ea

su
re

-
m

en
t e

rr
or

)
H

ig
h 

(ro
bu

st 
fo

r h
ig

h 
C

-r
at

es
)

Lo
w

M
od

er
at

e
Po

uc
h 

an
d 

cy
lin

dr
ic

al
 

ce
lls

, N
M

C

M
od

er
at

e 
(r

eq
ui

re
s 

em
be

dd
in

g 
in

si
de

 th
e 

ce
ll)

Lo
w

In
te

rn
al

 
te

m
pe

ra
tu

re
 

m
on

ito
rin

g,
 

us
ed

 fo
r 

va
lid

at
in

g 
th

er
m

o-
gr

ap
hi

c 
da

ta

[5
2]

TC
, T

-ty
pe

 
(C

us
to

m
 

M
in

ia
tu

re
)

H
ig

h
N

/A
Ex

ce
lle

nt
 fo

r 
th

er
m

al
 e

nv
i-

ro
nm

en
ts

, 
ro

bu
st

Lo
w

Fa
st

18
,6

50
, 2

1,
70

0 
C

yl
in

dr
ic

al
M

ed
iu

m
 

to
 H

ig
h 

(R
eq

ui
re

s 
in

se
rti

on
)

N
/A

M
ea

su
rin

g 
co

re
 te

m
-

pe
ra

tu
re

, T
R

 
de

te
ct

io
n

[1
3]

TC
, K

-ty
pe

H
ig

h 
(d

et
ec

ts
 sh

ar
p 

Δ
T 

to
 1

04
5 
℃

)
N

/A
H

ig
h 

(te
ste

d 
up

 to
 ~

 10
45

 
℃

)

Lo
w

Fa
st

La
rg

e-
fo

rm
at

 
po

uc
h,

 
N

C
M

81
1

M
od

er
at

e 
(n

ee
ds

 
m

ul
tip

le
 

pl
ac

em
en

ts
)

Lo
w

Su
rfa

ce
 

te
m

pe
ra

tu
re

 
m

on
ito

rin
g 

du
rin

g 
ov

er
-

ch
ar

ge
 a

nd
 

ex
pl

os
io

n

[5
3]

TC
, K

-T
yp

e 
(×

 2)
M

od
er

at
e-

H
ig

h 
(±

 0.
4%

)
M

od
er

at
e 

(~
 0.

4%
 

er
ro

r)
H

ig
h 

(u
p 

to
 >

 15
0 
℃

 
m

ea
su

re
d)

Lo
w

Fa
st 

(r
ea

l-t
im

e 
lo

gg
in

g)
C

yl
in

dr
ic

al
, 

LF
P 

(1
8,

65
0,

 
26

,6
50

, 
26

,7
00

)

Lo
w

 (s
ur

fa
ce

-
m

ou
nt

ed
)

Lo
w

B
at

te
ry

 su
rfa

ce
 

te
m

pe
ra

tu
re

 
m

on
ito

rin
g

[5
4]



Nano-Micro Lett.          (2025) 17:279  Page 9 of 80   279 
Ta

bl
e 

1 
 (c

on
tin

ue
d)

Se
ns

or
 ty

pe
Se

ns
iti

vi
ty

A
cc

ur
ac

y
D

ur
ab

ili
ty

 
(th

er
m

al
/

M
ec

h.
)

C
os

t
Re

sp
on

se
 ti

m
e

Li
B

 c
el

l t
yp

e/
C

at
ho

de
 c

he
m

In
te

gr
at

io
n 

co
m

pl
ex

ity
Po

w
er

 
co

ns
um

p-
tio

n

Ty
pi

ca
l a

pp
li-

ca
tio

ns
Re

fe
re

nc
es

Th
er

m
ist

or
M

od
er

at
e 

(s
m

oo
th

ed
 b

y 
ai

rfl
ow

)
N

/A
M

od
er

at
e 

(s
ta

nd
ar

d 
au

to
m

ot
iv

e 
gr

ad
e)

Lo
w

N
/A

Pr
is

m
at

ic
 

ce
lls

, L
FP

Lo
w

 (e
as

ily
 

in
te

gr
at

ed
 

in
to

 p
ac

ks
)

Lo
w

Ex
te

rn
al

 
te

m
pe

ra
tu

re
 

m
ea

su
re

m
en

t 
in

 b
at

te
ry

 
m

od
ul

es

[5
5]

Th
er

m
ist

or
H

ig
h 

(0
.1

 ℃
)

 ~
 0.

1 
℃

M
od

er
at

e 
(th

er
m

al
)

Lo
w

 (~
 $0

.0
1 

ea
ch

)
Fa

st
21

,7
00

 c
yl

in
-

dr
ic

al
 c

el
ls

M
od

er
at

e 
(r

eq
ui

re
s 

fle
xi

bl
e 

PC
B

)

Lo
w

In
 si

tu
 c

el
l 

te
m

pe
ra

tu
re

 
se

ns
in

g,
 p

ac
k 

m
on

ito
rin

g

[5
6]

N
TC

 T
he

rm
is

-
to

r
H

ig
h 

(p
re

ci
se

, l
in

ea
r)

 ±
 0.

1 
℃

 (s
ta

bl
e)

H
ig

h 
(m

ec
ha

n-
ic

al
/th

er
m

al
)

Lo
w

Fa
st

Po
uc

h 
(L

CO
) 

an
d 

C
yl

in
-

dr
ic

al
 (N

CA
)

M
od

er
at

e 
(fl

ex
ib

le
, 

so
ld

er
ab

le
)

N
/A

In
 si

tu
 th

er
m

al
 

m
on

ito
rin

g,
 

sa
fe

ty
 m

ap
-

pi
ng

[5
7]

N
TC

 T
he

rm
is

-
to

r
M

od
er

at
e 

(li
ne

ar
 se

n-
si

tiv
ity

)
 ±

 1%
 (0

–1
00

 ℃
 

ra
ng

e)
M

od
er

at
e 

(a
ut

om
ot

iv
e-

gr
ad

e)

Lo
w

Sl
ow

N
M

C
 (2

0 
A

h)
, 

LF
P 

(1
4 

A
h)

, L
TO

 (5
 

A
h)

Lo
w

 (s
im

pl
e 

co
nt

ac
t 

se
tu

p)

Lo
w

Su
rfa

ce
 

te
m

pe
ra

tu
re

 
m

on
ito

r-
in

g 
du

rin
g 

ch
ar

ge
/

di
sc

ha
rg

e 
cy

cl
es

[4
4]

N
TC

 T
he

rm
is

-
to

r (
Em

be
d-

de
d)

H
ig

h 
(n

ea
r l

in
ea

r b
et

a 
cu

rv
e)

 ±
 1%

 to
 ±

 2%
H

ig
h 

(m
ec

ha
ni

ca
l, 

ch
em

ic
al

, 
an

d 
th

er
m

al
 

st
ab

ili
ty

)

M
od

er
at

e
M

od
er

at
e

Po
uc

h 
ce

lls
 

(L
CO

), 
C

yl
in

dr
ic

al
 

(N
CA

)

H
ig

h 
(r

eq
ui

re
s 

em
be

dd
in

g 
an

d 
pr

ot
ec

-
tio

n)

Lo
w

Lo
ng

-te
rm

 
in

 si
tu

 th
er

-
m

al
 m

on
ito

r-
in

g 
of

 L
iB

 
ce

lls

[5
7]

Th
er

m
ist

or
 

(I
nt

er
na

l)
M

od
er

at
e 

(L
in

ea
r, 

ad
ju

st
ab

le
)

N
/A

H
ig

h 
(s

ta
bl

e 
un

de
r v

ar
i-

ou
s c

on
di

-
tio

ns
)

Lo
w

Fa
st

C
yl

in
dr

ic
al

 
18

,6
50

, L
CO

M
od

er
at

e 
(r

eq
ui

re
s 

in
se

rti
on

 in
to

 
ce

ll)

Lo
w

In
 si

tu
 te

m
-

pe
ra

tu
re

 
m

on
ito

r-
in

g 
du

rin
g 

hi
gh

-r
at

e 
di

sc
ha

rg
e 

an
d 

ch
ar

ge
 

cy
cl

es

[5
8]



 Nano-Micro Lett.          (2025) 17:279   279  Page 10 of 80

https://doi.org/10.1007/s40820-025-01786-1© The authors

Ta
bl

e 
1 

 (c
on

tin
ue

d)

Se
ns

or
 ty

pe
Se

ns
iti

vi
ty

A
cc

ur
ac

y
D

ur
ab

ili
ty

 
(th

er
m

al
/

M
ec

h.
)

C
os

t
Re

sp
on

se
 ti

m
e

Li
B

 c
el

l t
yp

e/
C

at
ho

de
 c

he
m

In
te

gr
at

io
n 

co
m

pl
ex

ity
Po

w
er

 
co

ns
um

p-
tio

n

Ty
pi

ca
l a

pp
li-

ca
tio

ns
Re

fe
re

nc
es

N
TC

 T
he

rm
is

-
to

r
M

od
er

at
e 

(s
en

si
tiv

e 
to

 
su

rfa
ce

 te
m

pe
ra

tu
re

)
 ±

 1 
℃

M
od

er
at

e 
(s

ui
ta

bl
e 

fo
r s

ur
fa

ce
 

m
ea

su
re

-
m

en
ts

)

Lo
w

Fa
st

18
,6

50
 c

el
ls

 
(N

M
C

/
G

ra
ph

ite
, 

LF
P)

Lo
w

 (s
ur

fa
ce

 
m

ou
nt

ab
le

)
Lo

w
Su

rfa
ce

 
te

m
pe

ra
tu

re
 

m
on

ito
rin

g 
in

 1
8,

65
0 

cy
lin

dr
ic

al
 

ce
lls

[5
2]

Th
er

m
ist

or
 

A
rr

ay
M

ed
iu

m
N

/A
G

oo
d 

fo
r 

m
on

ito
rin

g 
gr

ad
ie

nt
s

Lo
w

M
od

er
at

e
18

,6
50

 C
yl

in
-

dr
ic

al
, P

ou
ch

 
ce

lls

M
ed

iu
m

 
(R

eq
ui

re
s 

di
str

ib
ut

ed
 

ar
ra

y)

N
/A

Th
er

m
al

 
be

ha
vi

or
 

m
on

ito
r-

in
g,

 in
 si

tu
 

te
m

pe
ra

tu
re

 
se

ns
in

g

[1
3]

Pt
-1

00
 R

TD
H

ig
h 

(p
re

ci
se

 te
m

pe
ra

-
tu

re
 m

ea
su

re
m

en
t)

N
/A

H
ig

h 
(s

ta
bl

e 
an

d 
re

lia
bl

e 
in

 c
yc

lin
g)

Lo
w

Fa
st

C
yl

in
dr

ic
al

 
18

,6
50

, 
N

C
M

Lo
w

 (s
im

pl
e 

co
nt

ac
t 

se
tu

p)

Lo
w

In
 si

tu
 te

m
-

pe
ra

tu
re

 
m

ea
su

re
m

en
t 

du
rin

g 
cy

cl
ic

 
ch

ar
ge

/
di

sc
ha

rg
e 

of
 

Li
B

 c
el

ls

[5
9]

C
u/

N
i T

hi
n-

Fi
lm

 R
TD

 
(T

FR
TD

)

H
ig

h 
(α

20
 =

 0.
00

41
5 

at
 

20
 ℃

)
M

ax
 

er
ro

r ±
 0.

83
 ℃

; 
av

g ±
 0.

35
 ℃

H
ig

h 
(th

in
, 

st
ab

le
 in

 
el

ec
tro

ly
te

)

Lo
w

 (C
u/

N
i, 

lo
w

-c
os

t 
m

at
er

ia
ls

)

Fa
st 

(a
vg

 6
.5

 s 
vs

. 2
6.

2 
s f

or
 

Pt
10

00
 a

t 
60

–8
0 
℃

)

Po
uc

h 
ce

ll,
 

LC
O

M
od

er
at

e 
(c

om
pa

tib
le

 
w

ith
 c

el
l 

as
se

m
bl

y)

N
/A

In
 si

tu
 in

te
rn

al
 

te
m

pe
ra

tu
re

 
m

on
ito

rin
g 

to
 p

re
ve

nt
 

TR

[2
3]

Ex
te

rn
al

 
Pt

-1
00

0 
RT

D
 

(c
om

pa
ris

on
)

M
ed

iu
m

 
(α

20
 =

 0.
00

29
7)

M
ax

 
er

ro
r ±

 1.
24

 ℃
; 

av
g ±

 0.
65

 ℃

M
od

er
at

e 
(d

ec
re

as
ed

 
by

 su
bs

tra
te

)

M
od

er
at

e
Sl

ow
er

 (a
vg

 
14

–2
6 

s)
Po

uc
h 

ce
ll,

 
LC

O
Lo

w
 (e

xt
er

na
l 

pl
ac

em
en

t)
N

/A
Ex

te
rn

al
 

re
fe

re
nc

e 
fo

r 
be

nc
hm

ar
k-

in
g 

in
te

rn
al

 
se

ns
or

[2
3]

PT
10

00
 R

TD
 

(E
m

be
dd

ed
)

H
ig

h 
(0

.0
03

85
1 ±

 0.
00

00
04

 
Ω

/Ω
/℃

)

H
ig

h
H

ig
h 

(−
 50

 ℃
 

to
 4

00
°C

, 
st

ab
le

 in
 

el
ec

tro
ly

te
 

w
ith

 P
I c

oa
t-

in
g)

M
od

er
at

e
Fa

st
C

oi
n 

ce
ll 

(C
R

20
32

), 
LM

O

M
od

er
at

e 
(e

m
be

dd
ed

 
in

 c
oi

n 
ce

ll 
w

ith
 in

su
la

-
tio

n)

N
/A

Re
al

-ti
m

e 
in

te
rn

al
 

te
m

pe
ra

tu
re

 
m

on
ito

rin
g 

fo
r s

af
et

y 
an

d 
th

er
m

al
 

an
al

ys
is

[6
0]



Nano-Micro Lett.          (2025) 17:279  Page 11 of 80   279 

2.1.2  Pressure Sensors

Pressure sensors are employed to measure alterations in 
the internal and mechanical pressure levels of the LiBs 
(Table 2). This parameter is particularly important in sealed 
battery systems, where excessive pressure buildup can lead 
to leakage or even explosions [17, 53, 64]. These sensors are 
commonly used in BMS for EVs and renewable energy sys-
tems to ensure safe and optimal battery operations [14, 64, 

65]. The process of in situ mechanical pressure measurement 
within large-format LiBs poses significant difficulties owing 
to the harsh internal environment of the battery and interfer-
ence created by the battery shell. To address these issues, 
Chen et al. designed a potential approach for in-situ measur-
ing the mechanical pressure of electrode stacks, also called 
jelly rolls [65]. This innovative method used embedded thin-
film flexible pressure sensors, encompassing a sandwich 
structure consisting of a sensitive layer, an electrode, and an 

Fig. 2  Schematic illustrating the integration of LiB with temperature sensors. A The assembly process for the pouch LiB with integrated 
TFRTD. B The structure and manufacturing sequence of the flexible printed circuit (FPC) are from both its front and rear sides. The diagram 
also outlines the process of depositing TFRTD materials. The front structure of the FPC is presented as a composite of multiple layers. C Pouch 
cell integrated with a TFTC, D Steps involved in transferring TFTC onto Cu foil coated with SU8 2000.5. The TFTC embedded in polyimide 
is secured with Kapton® PI tape along its edges. The setup is immersed in a warm water bath to facilitate the removal of the PI-embedded 
TFTC, followed by the transfer of the detached TFTC onto the SU8 2000.5-coated Cu foil. E The Computed tomography (CT) images of an 
instrumented cell and its structure, including top-view images of the negative terminal post-instrumentation, the positive terminal from the top 
perspective, and a side view of the instrumented cell. F The process of fabricating smart LiB cells encompasses both pouch and cylindrical cell 
variants. The depiction progresses from the initial unmodified cell to the ultimate instrumented smart cell stage, with a focus on the insertion of 
the sensor. (Panel F also presents real-time X-ray images of the fully instrumented cells). G In situ examination of a LiB cell under high current 
load, highlighting fluctuations in skin temperature. The pronounced pulse discharge simulates the irregular acceleration patterns of an EV until 
the batteries are fully discharged. H High charge current, which holds significance in developing rapid charging profiles. The top-view X-ray 
image of a cell equipped with instrumentation visually depicts the increasing temperature differential between the cell’s internal and external 
environments. Panels reproduced with permission from A, B, ref. [23], Elsevier; C, D, ref. [42], Elsevier; E, ref. [40], Elsevier; F–H, ref. [57], 
Elsevier publishing
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encapsulation layer, as shown in Fig. 3A-D [65]. The pres-
sure sensors were placed inside a prismatic power LiB, and 
their evolution characteristics were correlated to the spatial 
location, charging and discharging rates, external pressure, 
and electrode stack assembly. Their study revealed a direct 
correlation between the mechanical pressure generated by 
the volume expansion of the jelly roll and the lithiation and 
delithiation processes of graphite on the negative electrode. 
The reversible and irreversible pressures measured using this 
technology could provide insights into the changes in pres-
sure during different charging and discharging rates, external 
pressure, and electrode stack assembly. This information on 
the mechanical state of the battery could optimize charge 
and discharge processes during LiB operation [65].

Recent studies have indicated that large-format LiB pouch 
cells, particularly those with NCM811 cathodes, which are 
commonly used in EVs, are highly prone to TR and can 
result in explosions under abusive conditions such as over-
charging [53]. To address this issue, Shan et al. used pres-
sure sensors to monitor the explosion behavior of these cells 
under varying charge and discharge current rates (C-rate: 
0.5C, 1C, and 2C) [53]. Their approach utilized a TNT (trin-
itrotoluene) equivalent conversion approach based on shock-
wave pressure to measure the released energy and associated 
hazards. They observed that the overcharge C-rate signifi-
cantly affected the thermal characteristics of the cells, with 
higher C-rates exacerbating the severity of the explosion. 
Moreover, they identified an evident negative pressure zone 
in the pressure curves, which suggested that the cells lacked 
a self-supplying oxygen system during the explosion. This 
absence of internal oxygen led to an explosion caused by an 
exothermic reaction between the electrolyte and the cathode 
material (Fig. 3E) [53]. Furthermore, they determined that 
the physical explosion originated from the rapid expansion 
of gases due to the temperature rise, whereas the chemical 
explosion was initiated by an exothermic reaction between 
the electrolyte and the cathode material (Fig. 3F) [53]. Their 
findings suggested the importance of safety management 
strategies for mitigating the risks of overcharging in large-
format LiB pouch cells. This contributes to enhancing the 
charge and discharge cycles of battery packs and highlight-
ing the significance of addressing the risks associated with 
utilizing NCM811 materials in LiB for EV applications.

Schmitt et al. developed a method for monitoring the internal 
pressure of large-format custom-built prismatic LiB cells by 
embedding miniaturized pressure sensors [15]. These sensors 

were embedded into the battery cells, mounted on circuit 
boards, and equipped with analog-to-digital conversion for 
signal processing. By placing a pressure sensor over a distinct 
opening on the top cover surface of each battery case, the inter-
nal pressure could be measured without causing premature bat-
tery failure or accelerating aging [15]. The study found that gas 
pressure increased irreversibly during long-term cycling, which 
correlated with cell capacity loss. This suggests that internal 
gas pressure could serve as an indicator of the battery’s SoH. 
Analog-to-digital conversion in these sensors facilitated precise 
and reliable data collection, enabling continuous monitoring 
of battery conditions over extended cycling periods [15]. In 
a study by Song et al., air pressure sensors were employed to 
monitor variations in the interior air pressure within a prismatic 
LFP battery module (Fig. 3G) under TR conditions [17]. The 
battery module was partially sealed using steel plates and tape, 
and the internal pressure was measured during venting pro-
cesses under overcharge and overheating scenarios. The sensors 
detected significant air pressure variations linked to the venting 
phases occurring during TR. The findings provided valuable 
insights into the battery’s safety, suggesting that monitoring 
pressure changes could serve as an early warning signal for 
TR, potentially triggered by faults such as overcharging and 
overheating (Fig. 3H) [17]. Their findings also showed that the 
average time interval between the warning signal and the onset 
of battery TR was approximately 473 s [17]. This duration was 
estimated to be sufficient to implement corrective measures, 
thus enhancing the safety of LiB operations.

Pressure sensors in LiBs enable early warnings of TR, 
reducing the risk of catastrophic failure or explosions. How-
ever, the harsh internal environment of LiBs, characterized 
by exposure to corrosive electrolytes, repeated lattice expan-
sion/contraction of electrodes, and significant temperature 
gradients, can degrade sensor materials (e.g., delamination of 
encapsulation layers). Such degradation may induce increased 
noise, calibration drift, or sensor failure, compromising the 
accuracy of the battery monitoring system over time. Integra-
tion with BMS is further complicated by the need for signal 
conditioning, such as analog-to-digital conversion [15], and 
spatial resolution limitations that may necessitate redundant 
sensor installations [17]. Moreover, studies have shown that 
pressure sensors alone may not effectively distinguish between 
physical failure modes (i.e., gas expansion) and chemical fail-
ure modes (i.e., electrolyte-cathode reactions) due to over-
lapping pressure signals. This overlap poses challenges in 
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accurately identifying the specific causes of LiB failures based 
solely on pressure measurements [53].

2.1.3  Strain Sensors

During battery operation, inherent electrochemical processes 
driven by Li-ion migration between electrodes and electro-
lytes produce two critical mechanical effects: (i) reversible 
strain caused by cyclical lattice expansion/contraction, 
which generates progressive structural fatigue and com-
ponent decoupling over repeated charge–discharge cycles 
[16, 67], and (ii) irreversible swelling from parasitic side 

reactions such as Li plating, gas evolution, and SEI layer 
growth. These degradation mechanisms collectively reduce 
capacity retention by deforming battery components and 
irreversibly trapping active Li-ions, accelerating energy 
density loss through mechanical aging and Li inventory 
depletion [16]. Strain sensors are integral in measuring the 
mechanical deformation, stress, and swelling of LiB packs 
following Hooke’s law for the momentum equation [68, 
69]. These sensors are capable of detecting structural dam-
age or deformation that may impact the performance and 
safety of the battery (Table 3) [16, 18, 70]. They are essen-
tial for assessing the structural integrity of LiBs, as exces-
sive strain can result in physical damage or even rupture. 

Fig. 3  Schematic illustrating the integration of LiB with pressure sensors. A A thin-film piezoresistive pressure sensor with an operating mecha-
nism designed for in situ measurements in LiB, B The structural details and components of the sensor, C Pressure-sensor current output cor-
relation with exerted pressures, highlighting pressure sensitivity, D SEM image of sensor surface and gap. E Explosion pressure and cell tem-
perature during Stage IV of the 1C overcharge test, demonstrating how the explosion pressure and cell temperature change in the cycle during 
this stage of the test, and F Pressure and pressure rate across the 1C overcharge test, showing pressure buildup rate in the cell during overcharge. 
G Locations of air-pressure sensors for LiB pressure monitoring, with respective coordinates, H Mechanism of air-pressure change within LiB 
module during battery TR. Panels reproduced with permission from A‑D, ref. [65], Elsevier; E, F, ref. [53], Elsevier; G, H, ref. [17], Elsevier 
publishing
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By monitoring the strain levels, these sensors enable the 
early warning of any mechanical stress that may compromise 
the safety and performance of LiBs. However, correlating 
mechanical strain with electrochemical performance, such 
technologies enhance diagnostic precision, support adaptive 
battery management, and pave the way for their application 
for performance optimization.

Conventional strain sensors often have limited sensitiv-
ity, which can hinder the detection of small variations in the 
mechanical properties of batteries. In addition, these sensors 
may struggle with spatial resolution, making it challeng-
ing to identify localized changes in the mechanical char-
acteristics of LiBs. Recent advancements showed innova-
tive approaches to detect reversible expansions from lattice 
changes during Li-ion intercalation and irreversible swelling 
caused by parasitic reactions, such as Li plating and SEI 
growth. For example, Graphene-based sensor arrays with 
ultrahigh sensitivity (gauge factor ≈150 μm) and distributed 
networks enabled precise mapping of localized strain hot-
spots, facilitating early detection of mechanical degradation 
[72]. Similarly, Nazari et al. developed a piezoresistive free-
standing microfiber strain sensor for real-time LiB thick-
ness monitoring, utilizing silver-coated glass microspheres 
in an ethylene–vinyl-acetate (EVA) matrix fabricated 
via wet-spinning [16]. The sensor achieved a record-low 
strain detection limit of 0.005% (1 µm displacement over 
20 mm, Fig. 4A), linear response up to 14% strain (gauge 
factor  GF = 9, Fig.  4B), and durability over > 10,000 
cycles (Fig. 4C). Comparative analysis (Fig. 4D) demon-
strated superiority in sensitivity over existing sensors, attrib-
uted to spherical core–shell fillers minimizing interparticle 
contacts and the elastomer’s viscoelasticity enabling rapid 
conductive path restoration [16]. Practical validation tracked 
real-time thickness changes (Δz) in LiB pouch cells dur-
ing charge/discharge (Fig. 4E), resolving reversible expan-
sion (≈62 µm) and subtle shrinkage (Δε =  − 0.05%). Such 
accuracy enabled early detection of irreversible swelling 
linked to aging or Li plating, which is critical for battery 
safety.  Furthermore, reproducibility across four cycles 
(Fig. 4F) confirmed reliability for long-term LiB health 
diagnostics, addressing critical needs in energy storage sys-
tems [16].

The study by Nazari et al. demonstrated excellent sensor 
sensitivity and durability for accurately monitoring LiB 
thickness changes during cycling. However, its practical 
implementation faces several challenges. For example, 

while the EVA matrix and silver-coated microspheres 
exhibited resilience over 10,000 cycles, the weak van 
der Waals bonds between the EVA and silver shells can 
delaminate under repeated mechanical stress from elec-
trode swelling, leading to signal drift or failure. The expo-
sure to reactive electrolytes or high temperatures during 
TR may corrode the silver coatings or soften the EVA, 
altering piezoresistive properties. Moreover, temperature 
gradients during battery operation induce thermal expan-
sion mismatches between the sensor and battery materi-
als, potentially altering the piezoresistive response (ΔR/
R0). While the study highlighted minimal hysteresis in 
cyclic tests, long-term field use may necessitate frequent 
recalibration due to the viscoelastic relaxation of the EVA 
matrix (Mullins effect). Although the sensor fabrication 
employed "green" solvents (anisole/acetone), the compos-
ite structure (EVA + glass-silver particles) complicates 
recycling. Integrated sensors cannot be easily separated 
from LiB cells, risking heavy metal contamination (e.g., 
silver leaching) during landfill disposal. Similarly, the 
study has not addressed recyclability, leaving a gap in 
sustainable lifecycle management. The analog resistance 
output (ΔR/R0) requires amplification, noise filtering, and 
analog-to-digital conversion to interface with digital BMS 
architectures. The sensor poses a rise in system cost and 
power consumption, particularly in large-format packs, 
requiring dense sensor arrays. Similarly, strain measure-
ments are influenced by the thermal expansion of battery 
materials (e.g., electrode swelling during fast charging), 
necessitating advanced compensation algorithms lacking 
in current BMS designs.

2.1.4  Gas Sensors

TR, often triggered by abuse conditions such as overcharg-
ing, internal short circuits, or mechanical failures, leads to 
excessive heat generation, gas venting, and the potential for 
catastrophic failure [73, 74]. Various gases, such as hydro-
gen  (H2), carbon monoxide (CO), carbon dioxide  (CO2), and 
volatile organic compounds (VOCs), particularly hydrocar-
bons  (CxHy), are usually emitted due to the decomposition 
of the battery’s organic electrolyte solvents and the cath-
ode-electrolyte interactions under thermal stress (Table 4) 
[74–77]. It has been reported that hydrocarbons detected 
during TR, such as unsaturated olefins (e.g., ethylene 
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 (C2H4), propene  (C3H6), and acetylene (C₂H₂)) and saturated 
hydrocarbons (e.g., methane  (CH4) and ethane  (C2H6), and 
propane  (C3H8)) are significant contributors to the composi-
tion of off-gases in LiBs. This composition is influenced by 
factors such as the SoC, chemistry, and cell configuration, 
which are more prominent in higher SoCs [78, 79]. Vivek 
and Garcia-Araez found that during the formation of the 
SEI on graphite electrodes, ethylene was the predominant 
gas that evolved [80]. They observed that the ethylene was 
quickly consumed at Li metal electrodes when these elec-
trodes were not pretreated. The consumption of ethylene at 
the Li metal electrode was linked to its reaction, forming 
polyolefins like polyethylene through radical polymeriza-
tion [80]. This reaction pathway, which does not generate 
gas, was previously overlooked and offers insights into the 
alternative mechanisms of SEI formation [80]. Furthermore, 
their study demonstrated that the reactivity of Li metal to 
ethylene is significantly higher than that of graphite, which 
could have important implications for designing degassing 
protocols and safety strategies in LiB systems [80].

The generation of CO is often accompanied by the 
release of  H2, which has been identified as a precursor to 
TR, appearing even earlier than CO and  CO2 in many cases 
[74, 84]. Gas sensors can be classified by their detection 
methods, including electrochemical gas sensors, catalumi-
nescence gas sensors, infrared absorption-based gas sensors, 
resistive gas sensors, quartz crystal microbalance-based gas 
sensors, and optical fiber-based gas sensors [61]. In par-
ticular, chemo-resistive gas sensors have been employed to 
detect CO in these scenarios due to their high sensitivity, 
rapid response time, and cost-effectiveness [21, 75]. These 
sensors can detect minute amounts of gas, offering early 
warnings before other indicators, such as temperature or 
voltage fluctuations, become noticeable [21, 84]. For exam-
ple, Jin et al. developed a gas sensing approach for early 
safety warning in LiBs by detecting  H2 gas generated dur-
ing the formation of micron-scale Li dendrites [84]. Their 
study demonstrated that the reaction between metallic Li 
and polymer binders (i.e., polyvinylidene difluoride (PVDF), 
styrene-butadiene rubber (SBR), and carboxymethylcellu-
lose (CMC)) during dendrite formation produces  H2 gas, 

Fig. 4  Performance and application of the microfiber strain sensor. A Stepwise resolution in low-strain regimes (0.005–0.025%), resolving 1 
µm displacement. B Relative resistance change (ΔR/R0) versus strain, fitted to tunneling theory (adj.  R2 = 0.99), showing linearity (GF = 9). C 
Durability over > 10,000 cycles at 1% strain. D Comparative analysis of detection limit (0.005%) and resolution against prior studies. E Real-
time thickness change (Δz) of a LiB pouch cell during cycling, correlating sensor (edge) and reference (RDS, center) data. F Reproducible 
responses over four cycles. Panels reproduced with permission from A‑F, ref. [16], Wiley–VCH
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which could be detected in real-time without modifying the 
commercial LiB cell structure. The method showed high 
sensitivity, capable of detecting dendrites as small as ~ 50 
μm and capturing  H2 gas at concentrations as low as 500 
ppm. In overcharge experiments using an 8.8 kWh LFP bat-
tery pack,  H2 was detected 639 s earlier than smoke and 
769 s before fire onset (Fig. 5A-E). Further validation in 
real-world battery energy storage system (BESS) conditions 
showed that early detection by  H2 sensors allowed inter-
vention before TR, with neither smoke nor fire observed 
when charging was halted upon  H2 detection. This practical 
approach enabled early safety warnings and provided a scal-
able, cost-effective enhancement to LiBs monitoring [84]. 
However, prolonged exposure to harsh battery environments, 
such as reactive electrolytes (e.g., hydrofluoric acid (HF) 
from  LiPF6 decomposition) or high temperatures during TR, 
can corrode sensor components. Moreover, the integration of 
gas sensors within battery packs complicates LiB recycling, 
as mixed-material sensors resist separation, increasing land-
fill waste and the risk of heavy metal leaching. Similarly, gas 
dispersion within sealed battery modules may delay detec-
tion, as  H2 released from localized dendrites took 990 s to 
reach external sensors. Such delays could escalate in tightly 
packed battery modules, potentially leading to missed early 
warnings and increased safety risks.

Furthermore, the integration of gas sensors with other 
diagnostic technologies, such as EIS, can significantly 
enhance the predictive capabilities of BMS systems [21, 
75]. Torres-Castro et al. demonstrated this integration by 
using rapid EIS with commercial gas sensors (i.e., VOCs, 
combined VOCs/CO2/H2, and  H2) to monitor TR in LiBs 
single cells and multi-cell configurations (1s4p, 2s4p) [75]. 
They tested both overcharge (OC) and overtemperature (OT) 
conditions, finding that EIS could identify failure markers 
much earlier than traditional BMS monitoring methods (e.g., 
voltage/temperature sensors). For OT tests, rapid EIS at 0.1 
Hz provided the much earlier warning times (Δtwarning time) 
before TR, detecting failure markers at ~ 82 °C (single cell: 
22.5 min, 1s4p pack: 29.2 min; Fig. 5F). VOC/Combined 
Gas sensors triggered during venting, offering shorter warn-
ings (single cell: 7.1 min, 1s4p: 17.3 min; Fig. 5G), while  H2 
sensors activated near TR onset (Δtwarning time ≈ − 0.4 min). 
In the OC tests, gas sensors exhibited EIS: VOC sensors 
detected venting ~ 8.5 min before TR (single cell and 1s4p; 
Fig. 5H), while rapid EIS warnings were shorter (~ 7.4 min 
for single cells). Pack complexity reduced EIS sensitivity, 

with impedance signals diminished sensitivity in larger 
packs (Fig. 5I). Intervention findings demonstrated that 
deactivating heating/current upon EIS or gas sensor trig-
gers (e.g., at 99 °C in 1s4p OT tests; Fig. 5J) successfully 
prevented TR [75]. Their study suggested that combining 
rapid EIS (superior for OT) and gas sensors (effective for 
OC) enhances early detection, though pack design and sen-
sor placement critically influence reliability [75].

Moreover, the choice of sensor technology is influenced 
by the battery’s composition, SoC, and operating conditions. 
For example, CO,  CO2, and ethylene are typical gases pro-
duced during TR, and their detection patterns vary depend-
ing on the specific materials used in the battery [21, 85]. 
This variability necessitates the development of customiz-
able sensor setups that can account for these differences. 
In addition to resistive sensors, other sensor types, such 
as nondispersive infrared (NDIR) sensors, are also being 
explored for their robustness and ability to detect gases 
such as  CO2 [81, 86]. Essl et al. investigated early failure 
detection in automotive LiBs before and during TR using 
gas sensors (Fig. 5K) [81]. The performance of commer-
cially available gas sensors was evaluated across four fail-
ure scenarios: (i) unwanted electrolysis of voltage-bearing 
components, (ii) electrolyte vapor leakage, (iii) initial cell 
venting, and (iv) TR. Their findings demonstrated that gas 
sensors could detect key failures such as  H2 from electroly-
sis, VOCs from electrolyte vapor, and TR-related gases (e.g., 
CO,  CO2). However, detection efficacy varied significantly 
depending on the failure mode and sensor type (Fig. 5L). 
Their study also confirmed that gas sensors could detect  CO2 
and CO emissions from TR, which are indicative of cata-
strophic failure. However, sensor placement, sensitivity, and 
environmental conditions influenced the response time and 
detection accuracy. Multi-pixel metal-oxide (MOx) sensors, 
such as the Sensirion SGP30 and SGX MiCS-6814, emerged 
as promising candidates due to their high sensitivity, multi-
gas detection capability, and ability to distinguish between 
different failure modes [81].

However, the harsh TR conditions, including pressure 
spikes (up to 3.2 bar) and corrosive gases such as HF, irre-
versibly damaged sensors in overcharge experiments, leav-
ing them inoperative post-TR. Moreover, cross-sensitivity 
to non-battery-related gases (e.g., gasoline) further compli-
cates their use, as false positives from ambient contaminants 
may trigger unnecessary BMS interventions, compromis-
ing system efficiency. The energy demands of continuously 
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operating sensor arrays, particularly heated  MOX sensors, 
conflict with the efficiency goals of EVs. Also, integrating 
gas sensors into the existing BMS presents technical and 
logistical hurdles. While the study proposed event-detection 
algorithms (e.g., signal-to-noise ratio thresholds and multi-
pixel signal differentiation), real-world deployment requires 
advanced machine learning (ML) models. These models are 
necessary to accurately distinguish between different failure 
modes, such as electrolysis and overheated cables, and to 
minimize false alarms. Implementing these solutions would 
involve considerable computational resources and firmware 

upgrades. In addition, spatial limitations further complicate 
its integration into BMS, as gas diffusion delays in large 
battery packs may hinder timely fault detection. In another 
study, Cai et al. presented a fault-detection method that uti-
lized expansion force measurements. These measurements 
are instrumental in identifying abnormal increases in force, 
a common symptom of battery swelling. In addition, they 
employed a nondispersive infrared (NDIR)  CO2 sensor to 
detect venting events, often indicative of LiB failure. Their 
findings revealed that detecting gases released from the 
TR of LiB using gas sensors is an effective approach for 

Fig. 5  Performance of gas sensors in LiBs safety monitoring. A Schematic of battery energy storage system (BESS) cabin with three  H2 gas 
sensors at varying distances, B The SEM images of graphite anode surface during LiB charging (with PVDF binder), C Similar to panel B but 
with a Li-metal electrode and graphite electrode (with PVDF binder), D  H2 gas concentration variation curves of three sensors over 0–2500 s, E 
The detailed view of  H2 gas concentration curves within 900–1150 s. F Rapid EIS of a single cell during OT test. Impedance at 0.1 Hz identified 
a failure marker (blue star) at 82 °C, G Gas sensor response during OT performed by VOC/Combined Gas/H2 sensors, H VOC/Combined Gas 
sensor response during OC test, I Rapid EIS test in a 1s4p pack during OC test, J Intervention test (1s4p OT). Deactivating heating at the EIS 
failure marker (~ 99 °C) prevented TR. K Location of the gas sensor (green) in the stainless-steel TR reactor setup, L Volumetric percentages of 
gases in four battery failure setups: electrolysis, electrolyte vapor, initial venting, and TR; The linear electrolyte components—DMC, DEC, and 
Ethyl methyl carbonate  (CH3OCO2C2H5, EMC)—are equally present. Panels reproduced with permission from A‑E, ref. [84], Cell Press; F‑J, 
ref. [75] IOPSCIENCE; K, L, ref. [81], MDPI
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providing early safety warnings and can further enhance the 
capability of charge and discharge processes in LiB [76]. 
However, during TR events, ambient temperatures can 
exceed 100 °C, potentially destabilizing the thermal stabil-
ity of NDIR sensors. NDIR sensors operate optimally within 
a narrow temperature range of − 20 to 60 °C [87]. Exceeding 
these temperatures can lead to inaccurate readings or even 
sensor failure. Moreover, effective integration with existing 
BMS necessitates sophisticated algorithms capable of accu-
rately interpreting  CO2 concentration data to assess battery 
health and predict failure modes, often requiring advanced 
data processing and ML models.

2.1.5  Acoustic Sensors

Acoustic sensors are used for LiB diagnosis to detect 
mechanical changes, such as electrode cracking, expan-
sion or contraction of the electrodes, and electrolyte move-
ment, by analyzing acoustic or ultrasonic signals (Table 5). 
These signals are influenced by SoC, SoH, temperature, 
and internal faults [88–92]. Acoustic methods, includ-
ing acoustic emission (AE) and ultrasonic testing (UT), 
provide non-invasive, cost-effective monitoring with high 
spatial and temporal resolution [88]. For example, Rob-
inson et al. used spatially resolved AE imaging to study 
electrode lithiation/delithiation at 36 distinct locations 
on the cell surface in a commercial LCO battery, reveal-
ing spatial irregularities in electrode expansion caused 
by current-collecting tabs [93]. Sun et al. demonstrated 
that multifrequency UT waves (750 kHz, 1 MHz, and 1.5 
MHz) correlate linearly with the SoC of pouch LiB cells 
and capture phase transitions during cycling (Fig. 6A–C) 
[94]. The findings at the attenuation of 1.5 MHz revealed 
the distinct redox peaks observed at 3.46 and 3.64 V on the 
charge curve and two peaks at 3.40 and 3.59 V on the dis-
charge curve, which indicated the occurrence of Li interca-
lation into the graphite anode and a phase transition in the 
NMC622 cathode, as essential processes for LiB operation 
and performance [94]. Similarly, Zhang et al. linked AE 
signal types (continuous vs. pulse) to SoH degradation, 
where continuous signals declined with cycling and pulse 
signals indicated aging [89]. Their findings revealed that 
the amplitude of the constant AE signal decreased with 
an increase in battery cycle count. Furthermore, the num-
ber of pulse-type AE signals gradually reduced during the 

initial cycles but exhibited a slow rise in the later cycles. 
Thus, a continuous AE signal could characterize perfor-
mance degradation, while a pulse-type AE signal could 
be used for aging monitoring [89]. The study suggested 
a novel method for detecting the SoH of LiB using AE 
technology.

Furthermore, the electrochemical-acoustic time-of-flight 
(EAToF) technique facilitates real-time, non-invasive moni-
toring of LiBs by correlating acoustic wave behavior with 
the battery’s SoC and SoH [96]. Hsieh et al. developed a 
framework relating acoustic wave behavior, such as changes 
in sound speed, to variations in the density and modulus of 
battery materials, which change as a function of SoC and 
SoH. Their study, conducted on commercial LCO/graphite 
pouch cells and NCA/graphite 18,650 cells, showed that the 
acoustic measurements were strongly correlated with elec-
trochemical performance. Their study showed that changes 
in acoustic signals, such as time-of-flight (ToF) shifts and 
signal attenuation, indicated the battery’s SoC and mechani-
cal degradation over time. Their findings demonstrated that 
ToF decreases and signal intensity increases during charg-
ing, while specific ToF peaks shift more noticeably near 0% 
and 100% SoC due to phase transitions in the cathode mate-
rial. In addition, their method could also detect early signs 
of degradation, such as diminished charge acceptance and 
mechanical relaxation, through subtle yet consistent changes 
in individual echo amplitudes across multiple cycles [96]. 
Moreover, EAToF identified formation effects in newly acti-
vated cells and could distinguish material and design differ-
ences between battery brands. The reported EAToF offered 
a low-cost, contactless, and universally applicable tool for 
in-operando LiBs diagnostics, uncovering physical insights 
that are typically inaccessible through conventional electro-
chemical methods [96].

It has been reported that the mechanical, thermal, and 
electrochemical instabilities of Ni-rich layered oxide cathode 
materials, such as LNO cathode, during delithiation induce 
significant shrinkage in unit-cell volume during charging in 
LiB. The shrinkage leads to uneven stress distribution, frac-
tures in both primary and secondary particles, and side reac-
tions between exposed surfaces and the electrolyte, which det-
rimentally impact capacity retention in LiB [91]. Schweidler 
et al. applied AE measurements as a non-destructive method 
for operando monitoring the mechanical degradation and 
structural changes of LNO electrodes at high SoC in LiBs 
[91]. Their study showed that significant acoustic activity 
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was primarily measured during the initial charging phase, 
diminishing during the next discharge cycles. In the follow-
ing cycles, acoustic activity was only detected during charg-
ing, showing a steady rise up to around 3.8 V. Their study 
suggested that the initial increase in acoustic activity could 
be associated with the potential formation of the cathode SEI 
and the further increase in acoustic activity from 3.9 to 4.3 V 
might be attributed to the growth or conversion of the initial 
SEI [91]. Wu et al. studied ultrasonic sensing through pulse-
echo mode ultrasonic transducers with basic electronics for 
non-invasive health monitoring and detecting early signs of 
degradation and failure in LiBs (Fig. 6D) [95]. They analyzed 
two key ultrasonic features, ToF and peak amplitude (PA), 

during battery cycling and abusive overcharge scenarios with 
a battery initial capacity of 1.88 Ah [95]. The results showed 
that after 100 and 210 cycles, the remaining capacity was 
97.69% and 96.02%, respectively, with TOF deviations more 
pronounced in cycle 210 (Fig. 6E, F). A strong negative cor-
relation with SoH was observed (Spearman’s r > 0.94), and 
a linear regression yielded  R2 = 0.949, confirming TOF as a 
highly reliable degradation indicator [95]. During overcharge 
tests (up to 5 V) (Fig. 6G), the study detected significant phys-
ical changes that were captured ultrasonically, such as gas-
induced (i.e.,  CO2 and  CH4) swelling and electrode distortion 
layers, confirmed by X-ray and thermal observations (Fig. 6H, 
I). Battery surface temperatures ranged from 45 to 50 °C, 

Fig. 6  Performance of acoustic sensors for ultrasonic monitoring of SoC and SoH in LiBs. A Non-destructive ultrasonic testing principle on a 
LiB pouch cell for SoC monitoring, B Attenuation histories of ultrasonic waves at frequencies 750 kHz, 1 MHz, and 1.5 MHz, C Correlation 
between attenuation history and SoC for the three frequencies. D Pulse-echo mode ultrasonic transducers for battery SoH monitoring, E Bat-
tery SoH performance during battery cycling, F Signal amplitude over multiple battery cycles (Signal at cycle 1 was considered as the baseline 
signal. The deviation observed at cycle 210 is more prominent than at cycle 100.), Overcharge process tests: G Voltage and current performance, 
H Battery view and X-ray images of the LiB before and after overcharge tests, I Battery surface temperature and temperature change rate during 
the constant charging process of 0.5C (0.9 A) to 5 V. Panels reproduced with permission from A‑C, ref. [94], Elsevier; D‑I, ref. [95], MDPI
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rising sharply beyond 4.709 V, reaching 62.19 °C at 3.697 h, 
with visible swelling occurring at this point (Fig. 6J). A key 
result was the development of a Mahalanobis distance‑based 
health indicator that fused ultrasonic and temperature data. 
This fused indicator provided early failure warnings 0.872 h 
before physical swelling and 0.817 h earlier than temperature-
based methods, offering critical time margins for intervention. 
Their method was validated using commercial LCO/graphite 
pouch cells, demonstrating effectiveness in both moderate 
cycling and high-risk abuse scenarios, making it a practi-
cal addition to BMS for enhancing LiB safety and predictive 
maintenance [95].

Despite the potential advantages, several limitations are 
associated with the acoustic sensors used for LiB fault moni-
toring. For example, contact-based ultrasonic sensors require 
direct coupling to the battery surface, which may loosen 
over cycles due to electrode swelling, reducing measurement 
accuracy. AE sensors are sensitive to external noise (e.g., 
cooling systems, vehicle motion), complicating long-term 
operando monitoring without frequent recalibration. Energy 
consumption for continuous operation of high-frequency 
UT systems (e.g., 1.5 MHz) also conflicts with sustainabil-
ity goals. Furthermore, scaling sensor arrays for large battery 
packs increases material use and electronic waste, necessitat-
ing recyclable or bio-friendly alternatives. Spatial resolution 
limitations further complicate integration: dense sensor arrays 
improve fault localization but increase system complexity and 
cost. For example, Sun et al. achieved SoC correlation using 
multiple frequencies but noted that signal attenuation patterns 
vary with cell geometry, necessitating cell-specific calibration 
[94]. Compatibility with legacy BMS architectures is another 
hurdle, as most systems lack dedicated hardware for acoustic 
data acquisition. Furthermore, overlapping signals initiating 
from various battery components and processes complicate the 
detection of specific failure modes and accurate estimation of 
the overall SoH of the battery. This ambiguity limits fault diag-
nosis precision; for example, distinguishing Li plating from 
particle cracking requires frequency-domain analysis with high 
signal-to-noise ratios, which is challenging in dynamic operat-
ing conditions [91, 93].

2.1.6  Magnetic Sensors

Magnetic sensors have emerged as valuable tools for detect-
ing magnetic fields induced by temperature variations, Ta
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current fluctuations, and fault indicators in LiBs, ena-
bling early failure detection and performance optimiza-
tion (Table 6). These sensors enhance LiB functionality by 
manipulating electrolyte properties, electrode kinetics, and 
deposit morphology [98, 99]. For example, magnetic field 
imaging allows non-invasive visualization of internal current 
distributions [98]. Brauchle et al. utilized anisotropic mag-
netoresistive (AMR) sensors to map magnetic fields with an 
accuracy of 227 mA  cm−2 and a local resolution of 4  mm2, 
enabling precise 2D current distribution analysis for SoH 
evaluations [98]. It has been reported that applying a mag-
netic field to lithium-ion batteries (LiBs) induces magnetiza-
tion, forming numerous small magnetic dipoles within the 
battery. This magnetic alignment of particles significantly 
impacts ionic conductivity, promoting the accelerated flow 
and diffusion of ions [100]. Thanks to the article published 
in the iScience journal, Costa et al. conducted a comprehen-
sive review on using magnetic fields in LiB components, 
including electrolytes, electrodes, and active materials [101]. 
The authors investigated the diverse mechanisms through 
which magnetic forces could interact with these components 
and examined their impact on electrochemical behavior. 
They suggested that effectively managing these forces and 
interactions can enhance the performance of LiB structures 
and facilitate the exploration of innovative approaches [101]. 
For example, Chen et al. constructed a magnetic sensor array 
that integrated a 16-channel high-performance magnetoelec-
tric (ME) sensor (Fig. 7A, B) [102]. The noise equivalent 
magnetic (NEM) induction for each channel was determined 
to be within the range of 3–5 pT/Hz1/2 at a frequency of 
10 Hz. This sensor array could non-destructively assess the 
SoH of LiB by monitoring the variation in the current supply 
during the charging cycle, distinguishing between healthy 
and degraded LiB cells (Fig. 7C) [102]. Although ME sen-
sors are highly sensitive, they require stable piezoelectric 
substrates that may degrade under cyclic mechanical loads, 
posing a challenge to the long-term reliability of the sensors. 
Moreover, the ME array demonstrated pT-level sensitivity 
(3–5 pT/Hz1/2@10 Hz) but faced difficulties isolating LiB-
specific signals in noisy environments.

In a recent study, it has been suggested that the measure-
ment of tiny induced magnetic field variations within LiB 
cells could serve as an effective method for evaluating the 
degree of Li-integration into the electrode materials (Fig. 7D) 
[103]. The utilization of one-to-one mapping between the 
charge state and measured field map provides a rapid tool 

for determining the SoC of an unidentified cell (Fig. 7E). 
This approach is particularly valuable for cell types that lack 
available SoC information obtained through voltage measure-
ments, particularly in cases where the cell integrity is com-
promised. Furthermore, this technique can potentially diag-
nose specific cell failures that may occur during the assembly 
process [103]. Zou et al. introduced a novel approach for 
gauging the temperature of LiB using an advanced magnetic 
nanoparticle thermometer (MNPT) [104]. They examined 
the influence of a direct current (DC) magnetic field on the 
temperature accuracy of the MNPT using MATLAB soft-
ware and subsequently devised a novel model based on the 
ratio of the first and second harmonics. Through a series of 
simulations and experimental tests, they demonstrated that 
the improved MNPT could effectively determine the internal 
temperature of the battery. The findings showed that during 
the charging process, the battery temperature increased rap-
idly along with the voltage and current, gradually stabilizing 
upon full charge. While during discharge, the temperature 
peaked at 58.7 °C, slightly lagging behind the charging and 
discharging processes. The improved MNPT exhibited a tem-
perature error < 0.5 °C compared to Pt100 sensors. These 
findings suggested a promising method for LiBs temperature 
monitoring in emerging EVs [104].

Magnetic sensors have garnered significant attention for 
various applications due to their numerous advantages, 
yet they face several challenges. For example, AMR sen-
sors often use nickel–iron alloys (permalloy), while ME 
sensors incorporate lead-based piezoelectrics (e.g., PZT), 
raising concerns about hazardous waste disposal. Scaling 
these sensors for large-scale EV battery packs amplifies 
material use and end-of-life recycling challenges. Energy 
consumption is another concern as high-accuracy ME 
arrays and MNPTs require constant power for operation, 
conflicting with LiB efficiency goals. Furthermore, inte-
grating magnetic sensors into conventional BMS poses 
technical hurdles, as most BMS lack dedicated hardware 
for magnetic data acquisition, necessitating additional 
signal conditioning circuits and analog-to-digital convert-
ers. Similarly, real-time processing of spatially resolved 
magnetic data (e.g., current distribution maps) demands 
significant computational resources, which may exceed 
the capabilities of legacy BMS architectures. Magnetic 
sensors are susceptible to ambient noise (e.g., EMI from 
nearby electronics or vehicle motors), which can obscure 
weak battery-generated signals. In addition, overlapping 
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magnetic signatures from concurrent phenomena (e.g., Li 
plating vs. particle cracking) complicate fault diagnosis 
without advanced ML algorithms.

2.2  Sensors for Performance Optimization

Sensors for performance optimization focus on enhancing 
battery efficiency, extending lifespan, and improving overall 
LiBs performance. These sensors, such as EIS, are designed 
to monitor critical internal parameters, including the SoC, 
SoH, remaining useful life (RUL), and internal impedance, 
providing valuable insights into the battery’s condition [106, 
107]. These sensors enable precise control of charging and 
discharging cycles, optimizing energy distribution and 
reducing the degradation rate. By continuously evaluating 
the battery’s internal state, performance optimization sen-
sors facilitate more effective BMS, enhancing operational 
efficiency and reliability. This is especially crucial for appli-
cations where long life cycles and high energy density are 
required, ensuring the system performs optimally over time.

2.2.1  Optical‑Based Sensors for Performance 
Optimization

Optical-based sensors exhibit advanced capabilities com-
pared to non-optical-based physical sensors, allowing for 
rapid and simultaneous measurement of multiple parameters 
with high sensitivity [108, 109]. These sensors utilize light 
interactions with the various components of a battery, mini-
mizing interference with battery performance and enabling 
low-invasive measurement of parameters such as electrolyte 
characteristics, temperature, pressure, and strain for safety 
enhancement, as well as SoC and SoH estimation in LiB 
[109]. Furthermore, optical-based sensors demonstrate dura-
bility and effectiveness in challenging environmental condi-
tions, rendering them advantageous for battery monitoring 
[108, 109]. Optical-based sensors can detect changes in vari-
ous optical signals related to the electrolytes and states of 
LiB cells, providing real-time information for timely main-
tenance and enhancing battery sustainability [110–112] 
(Table 7).

2.2.1.1 Fiber‑optic Sensors Fiber-optic sensors enable 
real-time monitoring of LiB parameters such as tempera-
ture, strain, pressure, and ion concentration by analyzing 

spectral shifts in the transmitted, reflected, fluorescence, or 
absorption light [1, 61, 135]. These sensors provide critical 
advantages, including electrical passivity, resilience in harsh 
environments, compact size, and high bandwidth, enabling 
precise sensing in complex systems [136]. Their multiplex-
ing capability allows dense, multi-point monitoring on a 
single fiber, minimizing wiring while enhancing spatial res-
olution. In large-scale LiB packs, this capability addresses 
the limitations of conventional module-level thermal moni-
toring, offering cell-level temperature data to improve safety 
and performance and prevent failures via advanced BMS 
[136]. For example, evanescent wave spectroscopy has 
shown consistent changes in the optical signal during Li-ion 
insertion and extraction, which enabled real-time SoH mon-
itoring during LiBs operation [110]. Although commercial 
BMS utilizing optical fiber technology for sensing is still in 
the early stages of development, research is actively inves-
tigating their potential applications, particularly for temper-
ature monitoring and internal state sensing within battery 
packs [137, 138]. However, there are currently no specific 
commercial BMS brands that extensively utilize optical 
fiber sensing and have gained widespread adoption. Recent 
reports have indicated the advent of innovative fiber-optic 
sensing technologies based on Rayleigh scattering [113]. 
The technology employed a distributed fiber-optic sensor 
(DFOS) and exhibited the potential to significantly enhance 
the measurement of the thermal behavior in NMC-LiB 
pouch cells. This technology allowed for comprehensive 
heat distribution monitoring across the cell surface, as well 
as the movement of the region with the highest temperature 
during operation (Fig. 8A, B) [113]. The findings derived 
from the DFOS indicated that the maximum in-plane tem-
perature difference could exhibit a significant increase dur-
ing 5 C discharge, reaching 307% higher than that obtained 
using conventional TC approaches [113].

Among fiber-optic sensors, FBG sensors are increasingly 
favored for LiBs monitoring due to their electromagnetic 
interference (EMI) immunity, compact size, and high sensi-
tivity to strain and temperature variations [139, 140]. These 
attributes make them ideal for harsh environments, such as 
LiB packs, where EMI from high-current operations and 
thermal gradients can compromise conventional sensors, 
such as thermocouples or strain gauges. A key advantage 
of FBGs lies in their ability to simultaneously decouple 
mechanical strain and temperature  through hybrid con-
figurations [141]. This capability is vital for LiBs, where 
strain induced by charge–discharge cycles and thermal 
expansion/contraction must be distinguished to assess SoC 
and prevent mechanical degradation. In FBGs, decoupled 
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sensing can be achieved through wavelength-shift analysis, 
where strain and temperature effects are computationally 
separated using sensitivity coefficients, enabling real-time 
monitoring of coupled thermo-mechanical behaviors [141]. 
Recent advancements in FBG-based strain sensing demon-
strate their compatibility with LiB systems, where struc-
tural deformation correlates strongly with SoC and depth-
of-discharge [18]. For example, a dual-FBG configuration 
comprising a functional grating (FBG I) and a thermally 
compensated grating (FBG II) was integrated into a com-
mercial NCM pouch cell [18]. The system employed flex-
ure hinges and symmetrical lever mechanisms to amplify 
strain sensitivity while minimizing transmission losses. 

The correlation between the FBG-strain sensor and SoC or 
depth-of-discharge indicated that strain rises with increas-
ing SoC and decreases with increasing depth-of-discharge 
[18]. In another study, optical FBG sensors embedded within 
the coin and Swagelok cells, containing either a liquid or 
solid-state electrolyte, were capable of internal operando 
monitoring of Li-driven stress changes in  InLix (indium-
doped Li) and  LixSi (Li-silicon) electrodes during LiB 
cycling [1]. These data were then translated into stress data 
and correlated with the voltage profile (Fig. 8C-G) [1]. The 
findings showed that the reflected optical spectra captured 
during battery cycling revealed a progressive shift of the 
Bragg peak toward higher values during charging and toward 

Fig. 7  Schematic illustration of the magnetic sensors, structure, and performance in LiB monitoring. A Schematic of the ME sensor, depicting 
its structural design and components, B Actual photograph of the ME sensor, C Magnetic field distribution in healthy power batteries before 
(B1, parts 1–4) and after various treatments (B2, parts 5–8). Magnetic field variation (∆B) is illustrated for untreated (9), externally extruded 
(10), over-discharged (11), and micro short-circuited (12) samples. D Magnetic field map measurements for fully charged cells with placement 
and image orientation (1–3), and field maps measured for the cells (4–5), E Series of magnetic field maps at discharge and charge cycles, labeled 
according to cell discharge capacity. Magnetic field maps are cross-referenced with maps from fully charged cells using RIT cells. Increased 
cell susceptibility was observed during the discharge process. Panels reproduced with permission from A‑C, ref. [102], MPDI; D, E, ref. [103], 
Springer Nature Publishing
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lower values during discharging. This shift was attributed to 
local anisotropic lithium-driven stresses, suggesting the high 
mechanical reversibility of the system.

Furthermore, the integration of FBG sensors with 
advanced data acquisition systems and signal process-
ing algorithms enabled the implementation of embedded 
monitoring systems. These can promptly warn operators or 
initiate automatic safety procedures upon the detection of 
potential failures in LiB cells. Rente et al. devised a real-
time SoC estimation method for LiB employing an FBG-
based sensor coupled with an ML algorithm [142]. Their 
approach utilized a dynamic time-warping (DTW) algorithm 
to optimize the fit using previously gathered data. The strain 
data extracted from the monitored optical signal served as 
input for the supervised DTW algorithm, enabling the pre-
diction of the charging cycle. The study demonstrated strong 
agreement, achieving an accuracy rate of 2% and an SoC 
prediction resolution of 1%, suppressing traditional methods. 
Furthermore, the effectiveness of the method was confirmed 
through successful implementation in a ‘proof of concept’ 
scenario, particularly in a battery-powered train. Their 
results showed the potential of the real-time SoC estimator 
to enhanced safety measures within the rapidly expanding 
EVs industry [142]. In another study, Peng et al. examined 
the utilization of strain data from FBG sensors to estimate 
the SoC and SoH in the NCM pouch cell [143]. The strain 
data generated from the FBG sensors attached to the batter-
ies was analyzed using a Kalman filtering (KF) model and 
an artificial neural network (ANN). The KF model applied 
real-time strain signal data to gauge the SoC based on a non-
equivalent-circuit model, while the ANN model used strain 
information to estimate the SoC of different cycles [143]. 
The strain signals also played a crucial role in estimating 
the SoH of the battery, which indicates the battery’s capac-
ity and overall health status over time. Their study showed 
that the FBG strain signal could serve as a standalone input 
to the models, accurately estimating the SoC without using 
traditional electrical measurement parameters [143]. This 
approach posed an advance in BMS, as it relies solely on 
the mechanical response of the battery. The strain data also 
provided insight into capacity degradation, which is crucial 
for predicting the lifespan and charge–discharge processes 
of LiB [143]. The study suggested that SoC and SoH estima-
tions could be improved by integrating non-electrical param-
eters, enabling an alternative to conventional strain sensors 
that rely on voltage, current, and temperature data [143]. The 

development of ML models could further mitigate frequent 
sensor calibration to maintain their accuracy over time.

Similarly, the utilization of FBG sensors for real-time 
monitoring of internal pressure in LiB systems has been 
demonstrated to be an effective approach to early detecting 
gas-release events. With increasing pressure in a battery cell, 
the FBG sensors experience strain, inducing a shift in the 
Bragg wavelength (λB). This shift can be accurately meas-
ured and correlated to the corresponding pressure changes 
through calibration within the LiB cell [109, 144]. In a 
study by Huang et al., a simultaneous monitoring method 
for temperature and pressure was developed using two FBG 
sensors [144]. The sensors, including the conventional sin-
gle-mode fiber (SMF)-FBG and microstructure optical fiber 
(MOF)-FBG, were fused onto an 18-gauge needle in the 
same position. The needle was then carefully inserted into 
the LiB jelly roll through a pre-drilled hole on the negative 
electrode, rendering any strain generated by the jelly roll 
insignificant. After being sealed and filled with electrolytes, 
the battery experienced charge and discharge cycles while 
the temperature and pressure were continuously monitored. 
The FBG sensors exhibited varied sensitivities to pressure 
and temperature, enabling achieving crucial thermody-
namic parameters [144]. The λB shift of the FBG sensor’s 
optical signal monitored the changes in voltage during the 
charging and discharging of two modified cells. Both cells 
exhibited closely overlapping voltage and λB shift profiles, 
indicating reliable sensor mounting and signal consistency. 
Internal temperature changes revealed four peaks during the 
initial charge, with only two persisting peaks in the follow-
ing discharges. One of these peaks was associated with a 
structural change in the battery material, suggesting revers-
ibility. While the peak with the highest amplitude during the 
first charge disappears in the following charges. The pres-
sure profile reproduced this trend, indicating gas generation 
during charging. These findings suggested an irreversible 
phenomenon associated with SEI growth [144]. Their study 
suggested that potential thermal incidents could be effec-
tively mitigated by configuring the heating and cooling sys-
tem based on the observed signals.

Recent studies have shown that conventional fiber 
optics may not withstand the harsh conditions inside 
LiB cells, particularly under thermal stress. This is par-
ticularly crucial in the LiB cells where significant heat 
generation, about 500 ~ 800 °C, during operation may 
surpass the temperature range of the sensor, potentially 
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leading to inaccurate measurements or damage to the sen-
sor [145]. To address this issue, researchers have devel-
oped advanced fiber optics that maintain their integrity 
and capability over a wide temperature range, including 
temperatures suppressing normal operating conditions 
and reaching into the TR regime. These specially engi-
neered fibers often integrate materials, such as sapphire 
femtosecond-laser-inscribed FBG and thermal-resistant 
polymers, significantly improving the thermal resistivity 
and stability of the sensors [145, 146]. Sapphire femtosec-
ond-laser-inscribed FBG can withstand temperatures up to 
1000 °C, far exceeding the necessities for safe LiB opera-
tion [145, 147]. This level of thermal resistance enables 
real-time temperature monitoring within the LiB, ensuring 
safety and aiding in BMS. In a study, Mei et al. tailored a 
hybrid FBG sensor by exposing an optical fiber to 800 nm 
light generated by a Ti: sapphire femtosecond laser and 
integration of an open-cavity Fabry–Perot interferometer 
(FPI). This exposure resulted in a periodic refractive index 
modulation along with the length of the fiber, leading to a 
light reflection at a specific λB resonance [145]. The sensor 
calibration results for the FBG λB shift exhibited a highly 
linear sensitivity of 99.9% to temperature, ranging from 
25 to 600 °C, and insensitivity to a pressure below 2 MPa, 
ensuring fiber remains unbent at one end. Conversely, the 
FPI spectral dip λFP shift showed a highly linear sensitivity 
of about 99.9% to pressure changes, ranging from 0 to 2 
MPa, while showing insensitivity to temperature changes 
within the range of 25–600 °C, less than 0.3 nm, equivalent 
to a minimal temperature sensitivity of 0.5 pm °C−1. The 
embedding of the FBG-FPI sensor, operando lab-on-fiber, 
into the cylindrical LFP cells, showed a minimal impact on 
the cell performance across various electrochemical charg-
ing conditions and during a lifetime test of 100 cycles at a 
2C charging rate. Furthermore, the FBG-FPI sensor dem-
onstrated a stable and reproducible correlation between the 
complex cell reactions and the optical signals, enabling 
temperature and pressure monitoring during TR conditions 
in cells [145].

Bonefacino et al. reported strain sensors by introducing 
polymer optical fiber-FBG (POF-FBG)-based sensors as a 
potential approach to track strain and temperature evolution 
in commercial LFP battery cells [123]. They used a silica-
based FBG to monitor the strain and temperature changes 
in the cells during the charge and discharge processes. The 
first used fiber was a commercial germanium-doped silica 

single-mode G657.B optical fiber, while the second fiber 
was a POF made of ZEONEX®. The POF exhibited a two 
times higher sensitivity than silica single-mode optical fibers 
(SMF) for temperature measurements, with a negative coef-
ficient of − 24.94 pm °C−1 compared to SMF of about 9.62 
pm °C−1. Moreover, the POF also exhibited a higher strain 
sensitivity of 1.52 pm με−1 compared to SMF about 0.839 
pm με−1 [123]. These findings showed the sensitivity of POF 
in the POF-FBG sensor for detecting thermal and strain data 
during LiB operation. Moreover, the study demonstrated a 
continuous increase in strain during the initial eight cycles, 
indicating irreversible cell expansion correlated with the Li-
ion uptake/release amplitude and charge capacity retention. 
Additionally, the evolution of strain rate vs. SoC during each 
cycle indicated a gradual shift to higher rates of contraction/
expansion, suggesting a transition from dominant expansion-
inducing reactions to reversible cell reactions over parasitic 
ones, leading to cell stabilization [123].

Although fiber-optic sensors provide excellent resolution 
for LiBs monitoring, their adoption relies on advancement 
in durability, eco-friendly materials, and BMS compatibil-
ity. For example, POF-FBG sensors exhibit superior sen-
sitivity but degrade faster than silica fibers due to polymer 
aging induced by cyclic thermal stresses. Similarly, FBG 
has limitations in detecting specific parasitic organic spe-
cies related to chemical changes in electrolyte composition 
[148]. To overcome this limitation, alternative classes of 
optical sensors, including tilted-fiber Bragg grating sensors 
(TFBGs) [122, 149] and long-period fiber gratings (LPFGs) 
[150], have been developed. These sensors utilize evanes-
cent waves to monitor changes in the refractive index of 
the surrounding electrolyte, which varies with salt concen-
tration, enabling tracking of Li inventory and solvent con-
centration [148]. Furthermore, the manufacturing processes 
of ZEONEX®-based POFs and sapphire fibers require sig-
nificant energy and pose recycling difficulties, contributing 
to end-of-life electronic waste. Chemical incompatibility 
also poses a critical concern, as prolonged exposure to 
electrolytes (e.g., LiPF₆) can corrode fiber coatings, lead-
ing to hazardous material leaching into the battery system. 
Moreover, the real-time processing of multi-parameter data 
(e.g., strain, temperature, pressure) can overwhelm BMS 
computational capabilities, necessitating extensive training 
datasets, sophisticated algorithms, and high-speed process-
ing hardware to effectively correlate strain signals with SoC/
SoH and accurately isolate individual parameters. Moreover, 
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the ambient vibrations (e.g., in EVs) further distort strain 
measurements, necessitating noise-cancelation techniques 
absent in most existing sensor systems.

2.2.1.2 Fluorescence Spectroscopy Fluorescence spec-
troscopy utilizes fluorescent dyes to monitor changes in 
Li-ion concentration and dendrite formation in the LiB 
electrolyte by analyzing wavelength shifts in emitted light 
[126, 151, 152]. During battery overcharging, the Li-ion 
concentration increases, leading to fluorescent spectros-
copy detecting an increase in light emission [153]. This 
non-invasive, low-cost technique enables real-time track-
ing of lithiation/delithiation dynamics and electrolyte 
health under ambient conditions [152]. For example, in a 

study by Padilla et  al., a fluorescent indicator of Li-ions, 
HPNO (2-(2-hydroxyphenyl) naphthoxazole,  C18H11NO2), 
was synthesized (Fig.  9A, B) [152]. This indicator was 
employed for real-time monitoring of Li-ion movements via 
widefield fluorescence microscopy. The HPNO fluorophore 
could be excited using visible light, enabling quantitative 
determination of the Li-ion diffusion constant by applying 
Fick’s first law of diffusion for continuity equations [154, 
155] within a microfluidic channel [152]. The study utilized 
PDMS (poly(dimethylsiloxane)), a polymer commonly used 
as a plasticized electrolyte in LiBs (Fig. 9C, D) [152]. The 
findings demonstrated real-time tracking of Li-ions with 
both temporal and spatial resolution, providing a novel, non-

Fig. 8  Schematic illustrating the performance of optical fiber sensors in LiB monitoring. A Results of 5C discharge at 25 °C ambient tempera-
ture, with cell surface temperature measured using DFOS and TC. The red dot indicates instantaneous max temperature by DFOS; (1) Evolution 
of current and voltage, (2) TC-measured temperature, (3), (4), (5), and (6) DFOS-measured temperatures and hotspots at regions 4, 3, 2, and 1 
respectively, B Simplified graphical depiction of hotspot movement during 5C discharge at 25 °C ambient. C Integration of FBG into modified 
Swagelok cell and FBG sensor operational principle, D Time-resolved voltage (top) and Δλ, Δσ evolution (bottom) from FBG sensor in  InLi0.6 
| 1 M LiTFSI in DOL: DME | LTO cell with liquid electrolyte; FBG at anode/electrolyte interface, E Analogous plot for cell with FBG sensor 
embedded within  InLix electrode. F Two-dimensional stack-view of reflected spectra by FBG sensor at the anode and electrolyte interface for 
cycles shown in D, G Analogous plot for cell with FBG sensor embedded within  InLix electrode. Panels reproduced with permission from A, B, 
ref. [113], Elsevier; C‑G, ref. [1], Springer Nature Publishing
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destructive approach for investigating lithiation and delithi-
ation mechanisms in LiBs [152].

Cheng et al. introduced a novel fluorescent probing strat-
egy that utilized DMA (9,10-dimethyl anthracene,  C16H14) 
to visualize the distribution of active Li-metal on the anode 
surface of LiB cells (Fig. 9E) [127]. Their method could 
potentially distinguish between Li-dendrites and byproducts, 
both of which pose significant safety risks and lead to low 
coulombic efficiencies (Fig. 9F, G). Their study could poten-
tially be employed for the selection of electrolytes and the 
predictive detection of uneven Li deposition on the anode 
(Fig. 9H-J) [127]. Their results showed that the electrolyte 
based on propylene carbonate (PC) exhibited significant 
polarization during plating/stripping, while the one based 
on vinylene carbonate (VC) showed minimal polarization 
and homogeneous Li deposition. DMA could detect dead Li 
coverage near the current collector in a pouch cell, indicating 
an uneven distribution of Li and its impact on electrolyte 
consumption and cycling performance [127].

Nevertheless, fluorescent dyes are prone to degradation 
under operational stress, which reduces the long-term 
reliability of fluorescence spectroscopy in LiBs monitor-
ing [152, 156, 157]. For example, although HPNO can be 
excited by visible light, it can experience photobleach-
ing during prolonged cycling, resulting in reduced emis-
sion intensity and diminished Li-ion sensitivity over time. 
Similarly, DMA’s reactivity with Li-metal byproducts 
(e.g., LiOH,  Li2CO3) can alter its fluorescence properties, 
leading to signal drift in dendrite detection. Furthermore, 
synthetic dyes (e.g., HPNO and DMA) often involve toxic 
solvents (e.g., DMF (dimethylformamide)) and non-
recyclable byproducts, increasing the carbon footprint of 
sensor production. Fluorescence sensors require exter-
nal optical hardware (e.g., microscopes, light sources), 
which are incompatible with compact, electronics-focused 
BMS architectures. Similarly, real-time data processing 
demands high-speed cameras and ML algorithms (e.g., 
for dendrite detection), straining BMS computational 
resources. Calibration is another hurdle, as HPNO-based 
sensors require frequent recalibration to account for dye 
degradation. Moreover, while fluorescence microscopy 
provides µm-scale resolution [152, 158], its application is 
restricted to lab-scale setups (e.g., microfluidic channels) 
and cannot yet resolve sub-surface defects in commercial 
pouches or cylindrical LiBs cells.

2.2.1.3 Optical Absorption Spectroscopy Optical 
absorption spectroscopy, also known as ultraviolet–vis-
ible (UV–vis) spectroscopy, is a non-destructive, sensitive 
method for detecting transition metals (TM) dissolution 
(e.g.,  Mn2+ from  LiMn2O4 cathodes) and monitoring elec-
trode degradation in LiBs [159–162]. The chemical reac-
tions in LiBs can be monitored by measuring the changes 
in the UV–vis spectra over time, enabling the prediction 
of the remaining lifetime of the LiBs. It has been reported 
that the dissolution of TM cations from the cathode mate-
rial into a LiBs electrolyte, such as Mn-ion from LMO, 
leads to capacity degradation in LiBs [129, 163–165]. 
Zhou et al. employed UV–vis spectroscopy in conjunction 
with the ab  initio molecular dynamics (AIMD) simula-
tions to monitor the changes in concentration of dissolved 
Mn-ion in electrolytes derived from LMO at varying SoC 
(Fig. 10A-C) [128]. AIMD simulations revealed a strong 
correlation between the Mn-ion dissolution process and 
the evolution of the surface structure, solvent decomposi-
tion, and Li salt. Their study showed that the maximum 
Mn-ions dissolution concentration occurred at the LMO 
charged state of 4.3 V, indicating that the valence of dis-
solved Mn-ions depends on the charge–discharge states 
(Fig. 10D) [128]. Similarly, their study suggested different 
perspectives on Mn-ion dissolution mechanisms, includ-
ing the disproportionation reaction mechanism and the 
phase transition mechanism, indicating that the valence 
of dissolved Mn-ions could vary depending on the LiBs 
operating conditions. Through the analysis of UV–vis 
spectra, this technique effectively quantified dissolved 
Mn-ion concentrations for real-time monitoring, allowing 
for accurate determination of the actual Mn-ion dissolu-
tion content based on the intensity of the UV–vis peak at 
483 nm (Fig. 10E). The recovery rate was observed to be 
nearly 1.0, with detection and quantification limits of 2.5 
and 8.4 ppm, respectively [128].

While UV–vis spectroscopy provides critical insights 
into TM dissolution, its practical application requires robust 
miniaturization, eco-friendly materials, and advanced sig-
nal processing for BMS integration. For example, UV–vis 
systems require stable light sources and detectors, which 
risks lens fouling from electrolyte decomposition byprod-
ucts in a real-world deployment. Similarly, synthesizing 
calibration standards (e.g., Mn-ion solutions) involves toxic 
solvents (e.g., nitric acid), generating hazardous waste. 
Moreover, real-time data processing demands high-speed 
photodiode arrays and ML algorithms to deconvolve over-
lapping absorption peaks (e.g.,  Mn2+ vs.  Co3+), straining 
BMS computational resources. UV–vis technique is also 
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limited with turbid or light-scattering electrolytes (e.g., gel 
polymer electrolytes), leading to drop signal-to-noise ratios. 
Furthermore, UV–vis cannot detect non-UV-active species 
(e.g.,  Li+,  PF6

−) or distinguish between TM ions with similar 
absorption profiles (e.g.,  Ni2+ vs.  Co2+) without complex 
chemometric models.

2.2.1.4 Raman Spectroscopy Raman spectroscopy ena-
bles spatially resolved, in situ monitoring of any structural 
and molecular changes in LiBs components during charge 
and discharge cycles at a spatial resolution down to 1 μm2 
[166]. This technology provides valuable insights into var-
ious aspects, such as electrolyte decomposition and phase 
transitions on cathode materials [130, 131, 167–169]. 
Raman spectroscopy offers the capability to promptly 
detect the presence of organic solvent vapor (OSV) upon 

activation of the safety valve, making it a promising tool 
for early warnings of TR and estimation of the risk of TR 
gas explosions [132]. Moreover, Raman spectroscopy 
could be employed for in-situ and confocal conditions 
[130, 170]. It has been reported that chemical heterogene-
ity across the LCO cathode surface could determine the 
presence of resonance enhancement for LCO materials 
when excited with a green laser during lithium de-interca-
lation [130]. This capability facilitates monitoring subtle 
changes in the LCO material’s structure and composition 
during battery operation, revealing the potential of Raman 
spectroscopy for spatially-resolved and in  situ monitor-
ing of LiBs. Similarly, in a study by Fang et  al., in  situ 
Raman mapping of LiB electrodes could allow for real-
time tracking of SoC inhomogeneity on the single-parti-
cle level in LiBs [134]. This monitoring was developed 
based on industry-standard coin cells and a commercially 

Fig. 9  Schematic illustrating the integration of fluorescence spectroscopy for Li-ion characteristic monitoring in LiB during operation. A PDMS 
microfluidic channel with placed LiCl crystal (red cube) at one end, B Monitoring Li-ion motion within the channel using widefield fluorescence 
microscopy, C Widefield images of illuminated channels captured at different intervals, illustrating Li-ion diffusion, D Quantitative fluorescence 
intensity analysis at rectangular ROIs (inset), plotted over time. E DMA probing measurement illustration, depicting DMA reaction with com-
ponents on Li surface, F Visualizing Li distribution on cycled Li metal surface through DMA probing test, G Emission spectra of 5 mg  mL−1 
DMA in dry TEGDME/DME (1:1) before (blue) and after (red) Li metal treatment. Samples diluted 1/100 in TEGDME/DME (1:1) for measur-
able intensity. DMA solution fluorescence intensity at 500 nm was reduced by a factor of 15 after reaction, H Li deposition in Li|Li cell with 
a voltage profile of symmetric Li|Li cell under 2.5 mA  cm−2 current density and 2.5 mAh  cm−2 area capacity, I Series of fluorescence images 
(1–4) of Li foils after 1, 10, 50, and 100 cycles. Arrows in (3) and (4) highlight byproduct-dominated areas. Images labeled (1′–4′) provide opti-
cal views of areas enclosed in orange rectangles in fluorescence images, J Mean of fluorescence intensity of cycled Li after 1, 10, 50, and 100 
cycles. The excitation wavelength (λex) is 378 nm; the scale for fluorescence images is 100 μm. Panels reproduced with permission from A‑D, 
ref. [152], ACS; E‑J, ref. [127], Wiley Publishing
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available Raman spectrometer equipped with an electron-
multiplying charge-coupled device (EMCCD) detector. 
The spectral evolution during charging in the in situ cells 
for LCO revealed bands located at 595  cm−1 for  A1g sym-
metry, arising from M–O stretching vibrations, and 485 
 cm−1 for  Eg symmetry, arising from O–M–O bending 
vibrations, in the fully lithiated state. As the charging pro-
cess progresses and positive electrode delithiation starts 
around 3.8 V, the Raman bands experience a downshift 
in frequency. Specifically, the  A1g bands shift from 592 to 
530  cm−1, and the  Eg bands shift from 488 to 459  cm−1. 
Their study suggested that the frequency and intensity of 
Raman peaks could serve as reliable indicators of local 
SoC with a spatial resolution of 1 mm [134]. Their study 
also tackled the inherent challenges of this approach, such 
as low sensitivity, potential light-induced alteration of 
battery materials, and the creation of an optical cell with 
uniform electric field distribution.

Furthermore, potential changes in the electronic struc-
ture of Li-intercalated graphite  (LixC6, LIG) during battery 
operation could be examined using X-ray Raman scattering 
(XRS) spectroscopy. This could facilitate the development 
of an in situ, as well as the development of a confocal-like 
method specifically designed to extract the XRS spectrum 
from the graphite electrode alone [170]. This method could 
provide valuable information about the chemical composi-
tion and structure of electrode material, potentially contrib-
uting to the development of safe LiB operation. It has been 
reported that carbonaceous additives (e.g., conductive car-
bon black) generate significant fluorescence that can obscure 
Raman signals unless mitigated by Kerr-gated systems 
[171]. Neale et al. developed a highly sensitive diagnostic 
tool, operando electrochemical Kerr-gated Raman spectros-
copy, to accurately monitor the Li inventory in the graphitic 
carbon electrode of LiB to measure cell aging [171]. The 
application of the Kerr gate has been observed to suppress 
fluorescence emission signals, facilitating the measure-
ment of Raman graphitic bands of highly lithiated graphite 
within the range of 0.5 ≤ x ≤ 1 for LIG. Initial observations 
indicated a broad graphitic band centered at 1590  cm–1 for 
 Li0.5C6. However, upon further lithiation to  LiC6, the band 
exhibited a linear shift to approximately 1564  cm–1. This 
shift provided a sensitive diagnostic tool for examining high 
SoC within graphitic carbon-based negative electrodes. This 
finding could hold significant implications for the develop-
ment of more efficient and reliable LiB [171].

Despite the potential of Raman spectroscopy for spa-
tially resolved and in situ analysis of LiB, it is mainly a 
surface-sensitive technique that can examine only the out-
ermost layers of the electrode material to 1 μm2. This can 
pose certain limitations when attempting to study thick 
electrodes or gather information about the bulk properties 
of the material during Li de-intercalation [166, 172]. In 
addition, the laser employed in Raman spectroscopy can 
cause localized heating of the sample, which may dam-
age the electrode material or electrolyte [173, 174]. This 
heating effect can potentially affect the Raman spectra, 
making obtaining reliable and reproducible results chal-
lenging. Therefore, for a complementary measurement of 
LiBs, it is essential to integrate Raman spectroscopy with 
additional diagnostic methods. For example, a study by 
Miele et al. introduced an operando Raman spectroscopy 
sensor facilitated by hollow-core (HC) fibers-optic. This 
method enabled the real-time monitoring of the chemi-
cal alterations occurring in liquid electrolytes during the 
operation of LiBs (Fig. 11A-D) [133]. The integrated sen-
sors effectively detected changes in the electrolyte of the 
battery, which was composed of a commercially significant 
high-energy Ni-rich layered oxide cathode of NMC811 and 
a graphite anode. The study on the spectroscopy meas-
urements revealed variations in the ratio of carbonate sol-
vents and electrolyte additives, which were found to be 
directly dependent on the cell voltage to monitor the solva-
tion dynamics of Li-ion, referred to as continuity equation 
[175, 176] (Fig. 11E, F) [133]. Operando Raman measure-
ments were conducted using the HC fiber during cycle 7. 
The EC breathing mode exhibited stability throughout the 
cycle, while significant fluctuations were observed during 
formation-cycle measurements. Additionally, a new peak 
developed at the position of the vinylene C = C stretch 
mode, indicating the formation of vinylene species due to 
electrolyte oxidation. The findings confirmed that the sig-
nificant EC fluctuations and increases in vinylene species 
were associated with electrochemical processes [133]. This 
innovative method contributed to understanding the deg-
radation mechanisms prevalent in different LiB systems.

2.2.1.5 Infrared Spectroscopy Infrared (IR) spectroscopy 
is a non-intrusive technology that utilizes the infrared region 
of the electromagnetic spectrum (approximately 780 nm to 
1 mm) to measure the absorbance and reflectance of light 
by molecular bonds, particularly OH (hydroxyl group), CH 
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(methyl group), and NH (amino group) bonds, which can 
provide valuable information into the chemical and molecu-
lar characteristics of the internal components of the LiBs 
during charging and discharging cycles [124, 177, 178]. IR 
spectroscopy has the capability to penetrate deeper into bat-
tery materials than visible light, allowing it to provide valu-
able information on the internal structure of batteries [44]. 
Giammichele et  al. investigated the thermal and electrical 
performance of a commercial LFP cylindrical cell for ther-
mal management in LiB for electric mobility applications 
[124]. They used IR thermography to quantitatively meas-
ure the heat generation in battery cells, which was then com-
pared to the results obtained from TC probe measurements 
to assess its reliability. In addition to this, an electrical char-
acterization of the LiB was performed, measuring various 

parameters such as the cell potential, open circuit potential, 
and the entropic heat coefficient, referred to energy equa-
tion [179], to the SoC. The thermal images revealed that 
during discharge, the battery temperature increased, and at 
lower C-rates, the battery’s temperature remained relatively 
moderate by the end of discharge, slightly above ambient 
temperature. The IR thermography results compared to TC 
measurement demonstrated similar behavior. The findings 
indicated that the reversible term significantly influenced 
total thermal power, and the measurement of heat genera-
tion using IR thermography was reliable [124].

In-situ and operando IR spectroscopy has also been 
used in various LiB to monitor the performance and inves-
tigate the thermal stability of electrolytes [125, 177, 180, 
181]. Saqib et al. developed an innovative operando IR 

Fig. 10  Schematic illustrating the concentration changes of dissolved Mn-ions in the liquid electrolyte from LMO at different SoC using a 
refined in situ UV–vis spectroscopy monitoring. A The model of the cathode-electrolyte interface features a MO’s (110) slab and electrolytes, 
including EC, DMC, and  LiPF6. This model highlights the presence of Mn-ions in varying valence states at the interface layer, demonstrating 
the synergistic movement of  Mn4+ (Mn5) and its surrounding  Mn3+ (Mn1, Mn3, and Mn22). B The oxidative decomposition process of EC mol-
ecules is presented in a stepwise manner, C The interaction between  F– from  LiPF6 and the surface Mn-ion  (F– exhibiting minimal impact on Mn 
dissolution). D A comparative analysis of the absorption peak intensity and the concentration of dissolved Mn over storage time for electrolyte/
LMO-p, electrolyte/LMO-c, and electrolyte/LMO-d at 45 °C (The inset provides a visual representation of electrolyte cuvettes after 60 days of 
storage). E The in situ UV–vis spectra of electrolyte/LMO-c with varying storage times (16, 24, 32, 40, and 48 h) at 45 °C. Panels reproduced 
with permission from A‑E, ref. [128], ACS Publishing
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spectroscopy to monitor the real-time degradation of the 
 LiPF6/EC/DEC electrolyte in the LCO/graphite cell [125]. 
The study provided valuable insights into the mechanism of 
EC thermal degradation. The findings indicated a uniform 
mechanism across all tested cells, suggesting a consistent 
decomposition reaction unaffected by electrode material or 
potential. The primary mechanism identified for electrolyte 
thermal degradation was the ring-opening of EC. Addition-
ally, the study found that operating LCO half-cells at volt-
ages exceeding 4.2 V led to a permanent loss in LiB capacity 
[125]. However, no visible degradation of the electrolyte 
was observed, indicating that degradation of the LCO elec-
trode occurs primarily at high voltage. IR thermometry was 
also used to measure electrolyte temperature during heated 
tests. Similarly, despite the high voltage of 4.5 V, the IR 
spectrum remained stable, suggesting no significant oxida-
tion events in the electrolyte solvent. However, operating 
cells at temperatures exceeding 70 °C resulted in SEI and 
electrolyte degradation, highlighting the importance of tem-
perature control in LiB operation. Furthermore, a decrease in 
thermal stability was observed with an increase in salt con-
centration, indicating that the degradation process may be 
catalyzed by the degradation of LiPF6 [125]. These insights 
into the mechanism of electrolyte thermal stability and deg-
radation suggested IR thermometry as a valuable tool for 
designing smart LiB with higher accuracy and safety. Viz-
intin et al. introduced an operando-attenuated reflectance 
infrared (ATR-IR) spectroscopy approach for in-operando 
monitoring of changes in IR intensity of the carbonyl bond 
during redox processes inside the organic cathode, PAQS 
(poly-(anthraquinonyl sulfide)), which provided insights 
into the electrochemical mechanism of the cathode material 
[174]. The ATR-IR spectroscopy was further suggested for 
potential monitoring of the electrode degradation processes 
and electrolyte stability during the electrochemical cycling 
[174]. Nevertheless, the polymer-based optical fibers used 
in ATR-IR probes may swell or delaminate under cyclic 
mechanical stress from electrode expansion, compromising 
measurement accuracy.

The interpretation of IR spectra is intricate due to fac-
tors such as diverse chemical species in LiBs, overlapping 
spectral peaks, and potential interference from background 
materials [109, 182, 183]. To address these challenges, 
careful design of data-processing models rooted in density 
functional theory (DFT), referred to as the Kohn–Sham 
energy equation [184], is essential. The real-time spectral 

analysis (e.g., deconvolving overlapping peaks) demands 
high-speed processors and ML algorithms, exceeding the 
computational capacity of legacy BMS. Furthermore, IR 
spectroscopy is limited to a specific spectral range, poten-
tially missing important molecular vibrations or reactions 
outside this range. IR spectrometers rely on toxic materi-
als (e.g., mercury in MCT photovoltaic detectors), and their 
disposal results in hazardous electronic waste. Similarly, the 
reliability of IR spectroscopy data depends on frequent cali-
bration during thermal stress.

2.2.2  Electrochemical‑based Sensors for Performance 
Optimization

Electrochemical sensors, also known as contactless sensors, 
are utilized to monitor electrochemical processes occurring 
in LiB [2]. These sensors gauge the battery voltage, cur-
rent, and impedance, enabling real-time tracking of internal 
changes. They provide accurate estimates of the SoC and 
SoH of the LiBs and can also detect early signs of degrada-
tion or inefficiencies, facilitating timely maintenance actions 
to prolong the battery’s lifespan and optimize performance 
(Table 8) [13, 63, 185, 186].

2.2.2.1 Potentiometric Sensors Potentiometric sensors are 
non-destructive and measure internal changes within LiBs, 
including alterations in electrode structure and the behavior 
of Li-ions in the electrolyte. This monitoring is essential for 
evaluating the SoC or SoH by measuring the potential dif-
ference between the two electrodes in the LiBs. Such meas-
urements help prevent overcharging and over-discharging, 
thus ensuring optimal performance and longevity in smart 
LiBs [29, 191]. Studies have shown that the LiBs operation 
produces irreversible and reversible heat [189, 192]. The 
reversible heat is associated with the entropy coefficient 
(ΔS) that can reflect the ordering of Li-ions within the host 
lattice during the lithiation and delithiation processes [190]. 
In a study by Zhang et al., an enhanced potentiometric meas-
urement was introduced to investigate ΔS during cycling as 
an in situ diagnostic tool [189]. This method was particu-
larly effective in monitoring the structural changes of the 
LCO cathode in solid-state electrolyte (SSE) batteries, spe-
cifically for the degradation phenomena of thin-film micro-
scale batteries (TFB) during galvanostatic cycling [189]. 
Their study employed LiPON (Li-phosphorus-oxynitride) 
electrolyte, with an electrochemical stability window of up 
to 5.5 V, to examine ΔS during overcharging-cycling and 
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high-temperature degradation. The use of LiPON mitigated 
the potential impact of liquid electrolyte reactions with the 
cathode, such as electrolyte decomposition [189]. The study 
found that changes in the material structure of the cell moni-
tored through ΔS profiles could be associated with the phase 
transitions occurring at specific voltage ranges. These tran-
sitions included the charge–discharge cycles at around open 
circuit potential (OCP) ~ 3.9 V and at about x = 0.55 in LCO 
for OCP between 4.08 and 4.17 V, corresponding to the 
order–disorder transition, as well as a monoclinic-hexagonal 
transition at the end of charging [189]. The study suggested 
that the continuous ΔS measurement could facilitate real-
time dV/dT (a derivative of voltage/time) characterization 

and enable SoH battery monitoring, providing insights into 
diagnosing degradation mechanisms in SSE batteries [189].

However, potentiometric sensors pose limitations, such as 
a restricted dynamic range determined by the material used, 
which causes challenges in accurately measuring potential 
differences across a wide range. For example, the restricted 
voltage window of materials, such as LiPON to 5.5 V, may 
hinder accurate ΔS measurement during extreme overcharg-
ing, limiting fault detection in LiB cells. These sensors 
demand careful calibration to obtain accurate measurements, 
a process that can be challenging in practical applications. 

Fig. 11  Schematic illustrating the integration of operando Raman spectroscopy for electrolyte monitoring in LiB. A The continuous-wave laser 
light (785 nm) filtered and directed into the core of a single-ring HC-fiber, B single-ring HC-fiber connected to a syringe pump for on-demand 
sampling or infusion, C SEM image of the HC fiber, which has an outer diameter of 174 µm and a core diameter of 36 µm, as measured between 
the inner capillaries. The accompanying image displays the Raman signal as detected by the charge-coupled device (CCD) camera of the spec-
trometer. D Arrangement of the electrodes, separator, and the fiber probe within the LiB pouch cell. E Operando Raman spectroscopy during 
the formation cycle of an NMC811- graphite LiB pouch cell using an LP57 + 2 wt% VC electrolyte. The cell was charged galvanostatically to 
4.3 V, maintained the potentiostate at 4.3 V, and then discharged. F Raman spectrum, underlining specific Raman modes of LiB electrolytes: (i) 
 PF6 − anion, symmetric stretch (740  cm−1, green dashed line), (ii) EC, skeletal breathing mode (893  cm−1, dotted red line), and (iii) vinylene car-
bonate (1,2-epoxy-3-propenyl carbonate, VC), –HC = CH– (1628  cm−1, gray dash-dotted line). Panels reproduced with permission from A‑F, ref. 
[133], Nature Portfolio Publishing
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Moreover, electrodes are susceptible to fouling by contami-
nants during operation, leading to reduced sensitivity and 
accuracy. For example, while LiPON electrolyte mitigated 
liquid electrolyte interference, fouling from cathode degra-
dation (e.g., Co dissolution) necessitates periodic recalibra-
tion. Moreover, the sensors’ sensitivity to other ions in the 
battery electrolyte may introduce interference, potentially 
impacting measurement accuracy. The real-time ΔS meas-
urement demands high-speed processors for dV/dT analysis, 
exceeding the capacity of microcontroller-based BMS.

2.2.2.2 Amperometric Sensors Amperometric sensors, 
known as electrochemical VOC sensors, enable real-time, 
non-invasive detection of critical gases, such as  H2,  CO2, and 
other VOC gases, by measuring the current flow between 
two electrodes within LiBs [28, 76, 186]. For example, an 
amperometric  H2 sensor with a distinctive ‘sandwich’ struc-
ture has shown promise for the safe and real-time monitor-
ing of LiBs [28]. Gao et al. developed an amperometric  H2 
sensor employing an SPE (solid polymer electrolyte) and a 
Ti (titanium) foam electrode designed for safety detection 
in LiBs (Fig.  12A-C) [28]. The sensor facilitated a direct 
gas diffusion to the triphasic interface, enabling a current 
proportional to  H2 gas concentration during LiBs damage 
stages (Fig. 12D, E). In addition, the SPE functioned as a 
selective barrier, ensuring exclusive detection of  H2 gas. 
The sensor exhibited a linear response to  H2 concentra-
tions (0–5000 ppm) under diffusion-controlled conditions, 
demonstrating high sensitivity and rapid response time 
(Fig.  12E) [28]. Their study on amperometric  H2 sensors 
revealed good sensitivity, long-term stability, low detection 
limit, and real-time and non-invasive monitoring, making it 
ideal for  H2 detection in LiBs [28].

However, these sensors are susceptible to damage under 
high temperatures or severe conditions, such as environ-
ments with low humidity, depending on the physical proper-
ties of the electrode materials [76]. For example, prolonged 
exposure to high temperatures accelerates SPE dehydration, 
reducing ionic conductivity and sensor accuracy. Similarly, 
SPE often incorporates fluorinated polymers (e.g., PVDF) 
and platinum-group catalysts, which are energy-intensive in 
producing and releasing persistent pollutants if incinerated. 
Conventional BMS lack analog front-ends for low-current 
signals (nA–µA range), necessitating additional amplifiers 
and filters.

2.2.2.3 Conductometric Sensors Conductometric sen-
sors, also known as chemosensors, are instrumental in 

LiBs monitoring by measuring the electrical conductivity 
of the battery electrolyte. These sensors provide valuable 
insights into the electrolyte degradation and states of the 
battery [187, 188, 193]. In a study by Lu et al., the efficacy 
of conductometric sensors, particularly those made from 
ionically conductive metal–organic framework (IC-MOF) 
thin films, was evaluated for detecting electrolyte leakage in 
LiBs (Fig. 13A) [187]. The study compared sensing signals 
based on output current, capacitance, and equivalent resist-
ance. Similarly, their designed sensor operated using AC 
bias to eliminate the bias stress and improve stable sensing 
baselines effectively. The sensor was tested with an alter-
nating voltage (1 to − 1 V, then back to 1 V within 2 s) and 
showed dosimetric responses to DMC (dimethyl carbonate) 
vapor. This was indicated by changes in the normalized out-
put current (I/I0), with a stable baseline detected under air-
flow. The exposure to 3,000 ppm DMC/air vapor resulted in 
a sharp decrease in current, with a response time of about 4 s 
(Fig. 13B). The sensor also effectively detected 5 ppm DMC 
vapor, showing an 11% current decrease, and the response 
was proportional to the DMC concentration, which was 
attributed to the direct interaction between the analytes and 
metal ions in the IC-MOF thin films [187]. Furthermore, 
the study showed rapid and real-time detection of DMC and 
electrolyte leakage within seconds from LiBs, which pro-
vided an early warning time of up to 10 h, indicating a sig-
nificant advancement in LiBs monitoring (Fig.  13C). The 
study also demonstrated the high stability of the sensor, with 
negligible change observed over 6 months in ambient con-
ditions, suggesting its potential for long-term applications 
[187]. However, while the sensors were evaluated in ambi-
ent conditions, they were not tested in extreme temperatures, 
mechanical stress, or high humidity. Therefore, the potential 
for performance degradation under heat or physical strain 
(e.g., in EVs) remains a concern. Similarly, IC-MOFs are 
prone to corrosion from reactive electrolytes (e.g.,  LiPF6), 
leading to structural collapse and reduced ionic conductivity 
over time. While AC bias could improve stability and sen-
sitivity, it complicates power supply design, particularly in 
large-scale applications (e.g., EVs with hundreds of cells), 
which requires further optimization for cumulative power 
consumption and AC circuitry integration

Wan et al. reported a sensor for detecting DMC leakage in 
LiB electrolytes based on Co/Pd-doped  SnO2 nanomaterial 
[188]. Their study synthesized a Co/Pd-doped  SnO2 sensor 
with a small, uniform grain size using a sol–gel method, 
enabling easier control of material properties during the 
micro-electro-mechanical systems (MEMS) process. The 
sensor exhibited high sensitivity to DMC, detecting it with 
a response value of around 1.65–500 ppb at an operating 
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temperature of 150 °C. Moreover, at 1 ppm DMC, the sensor 
demonstrated response and recovery times of about 66 and 
240 s, respectively (Fig. 13D) [188]. The study facilitated 
early detection of electrolyte leakage and real-time health 
monitoring of LiBs, preventing potential safety issues and 
TR events during charge and discharge cycles.

While the Co/Pd-doped SnO₂ sensor exhibited promis-
ing performance, these MOS sensors are prone to baseline 
drift under fluctuating humidity and temperature. Similarly, 
prolonged exposure to high humidity or reactive gases could 
degrade performance due to material oxidation or dopant 
leaching, leading to reduced sensitivity over time. The use 
of Pd and Co raises concerns about material toxicity and 
disposal. While Pd is a noble metal with low reactivity, its 
mining and refining processes are energy-intensive. While 
the sensor is compatible with MEMS processes for minia-
turization, integrating it into sealed battery packs requires 
robust encapsulation to prevent electrolyte corrosion.

2.2.2.4 Impedance Sensors Impedance sensors, through 
EIS, are used to measure the impedance changes of a bat-
tery across a range of frequencies. This technology allows 
for the non-destructive measurements of LiBs, often being 
integrated into BMS for real-time monitoring. These sen-
sors provide insights into the complex internal reactions 
and characteristics of batteries, including charge transfer 
 (RCT), ion diffusion, and interfacial phenomena, known as 
SEI [107, 194–196]. Impedance measurements performed 
at different SoCs and throughout the LiB lifecycle can yield 
valuable information on internal characteristic changes of 
the battery during operation, such as short circuits, degrada-
tion mechanisms, Li plating, SoH, and electrolyte oxidation. 
In a study by Zhang et al., EIS measurement was used to 
obtain impedance data at different time intervals from an 
LCO battery cell [106]. These data were then integrated into 
an ML model based on the Gaussian process. The inputs 
for the model were both the real and imaginary components 
of the over 20,000 EIS spectra obtained at 60 discrete fre-
quencies, ranging from 0.02 Hz to 20 kHz. The capacity 
corresponding to each EIS spectra was used as the output 
for training the model. The model trained could estimate 

Fig. 12  Schematic illustrating the fabrication and performance of amperometric  H2 sensor for LiB monitoring. A Ti foam fabrication process 
for amperometric  H2 sensor. B Electroplating step of  H2 sensor. C Detailed  H2 sensor structure. D Cyclic voltammetry (CV) performance of 
different  H2 concentrations in aerobic conditions, followed by E Chronoamperometry at varying  H2 concentrations. Insets in each graph display 
linear fits of chronoamperometry current to  H2 concentration, highlighting direct proportionality between current and  H2 concentration. Panels 
reproduced with permission from A‑E, ref. [28], ACS Publishing



Nano-Micro Lett.          (2025) 17:279  Page 47 of 80   279 

the capacity and predict various stages of LiB degradation 
and the RUL of the batteries using the EIS spectrum as the 
key indicator of the SoH in BMS [106]. By integrating EIS 
measurement and ML models into LiBs, batteries showed 
the capability to adapt their electrochemical cycling based 
on real-time data and predictive analytics. This integration 
has led to enhanced efficiency, performance, and lifespan of 
LiBs, contributing to the development of smart LiBs.

However, impedance-based models for battery health 
monitoring require careful data collection and model train-
ing to prevent overfitting and enhance interpretability. Since 
impedance data includes multiple frequency-dependent 
components, advanced signal processing techniques are 
needed to extract meaningful information about SoH or deg-
radation mechanisms [107]. Similarly, accurately labeling 
degradation patterns in impedance spectroscopy data is com-
plicated and requires expert knowledge and manual effort, 
as inconsistent labeling can introduce errors and reduce the 
reliability of the ML model. Creating a comprehensive data-
set of impedance spectroscopy measurements for various 
degradation patterns is also laborious and costly. Although 
impedance measurements have a wide range of capabilities, 

they are seldom used in BMS. One major limitation is their 
failure to simultaneously monitor multiple cells in large bat-
tery packs, which requires multiplexing circuits, increasing 
system complexity and cost. Additionally, impedance meas-
urements are bulky, heavy, and power-consuming, making 
integration into compact BMS challenging [107]. Further-
more, high-resolution EIS generates vast datasets (e.g., 
20,000 spectra per measurement), demanding significant 
computational resources for real-time analysis. It has been 
reported that module packs, compared to single-cell LiBs, 
can experience cell mismatch. When one or more cells are 
mismatched, it poses a significant risk to both the safety 
and efficiency of the entire LiBs. This can occur due to bat-
tery over-discharge, over-charge, internal and external short 
circuits, or extended periods of inactivity period (calendar 
aging) [107]. Similarly, conventional BMS using single-fre-
quency impedance (e.g., 1 kHz) lacks sensitivity to detect 
early-stage mismatches [107].

Carkhuff et al. introduced a small, low-power, multifre-
quency (1–1,000 Hz) impedance-based BMS, termed battery 
internal temperature tensor-based BMS (BITS-BMS), for 
module packs LiBs, enabling the detection of safety-related 

Fig. 13  Schematic illustrating the synthetic structure of IC-MOF and the performance of conductometric sensors (both IC-MOF and Co/Pd-
doped  SnO2) for electrolyte leakage detection in LiB. IC-MOF thin films: A Synthetic structure of IC-MOF thin films by spraying porphyrin 
organic ligand solution onto the immiscible aqueous salt solution, and the structure of resultant IC-MOF thin films sensor. B Normalized current 
response of the IC-MOF sensor to 3000 ppm DMC gas. C Comparative analysis of normalized voltage between a leaked and a pristine LiB. Co/
Pd-doped  SnO2 sensor: D Response and recovery time to 10 ppm DMC at 150 °C. Panels reproduced with permission from A‑C, ref. [187], Cell 
Press; D, ref. [188], Elsevier Publishing
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issues in the anode, cathode, and electrolyte [107]. This 
system monitored mismatches and abnormalities in electri-
cal and thermal behavior under conditions, such as cycle 
life aging, calendar life aging, and over-discharge and over-
charge. The BITS-BMS could monitor up to 16 cells in mod-
ule packs (i.e., 80 V and 50 Ah) and optimize thermal safety 
and efficiency by tracking internal temperature, voltage, and 
series resistance [107]. In contrast to conventional imped-
ance measurements, which may have limited sensitivity to 
specific degradation mechanisms, such as electrode sur-
face film formation [106, 197], the BITS-BMS suggested a 
more accurate and detailed assessment of battery health and 
performance, overcoming the limitations of conventional 
impedance measurements. Although BITS-BMS provided 
unparalleled insights into electrochemical processes, their 
limitations include high development costs due to sophis-
ticated hardware and computational data, dependency on 
accurate cell characterization, and challenges in miniatur-
izing multifrequency circuits for mass production.

3  Potential Advancements in LiB Sensor 
Technology

Advancements in LiB sensor technology are geared toward 
enhancing the accuracy and reliability of monitoring LiB 
across various paradigms, including performance, safety, 
and efficiency. This section highlights key advancements in 
LiB sensor technology.

3.1  Miniaturization‑based Sensors

Sensor miniaturization marks a significant breakthrough in 
LiB sensor technology, enabling the integration of highly 
sensitive and accurate sensors within the limited space 
constraints of LiB devices. Thanks to advanced micro- and 
nano-fabrication techniques, these sensors can now be scaled 
down into micro-sized arrays while maintaining their high-
performance capabilities [198]. This miniaturization allows 
for the integration of multiple sensor functionalities into a 
single battery cell, providing a comprehensive understand-
ing of their performance for smart LiB management [198, 
199]. Furthermore, the compact size of these sensors mini-
mizes interference with the battery’s design and function-
ality. However, miniaturizing sensors for LiBs poses chal-
lenges in maintaining sensitivity and accuracy. Research has 

explored various approaches to tackle these issues [200]. 
For example, Du et al. developed a portable miniaturized 
sensor based on functionalized double-walled carbon nano-
tubes (f-DWCNTs) for the real-time detection of electrolyte 
leakage in LiBs [200]. The key sensitivity challenge in sen-
sor miniaturization was effectively addressed by covalently 
functionalizing the outer walls of DWCNTs with hydroxyl 
groups. This surface modification significantly enhanced the 
interaction between the nanotubes and DMC, a redox-neutral 
solvent commonly found in LiB electrolytes, which enabled 
the sensor to detect trace leakage volumes as low as 0.1 
μL. Unlike pristine DWCNTs, which showed weak inter-
actions with DMC, the functionalized version exhibited a 
markedly improved sensing response with minimal interfer-
ence from non-electrolyte vapors. The sensor operated reli-
ably at room temperature and demonstrated rapid response 
and recovery dynamics (t₉₀ values as low as 3.60 s), along 
with strong long-term stability, retaining its performance 
even after 85 days of ambient storage. When tested near a 
leaking commercial LiBs, the sensor recorded an immedi-
ate drop in output current, successfully detecting leakage 
undetectable by conventional voltage monitoring methods. 
This study not only highlighted the role of targeted chemi-
cal functionalization in overcoming miniaturization-related 
sensitivity loss but also demonstrated a promising method 
for safety improvement in smart LiBs diagnostics [200]. In 
a very recent study, ionic gel chemical sensors significantly 
advanced the miniaturization of LiBs diagnostic technolo-
gies by overcoming core limitations that typically compro-
mise sensitivity and long-term reliability in compact sen-
sor formats [201]. Traditional miniaturized sensors often 
suffer from baseline drift, low sensitivity to redox-inactive 
electrolyte solvents, and poor environmental resilience. To 
tackle these challenges, Li et al. developed a capacitive sen-
sor using ionic liquids (ILs) polymerized into highly stable 
ionic gels, where ions, not electrons, act as charge carri-
ers, enabling superior detection of trace electrolyte leakage 
[201]. These sensors achieved remarkable sensitivity, detect-
ing DMC volumes as low as 2.3 nL and real LiB electrolyte 
leakage down to 5.3 nL, with fast response times (~ 3 s) and 
strong linearity. Most notably, the sensors demonstrated out-
standing mechanical resilience, with full self-repairing from 
scratches within 5 min when heated at 100 °C and stability 
after 1,500 h under harsh damp-heat conditions (85 °C, 85% 
relative humidity). Their performance remained consistent 
even after months of ambient storage. Batch fabrication of a 
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5 × 5 sensor array further confirmed the design’s scalability 
and uniformity, essential traits for real-world LiB integra-
tion. These advancements exemplify how ionic gel platforms 
not only preserve but enhance sensitivity and stability at the 
miniature scale, setting a new benchmark for next-generation 
smart LiBs monitoring systems [201].

Miniaturization of sensors for LiBs monitoring introduces 
inherent trade-offs between size, functionality, and perfor-
mance, particularly affecting signal accuracy, sensitivity, 
and integration flexibility. To address these challenges, an 
ASIC-based miniaturized system was developed for online 
multi-measurand monitoring of LiBs [202]. The research-
ers integrated the SENSIPLUS chip, a System-on-a-chip 
that could perform multiple sensing tasks such as EIS, cell 
voltage monitoring, and temperature measurements, all 
within a compact 20 × 8  mm2 footprint. Integrating such 
high-resolution analog front-ends and configurable sensor 
interfaces within the System-on-a-chip ensured the system 
could maintain a high sensitivity and measurement resolu-
tion level, achieving impedance measurements with a preci-
sion of 120 µΩ and voltage and temperature readings with 
negligible offset and noise [202]. Trade-offs in signal loss, 
noise interference, and cross-talk, typically exacerbated in 
miniaturized designs, were mitigated through advanced 
internal signal routing, galvanic isolation, and modular 
sensor configurations that supported flexible deployment 
across multi-cell battery packs. Furthermore, trade-offs 
between miniaturization and durability were addressed by 
ensuring the robustness of the system, even in demanding 
environments [202]. The miniaturized design was validated 
through experiments where the system showed high stabil-
ity and scalability, which is essential for practical applica-
tions in larger battery systems, such as those found in EVs. 
The ASIC-based miniaturized sensor system demonstrated 
that sensor miniaturization, when done with integrated 
approaches and multi-sensor systems, can effectively bal-
ance performance, durability, and scalability in practical 
LiBs monitoring applications [202].

Similarly, miniaturization has been effectively imple-
mented by deploying compact deep learning models on 
a resource-constrained internet of things (IoT) device for 
real-time LiBs monitoring [203]. By applying tiny machine 
learning (TinyML) techniques, the researchers optimized 
ANN and CNN architectures to estimate the battery’s SoC 
using minimal hardware resources. To address the typi-
cal trade-offs of miniaturization, such as loss of accuracy, 

limited memory, and processing power, the models under-
went post-training quantization (PTQ), particularly using 
a 16-bit integer format (int16 × 16), which significantly 
reduced the model’s memory footprint while maintain-
ing high predictive accuracy [203]. The optimized ANN 
model, occupying less than 3% of the flash memory on the 
CY8CPROTO-062S3-4343W microcontroller, achieved a 
mean absolute error (MAE) of just 2.81%, outperforming 
more complex CNN models in both inference speed and reli-
ability. This approach demonstrated that with appropriate 
quantization and model simplification, sensor intelligence 
can be embedded into miniaturized systems without compro-
mising real-world performance, paving the way for efficient, 
on-device diagnostics in smart BMS [203].

In recent years, researchers have delved into the realm 
of printing technologies as a means to fabricate miniatur-
ized sensors for LiB applications. This approach has gained 
significant attention in LiB monitoring due to its inherent 
low cost, flexibility, and scalability advantages. By utiliz-
ing additive-based methods such as screen printing [202], 
inkjet printing [82], and roll-to-roll printing [204], these 
sensors could be capably produced on various substrates, 
including paper and plastic, enhancing their versatility and 
adaptability [204, 205]. Advanced fabrication techniques, 
such as the 3D-direct ink writing (3D-DIW) printing 
method, have opened up new possibilities in constructing 
heterostructures for various applications. In a recent study, 
researchers successfully fabricated  Al2O3/CuO (Aluminum 
oxide/Copper(II) oxide) and CuO:  Fe2O3 (Copper(II) oxide: 
Iron(III) oxide) heterostructures using the 3D-DIW print-
ing method, followed by atomic layer deposition (ALD) and 
thermal annealing processes [82]. These heterostructures 
hold potential for the detection of electrolyte vapors, specifi-
cally 1,3-dioxolan (DOL) and 1,2-dimethoxyethane (DME), 
which are commonly used in LiB [82]. Paljk et al. introduced 
a miniaturized electrochemical sensor printed directly onto 
the separator of a LiB to enable in situ detection of dissolved 
manganese ions, which are known degradation products of 
Mn-based cathodes such as LMO [204]. The sensor incor-
porated a manganese ion-imprinted polymer (Mn(II)-IIP) 
sensing layer positioned between two printed glassy carbon 
electrodes. This sensor monitored manganese coordination 
via EIS in the mid-frequency range. Critically, the sensor 
was electrochemically stable, caused no significant altera-
tion to battery geometry, and exhibited negligible impact on 
battery performance when integrated into pouch cells. The 
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use of printing technology, compatible with roll-to-roll and 
sheet-to-sheet processes in their study, offered a scalable 
manufacturing pathway for commercialization. Their study 
demonstrated a universal approach for real-time monitoring 
of cathode degradation, contributing to enhanced battery 
SoH tracking and safety diagnostics [204].

The ability to detect and monitor electrolyte vapors is cru-
cial for ensuring battery safety and optimal performance. 
Moreover, printed sensors have emerged as a promising 
technology for simultaneously detecting multiple parame-
ters, such as temperature and pressure [14]. The integration 
of a LiB pressure/temperature monitoring micro-thin-film 
sensor (LiBPTMS), constructed from a piezoelectric/pyro-
electric PVDF-TrFE (poly(vinylidene fluoride-trifluoroeth-
ylene)) material, into a LiB system, could facilitate real-
time monitoring of pressure and temperature parameters. 
Strikingly, this integration had no detrimental impact on 
the battery operation. The sensor, which is printed, demon-
strated the potential for advancements in LiB performance 
optimization (Fig. 14A-F) [14]. The successful implementa-
tion of this sensor suggested the potential to revolutionize 
BMS, ensuring early warning of LiB failure and significantly 
improved battery safety performance. Similarly, Manfredini 
et al. developed a highly miniaturized cell management unit 
(CMU) based on the SENSIPLUS system-on-chip, a multi-
mode sensor interface capable of online multi-measurand 
monitoring of LiBs [202]. This 20 × 8  mm2 PCB-integrated 
system performed real-time measurements of key battery 
parameters, including temperature, cell voltage, and internal 
impedance, via EIS with a resolution of 120 μΩ. The CMU 
also supported connection to external sensors for detecting 
moisture and electrode temperatures, making it suitable for 
comprehensive battery health diagnostics. Designed for 
scalability, the CMUs communicated over a simplified  I2C 
or proprietary SENSIBUS protocol with galvanic isolation, 
enabling multi-cell series monitoring without complex wir-
ing. The compact and modular design was compatible with 
commercial Li-polymer cells and showcased minimal impact 
on battery operation, marking a significant step toward 
distributed BMS architectures and industrial deployment 
of embedded miniaturized sensor systems for monitoring 
multi-cell LiB packs [202].

Another approach to miniaturization is the use of MEMS 
technology. MEMS sensors are fabricated using processes simi-
lar to those employed in the semiconductor industry, which can 
be scaled down to dimensions as small as a few microns [206, 

207]. MEMS-based sensor technology has gained significant 
interest in LiB sensing because of its potential for miniaturiza-
tion, high sensitivity, low power consumption, and low cost. 
This technology has found diverse applications in LiB systems, 
including temperature sensing, strain sensing, and gas sens-
ing [41]. A study demonstrated the effective utilization of an 
optical MEMS sensing method in characterizing the reversible 
mechanical changes in LiB electrodes induced by electrochemi-
cal processes (Fig. 15A) [208]. Similarly, the development of 
miniaturized flexible micro-temperature sensors using MEMS 
technology and their integration into LiB allowed for real-time 
temperature monitoring without adversely impacting the bat-
tery structure (Fig. 15B-D) [41, 198]. In another study, Lee 
et al. developed a miniaturized integrated microsensor using 
MEMS technology for real-time, in situ monitoring of LiBs 
[209]. This integrated microsensor simultaneously measured 
internal temperature, voltage, and current by embedding micro-
scale RTD temperature sensors, voltage probes, and current 
sensors directly within the battery structure. Designed on a flex-
ible polyimide substrate, the sensors featured rapid response 
(< 1 ms), high accuracy (temperature error < 0.5 °C), and 
minimal impact on battery performance (only ~ 1.68% capac-
ity deviation). These sensors were embedded in full coin cells 
and subjected to various C-rate charge/discharge cycles, ena-
bling microscopic-level observation of thermal and electrical 
behaviors. Their work demonstrated compatibility with batch 
manufacturing, a practical and scalable approach toward minia-
turized sensor integration for enhanced safety and performance 
diagnostics in commercial LiB systems [209]. Furthermore, 
Tan et al. developed a miniaturized MEMS-assisted fiber-optic 
fabry–perot pressure sensor for operando gas pressure monitor-
ing inside commercial 18,650 LiBs [210]. This sensor, combin-
ing MEMS and optical technologies, was embedded directly 
into LFP and NCM523 cells to track internal gas pressure in 
real-time without altering battery electrochemistry. The sensor 
featured high-pressure sensitivity (72.557 nm  kPa−1) and ultra-
low temperature cross-sensitivity (0.0413 kPa °C−1), enabling 
precise detection of pressure fluctuations due to gas generation 
and electrode lattice volume changes during charge/discharge 
cycles. Their method demonstrated stable, reproducible perfor-
mance and minimal impact on battery capacity. By eliminat-
ing temperature effects, the system linked pressure variations 
directly to electrochemical and structural changes in the elec-
trode materials. Their study provided a scalable, high-precision 
solution for in situ battery diagnostics with direct relevance 
to industrial battery gas pressure monitoring and performance 
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evaluation [210]. This technological advancement has signifi-
cant implications for the future of LiB sensing, as it enables 
miniaturization and integration with other electronic compo-
nents, potentially improving the performance and safety of LiB 
in various applications.

3.2  Nano‑Based Sensors

Modifying materials at the atomic and molecular scales 
could significantly enhance the performance of sensors for 

LiBs monitoring. The evolution of sensors by the emergence 
of nanostructured materials, including carbon-based nano-
materials (e.g., graphene, CNTs), metals oxide-based (e.g., 
MnO,  Nb2O5) nanomaterials, and polymer-based nanoma-
terials (e.g., silicones) has significantly driven the develop-
ment of sensors with superior sensitivity, selectivity, and 
stability [200, 211]. These materials exhibited unique prop-
erties, making them highly versatile for sensing applications 
in LiBs. The inherent characteristics of these nanomaterials 
are conducive to the creation of a diverse spectrum of sen-
sors encompassing optical, electrochemical, and physical 

Fig. 14  Schematic illustrating the manufacturing sequence of LiBPTMS and its integration into a LiB. A LiBPTMS and anode fabrication 
process. B Cathode fabrication process. C LiB integrated with the LiBPTMS. D Cross-section, top-view, and a sample image of the LiBPTMS 
based on the PVDF-TrFE film coated on one side of the FPC. This provides a detailed view of the LiBPTMS, Panels E and F The construction 
and operational principle of the LiBPTMS, specifically focusing on E pressure and F thermal damage detection. Panels reproduced with permis-
sion from A‑F, ref. [14], Elsevier
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properties. For example, a study investigated a sensitive 
chemical sensor utilizing IC-MOFs developed for a port-
able sensing system by connecting the IC-MOFs sensor to 
a Bluetooth transmission printed circuit board for real-time 
monitoring of LiB electrolyte leakage [187]. The sensor 
detected trace amounts of DMC, allowing for the measuring 
of electrolyte leakage as small as 20 nL at room temperature 
[187]. Furthermore, advanced nanosensors, using the prin-
ciples of nanotechnology, have been reported to detect gas 
vapors at ppm levels [212–214]. Lupan et al. investigated the 
gas-sensing capabilities of semiconducting metal oxides for 
detecting vapors emitted by various components commonly 
found in LiBs, such as solvents (1,2-dimethoxyethane), salts, 
or their degassing products (Fig. 15E) [211]. Their study 
revealed that the semiconducting metal oxide sensors were 
highly effective in detecting the vapors produced by battery 
solvents and degassing products up to a concentration of 
1000 ppm and 136%, respectively (Fig. 15F) [211]. These 
sensors exhibited high accuracy, which could serve as high-
performance battery safety sensors to prevent potentially 
explosive vapors from malfunctioning LiBs.

Similarly, integrating graphdiyne-coated carbon nanofib-
ers with a polymeric-TETAT (Triethyl 1,3,5-triazine-2,4,6-
tricarboxylate,  C12H18N3O6) doped with copper resulted in 
the development of a selective, memory-based sensing film 
[215]. This sensor could detect carbonates and hydrofluoride 
compounds at concentrations as low as  10−2 ppb, providing 
good signal resolution and real-time monitoring capabili-
ties, particularly effective for identifying issues related to 
electrolysis and electrolyte leakage in EV battery systems 
[215]. In another study, Zhu et al. designed and synthesized 
a highly sensitive gas sensor based on amorphous bimetal-
lic oxide  CuSnO3 (CSO) loaded onto cubic  In2O3 (CSO/
In2O3) for detecting DME in LiBs [212]. By synergistic 
catalytic effects of Cu and Sn atoms in the amorphous CSO 
structure and forming a heterojunction with  In2O3, the sen-
sor performed a superior response of 6.2 to 20 ppm DME, 
with a low detection limit of 0.1 ppm. The practical appli-
cation of the sensor in their study showed early warning 
of TR in LiBs used in EVs. By detecting trace amounts of 
DME, the sensor served as a compact, cost-effective, and 
easily integrable solution for real-time safety monitoring in 
BMS. The sensor demonstrated practical applications due 
to the sensor’s stability and repeatability [212]. Zhang et al. 
developed a highly sensitive sensor based on organic field-
effect transistors (OFETs) for the early detection of LiBs 

electrolyte leakage [216]. The key innovation of their study 
was the use of a biurea receptor layer on the OFETs, which 
significantly enhanced the sensitivity and selectivity of the 
sensor. The sensors demonstrated an impressive detection 
limit of 1.4 ppm for DEC, a common electrolyte solvent, 
and could detect trace amounts of electrolyte leakage (as 
little as 200 nL) within seconds. The sensor’s response was 
robust, with a 3% current change observed even at low leak-
age volumes, providing good signal resolution and real-time 
monitoring capabilities for identifying issues related to elec-
trolysis and electrolyte leakage in LiBs [216]. Lupan et al. 
prepared a highly sensitive dual-mode nano-based sensor 
using europium-doped zinc oxide (ZnO:Eu) nanowires for 
 H2 gas detection in LiB systems used in EVs [213]. These 
nanosensors, fabricated through electrochemical deposition 
and integrated as single nanowires, demonstrated a remark-
ably high gas response up to 7860 at 150 °C for 100 ppm 
 H2 due to surface functionalization with  Eu2O3 nanopar-
ticles. The device also functioned effectively under room 
temperature and UV irradiation, allowing selective  H2 detec-
tion in UV-rich environments, such as those involving TR or 
combustion. DFT simulations further confirmed enhanced 
 H2 adsorption on Eu-modified ZnO surfaces, correlating 
with improved sensor performance. Notably, the sensors 
maintained performance under varying humidity and after 
long-term storage, highlighting their robustness, scalability, 
and integration in EVs for real-time  H2 leak detection and 
safety diagnostics [213]. Zhang et al. manufactured a room-
temperature MEMS  H2 sensor using Pt-modified Nb-doped 
 TiO2 nanosheets as the sensing material [214]. The sensor 
obtained high sensitivity to  H2 gas even under hypoxic (low-
oxygen) conditions, mimicking the environment inside LiB 
packs. The sensor demonstrated a strong response (12.3) 
to 1000 ppm  H2 at room temperature, with rapid response 
and recovery times (31 and 270 s, respectively), low power 
consumption (0.1 mW), and a compact footprint (0.05  cm3). 
These enhancements were attributed to increased oxygen 
vacancies from Nb doping and the catalytic activity of Pt, 
which facilitated  H2 molecule dissociation. The practical 
application of the study emphasized the early detection of 
 H2 gas emissions in LiB systems, particularly for TR moni-
toring in EVs. The sensor could be operated effectively in 
oxygen-free environments, making it ideal for integration 
into LiB packs for real-time safety diagnostics [214]. This 
capability to detect minute changes at the nanoscale can 
potentially lead to improved LiB performance and safety, 
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ultimately contributing to the development of more efficient 
EVs.

Integrating nano-based sensors into LiBs offers trans-
formative capabilities for real-time monitoring of ion diffu-
sion, mechanical strain, and thermal anomalies, enhancing 
battery performance and safety. However, implementing 
nanomaterials introduces potential safety and regulatory 
challenges that require rigorous risk assessments to ensure 
sustainable deployment in practical applications. Nanoma-
terials possess a high surface area-to-volume ratio, which 

can lead to heightened chemical reactivity. This increased 
reactivity may result in unintended side reactions within 
the battery environment, potentially compromising the 
stability and longevity of both the sensor and the battery. 
For example, unwanted interactions between nanomaterials 
and battery electrolytes may accelerate degradation pro-
cesses, increasing the risk of TR. In addition, nanostruc-
tured materials may undergo structural changes over time, 
such as agglomeration or fragmentation, which can degrade 
sensor performance. This degradation affects the accuracy 

Fig. 15  MEMS sensor technology fabrication for LiB monitoring. A The packaging process is initiated by machining a circular window in 
one half of a coin cell. Subsequently, double-sided adhesive conductive tape is utilized to mount the device, thereby making the Pyrex surface 
of the device visible through the window. The addition of electrolytes, separators, and lithium is carried out inside a glove box to prevent con-
tamination. The package is then sealed to secure the components. B Production process of a flexible three-in-one microsensor. This involves the 
integration of three different sensing elements into a single, flexible device. The final product is shown in C accompanied by an optical micro-
graph that provided a detailed view of the sensor structure. D Schematic diagram of the flexible three-in-one microsensors package assembly 
embedded in a LiB coin cell. This diagram provides a visual representation of how the sensors are integrated into the coin cell, highlighting 
the compact and efficient design of the device. E Schematic concept of the battery pack. F Dynamic response of  TiO2/CuO/Cu2O samples with 
thicknesses of 10 nm (denoted as Cu10) at an operating temperature of 350 °C to 1, 5, 10, 50, 100, 500, and 1000 ppm of  C4H10O2 vapors. Pan-
els reproduced with permission from A, ref. [208], IOP; B‑D, ref. [198], MDPI; E, F, ref. [211], ACS Publishing
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of battery monitoring and may also introduce contami-
nants into the battery system, further impacting safety and 
efficiency. Certain sensors that use metallic components 
(e.g., Cu, Sn, In, Au) may accelerate the decomposition of 
electrolytes or spark ignition in extreme thermal reaction 
scenarios if not properly isolated. Therefore, robust encap-
sulation and thermal insulation are essential in their design. 
For example,  CuSnO3/In2O3 composites may accelerate the 
decomposition of  LiPF6, a common electrolyte salt in LiBs. 
Moreover, many nanomaterials-based sensors (e.g., metal 
oxides, CNTs, graphdiyne, and MOFs) pose toxicological 
risks during volume manufacturing, handling, or disposal. 
For example, nanoparticles can penetrate biological mem-
branes and cause cytotoxic effects. Ensuring occupational 
safety and compliance with regulations such as the Reg-
istration, Evaluation, Authorisation, and Restriction of 
Chemicals (REACH) or environmental protection agency 
(EPA) guidelines is crucial during sensor fabrication and 
end-of-life disposal. While sensors such as IC-MOFs and 
nanowire-based MEMS showed excellent lab-scale results, 
scalability, reproducibility, and yield remain concerns for 
mass production. Electrochemical deposition and photopo-
lymerization can be promising, but large-scale deployment 
requires rigorous process validation and cost analysis [187, 
214].

Furthermore, sensors must operate safely under harsh 
LiB electrochemical conditions. While high sensitivity may 
increase the risk of false positives or drift, particularly in 
complex battery environments with fluctuating humidity and 
VOCs. Thus, long-term baseline stability is critical for reli-
able performance. Devices such as ionic gel sensors [201] or 
IC-MOF-based sensors [187] addressed these challenges by 
exhibiting damage tolerance and long-term operational sta-
bility. Recently, Li et al. developed a new class of ionic gel-
based chemical sensors designed for real-time monitoring of 
LiB electrolyte leakage, effectively mitigating issues of base-
line drift and sensor degradation in complex and fluctuating 
environments [201]. Unlike conventional sensors that rely 
on electron transport and often suffer from charge-trapping 
effects and false positives, these sensors used ions as charge 
carriers, which provided improved stability and sensitivity. 
The ionic gels were synthesized via one-step photopolym-
erization of ionic liquids and incorporated into a thin film 
with exceptional consistency, thermal stability, and heal-
ing capability after physical damage. Notably, the devices 
could maintain performance even after 1,500 h under high 

humidity and temperature, and their long-term operational 
stability was demonstrated without significant signal drift. 
They exhibited rapid, reversible responses to trace amounts 
of electrolyte components, including DMC and DME, and 
successfully detected different stages of LIB TR, position-
ing them as robust, scalable, and damage-tolerant solutions 
for reliable LiB safety diagnostics  [201]. When integrating 
such nano-based sensors into BMS, electromagnetic interfer-
ence (EMI), signal integrity, and low-power design must be 
considered. Some MEMS-based or OFET sensors operate at 
ultra-low power (e.g., 0.1 mW), but others may require more 
power or complex calibration routines [214]. Regulatory 
compliance with automotive or aerospace electronic stand-
ards, such as ISO 26262 for functional safety, is necessary. 
Currently, there is a lack of standardized testing protocols 
and certification pathways for nanosensor-enabled battery 
safety systems. Collaboration with certification bodies (e.g., 
UL, IEC, ISO) is necessary to validate sensor performance 
under standardized abuse tests (e.g., overcharge, crush, 
puncture, and fire scenarios). Regulatory frameworks must 
evolve to support the safe integration of nanotechnology in 
sensors for battery systems.

3.3  Machine Learning Model‑Based Sensors

Machine learning (ML) models enhance BMS by analyzing 
and integrating sensor data from LiBs to create predictive 
models that improve accuracy and efficiency [217]. This 
integration facilitates predicting and preventing potential 
failures, optimizing battery performance, and extending bat-
tery lifespan, which is critical for applications ranging from 
EVs to renewable energy storage systems. A crucial phase in 
developing these predictive models involves data preprocess-
ing and feature selection, where raw sensor data is prepared 
for analysis [218–220]. Techniques such as principal compo-
nent analysis (PCA) and linear discriminant analysis (LDA) 
are commonly employed to mitigate noise, handle outliers, 
and extract relevant features from datasets, enhancing the 
performance of ML algorithms in BMS applications [218, 
220]. In a study, Ma et al. introduced a multi-fault diag-
nostic framework for series-connected LiB packs that used 
PCA and kernel PCA to analyze key parameters (e.g., ohmic 
resistance, terminal voltage, and open-circuit voltage) [221]. 
Their model could detect deviations indicative of faults by 
comparing individual cell performance against a median 
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cell benchmark. Their method estimated fault waveforms 
and established fault indexes by considering joint parameter 
variations, which enhanced fault diagnosis reliability. This 
approach not only improved real-time abnormality detection 
but also offered a comprehensive assessment of battery pack 
health [221].

ML algorithms excel at uncovering intricate patterns and 
nonlinear relationships within sensor data, suppressing the 
limitations of traditional analytical methods [222]. These 
capabilities are particularly valuable for predictive analytics, 
where historical datasets are leveraged to build models that 
accurately forecast system behavior and component failures 
[222]. For example, deep neural networks (DNN) have dem-
onstrated exceptional performance in predicting the RUL of 
LiBs due to their ability to autonomously learn degradation 
patterns and generalize across diverse operating conditions 
[222]. Cai et al. developed a hybrid model for early RUL 
prediction of LiBs by integrating data decomposition, trans-
formers, and DNNs [223]. Their approach utilized complete 
ensemble empirical mode decomposition with adaptive noise 
(CEEMDAN) to handle capacity regeneration effects and 
extract meaningful degradation patterns. Transformer net-
works were employed to predict local fluctuations in capac-
ity, while a DNN was used to model the global degradation 
trend. The model was validated using two publicly available 
battery datasets, achieving high prediction accuracy with 
only 25%-30% of lifetime data. Their findings showed that 
their hybrid model outperformed existing methods in RUL 
estimation, demonstrating its potential for real-time practi-
cal battery health monitoring  [223]. Similarly, a study by 
Han et al. introduced a denoising transformer-based neural 
network (DTNN) model specifically designed for RUL pre-
diction of LiBs. The DTNN demonstrated superior accuracy 
and reliability compared to traditional ML models and other 
deep learning architectures, achieving a mean absolute per-
centage error (MAPE) of 0.632% and an absolute RUL error 
of 3.2 cycles. This performance underscored its potential to 
provide significant benefits for BMS through accurate RUL 
predictions, promising practical applications [224].

A critical application of ML lies in the estimation of SoC 
and SoH, which are vital for preventing overcharging, over-
discharging, and thermal risks. For example, ANN trained 
on voltage, current, and temperature data have achieved 
less than 2% SoC estimation error in dynamic EV driv-
ing cycles, outperforming traditional coulomb counting 
methods [225–227]. In a study, Vieira et al. developed an 

ANN model to estimate the SoC of LiBs using a dataset 
from NASA’s research center, proposing a novel training 
approach based on the maximum correntropy criterion 
(MCC) instead of the traditional mean squared error (MSE) 
function [228]. Their approach aimed to improve SoC esti-
mation accuracy by incorporating higher-order statistical 
moments, making the model more robust to non-Gaussian 
error distributions and outliers. To optimize MCC perfor-
mance, they employed adaptive strategies and genetic algo-
rithms to fine-tune the width of the Gaussian kernel used 
in the error evaluation process. Their results demonstrated 
that the MCC-based ANN model outperformed MSE-based 
models in SoC estimation, particularly in handling noisy 
datasets and reducing estimation errors, making it a prom-
ising approach for real-time battery monitoring in electric 
vehicles [228]. Similarly, Wang et al. proposed a physics-
informed neural network (PINN) for accurate and stable 
SoH estimation of LiBs, addressing the challenges posed by 
diverse battery chemistries and operating conditions [229]. 
Their approach integrates empirical degradation models 
and state-space equations with neural networks to capture 
battery degradation dynamics effectively. A novel feature 
extraction method was introduced, focusing on statistical 
features from a short charging period to enhance generali-
zation across different battery types and charge–discharge 
protocols. To validate their model, they compiled a dataset 
of 55 NCM batteries and combined it with three additional 
datasets, totaling 387 batteries with 310,705 samples. The 
proposed PINN achieved a MAPE of 0.87%, demonstrat-
ing superior performance in a regular, small sample, and 
transfer learning experiments compared to alternative neu-
ral network models [229]. Giazitzis et al. developed a tiny 
ML (TinyML) application for real-time battery SoC estima-
tion deployed on a low-power IoT device, specifically the 
Infineon CY8CPROTO-062S3-4343W [203]. They trained 
and optimized compact ANN and CNN models using a large 
dataset of over 7.5 million samples from LG 2.5 Ah 18,650 
NMC LiBs. The models were quantized using Infineon’s 
ModusToolbox ML software to enable on-device inference 
with minimal computational and memory requirements. The 
ANN model achieved high accuracy (MAE as low as 2.81%) 
with significantly lower memory usage than CNN, making 
it ideal for resource-constrained edge devices. Their work 
showed a practical and scalable implementation of miniatur-
ized smart sensors using TinyML for embedded SoC estima-
tion in LiB management systems [203].
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Moreover, support vector machines (SVM) have been 
deployed to detect micro-shorts in LiB cells by analyz-
ing deviations in voltage hysteresis, enabling early fault 
detection with 95% accuracy. These models utilize high-
resolution raw sensor data (e.g., voltage curves, impedance 
spectra) to infer battery states, often incorporating feature 
engineering techniques such as time-domain filtering or fre-
quency-domain transforms to enhance signal clarity [230, 
231]. For example, Yao et al. proposed an intelligent fault 
diagnosis method for LiBs based on grid search-optimized 
SVM [230]. Their approach involved using discrete filter-
ing to denoise voltage data, followed by the introduction of 
an MCM to minimize the influence of current fluctuations 
on fault indicators. The model was trained using optimized 
SVM, where the kernel function and penalty factor were 
fine-tuned via a grid search to enhance classification accu-
racy. The results demonstrated that the proposed method 
achieved over 95% detection accuracy while significantly 
reducing computational time, making it a viable solution for 
real-time battery system fault detection in electric vehicles 
[230]. By integrating real-time sensor inputs with adaptive 
learning frameworks, ML-driven systems improve safety 
and extend battery lifespan through optimized charging pro-
tocols. Xiao et al. developed model-based virtual thermal 
sensors (VTS) for automotive-grade LiB monitoring [39]. 
The model input parameters, including the density of the 
plastic case, the thermal conductivity of the case, the heat 
capacity of the case, the heat capacity of the battery core, 
and the experimentally measured heat transfer coefficient 
(HTC), were obtained from the battery dimensions, mate-
rial properties, and data-measured HTC. In their study, to 
enhance the accuracy of the input parameters, the estimated 
thermal states were fitted to real measurements using both 
the prediction error minimization method and the system 
identification toolbox in MATLAB software [39]. Their find-
ings demonstrated that the VTS could accurately estimate 
internal temperatures, suggesting a cost-effective and reli-
able alternative to direct internal temperature measurements 
of LiBs in EVs applications [39].

Furthermore, the integration of ML models into prognos-
tics and health management (PHM) systems has significantly 
facilitated the development of LiBs monitoring [232, 233]. 
These systems also leverage real-time sensor data, such as 
voltage, current, temperature, and impedance, to accurately 
estimate SoH and predict RUL, enabling proactive main-
tenance and fault detection [232]. For example, random 

forest (RF) algorithms have been deployed in commercial 
EVs BMS to analyze voltage hysteresis patterns, identifying 
early-stage capacity fade caused by Li plating [234–237]. 
Li et al. developed a numerical simulation-based ML model 
to predict LiBs capacity fade, integrating electrochemical 
modeling with digital-twin datasets [234]. They employed 
neural networks for regression-based capacity prediction and 
used RF algorithms for feature importance analysis. The RF 
model identified upper cut-off voltage (UCOV) as the most 
critical factor influencing battery degradation, followed by 
temperature and charge/discharge rates. Their study, combin-
ing ML with high-fidelity numerical simulations, achieved 
a prediction error of less than 2%, significantly accelerating 
battery degradation analysis while reducing experimental 
costs by 99% [234]. Similarly, Zhang et al. developed an 
interpretable battery lifetime prediction framework using 
early degradation data, employing quantile regression for-
ests (QRF) to provide both point and range predictions with 
quantified uncertainty [238]. The QRF model demonstrated 
superior performance in predicting cycle life compared to 
traditional ML models, as it does not assume a specific dis-
tribution of cycle life data. In addition, the study employed 
two model-agnostic interpretation techniques to rank fea-
ture importance and analyze their quantitative effects on 
LiBs degradation predictions. Their approach also included 
a capacity knee identification algorithm based on unsu-
pervised time-series segmentation, effectively identifying 
capacity knee-onset points in experimental datasets. Their 
study revealed the advantages of QRF for decision-making 
under uncertainty, particularly for selecting high-cycle-life 
fast-charging protocols [238].

Similarly, studies have demonstrated the effectiveness of 
long short-term memory (LSTM) networks in predicting 
the RUL of LiBs under dynamic load conditions, achiev-
ing a mean absolute percentage error (MAPE) of less than 
5% [233, 239]. Park et al. developed a novel LSTM-based 
approach for predicting the RUL of LiBs, leveraging multi-
channel charging profiles that include voltage, current, and 
temperature data [233]. Their model utilizes a many-to-one 
LSTM structure, which significantly reduces the number 
of parameters while improving generalization and predic-
tion accuracy. Using the NASA LiBs dataset, the proposed 
multi-channel LSTM (MC-LSTM) model achieved a MAPE 
between 0.47% and 1.88%, suppressing conventional LSTM 
models by up to 63.7%. Their study demonstrated that inte-
grating multiple sensor inputs enhances RUL estimation, 
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capturing complex battery degradation patterns, including 
capacity regeneration effects, which are often overlooked in 
traditional single-channel models [233].

The ability to predict LiBs degradation using early-cycle 
data marks a significant advancement in battery analytics. 
This approach utilizes ML to predict long-term performance 
and cycle life from limited initial cycling data [235, 240, 
241]. Saxena et al. developed a convolutional neural net-
work (CNN) model to predict the entire battery capacity 
fade curve using only the initial 100 charging cycles of LiBs 
[240]. Their study automated feature extraction from dis-
charge voltage-capacity curves and incorporated a bilinear 
equation to describe capacity fade trends, including the fade 
rate and knee point. The model was trained and validated 
using a dataset of 178 graphite/LiFePO4 batteries, achiev-
ing MAPE of 3.7% for capacity fade predictions, 19% for 
rollover cycle identification, and 17% for end-of-life esti-
mation. By leveraging CNN-based modeling, their study 
demonstrated the potential for early prediction of LiBs 
degradation, enabling improved battery selection, qual-
ity control, and lifespan optimization [240]. Similarly, it 
has been reported that computational and ML models can 
reveal hidden relationships between battery performance and 
operating conditions, allowing predictions of LiB cycle life 
based solely on early cycle data before any capacity deg-
radation occurs [235]. Tian et al. developed a data-driven 
computational and ML model to predict LiB degradation 
by forecasting voltage-capacity curves using a sequence-
to-sequence (Seq2Seq) neural network [237]. Their study 
enabled long-term prediction of voltage-capacity character-
istics based on data from a single cycle, avoiding the need 
for extensive historical datasets. The model demonstrated 
accurate multi-cycle-ahead forecasting, effectively captur-
ing degradation trends across different battery chemistries 
while reducing reliance on traditional feature engineering. 
In addition, they integrated an RF model for battery health 
estimation, further validating the robustness of their method. 
This system enhanced predictive BMS by allowing early 
intervention and optimized maintenance planning [237]. 
In another study, Buchanan et al. developed a hybrid ML 
framework integrating CNNs and Gaussian process regres-
sion (GPR) for probabilistic SoH estimation of LiBs [242]. 
Their model utilized CNNs for feature extraction from par-
tial charge cycles and applied GPR to provide probabilis-
tic predictions with confidence intervals. The CNN-GPR 
approach demonstrated robust performance across dynamic 

charge–discharge protocols, achieving an MAE of less than 
1% while adapting to inconsistent inputs. This probabilistic 
estimation method is particularly beneficial for applications 
in EV fleets and microgrid energy storage, where partial 
charge cycles are common. Their study suggested the poten-
tial of transformer-based architectures to further enhance 
battery health predictions by capturing long-term dependen-
cies in SoH estimation [242].

Another significant advancement in ML model-based sen-
sors has facilitated data integration from multiple sensors, 
which has developed sensor fusion technology to enhance 
fault detection and battery health estimation, suppressing 
traditional single-sensor approaches for smart LiBs moni-
toring [243]. Techniques, such as decision level or feature 
fusions, have been effectively employed to enhance the 
detection capability and accuracy in sensors designed for 
more robust and accurate monitoring of LiB cells [244, 245]. 
In a recent study, Yifan et al. developed a fault diagnosis 
and early warning method for LiBs based on a multi-feature 
fusion model [244]. Their approach integrated data from 
multiple sensor modalities, including voltage, temperature, 
and internal resistance, using a combination of threshold-
based, statistical, and model-based feature extraction tech-
niques. Their study employed an RF algorithm to fuse these 
features and enhance fault detection accuracy, particularly 
in identifying early-stage internal short circuits and capacity 
degradation. By analyzing a large real-world dataset from 
400 EVs, the proposed method demonstrated improved gen-
eralization and reduced false alarm rates compared to tradi-
tional single-sensor approaches. The study highlighted the 
potential of multi-feature fusion techniques in enabling more 
accurate and interpretable ML-based LiB monitoring for EV 
applications [244]. Xie et al. developed a multi-parameter 
fusion early warning method for TR of LiBs, integrating 
voltage, temperature, and gas sensor data using a cloud 
model and Dempster–Shafer (DS) evidence theory [246]. 
Their approach accounted for the fuzziness and uncertainty 
inherent in individual sensor measurements, enhancing the 
reliability of TR risk assessment. By fusing multiple sensor 
outputs, the method could improve the accuracy of early 
warnings, addressing the limitations of single-parameter 
threshold models, which often result in high false alarm 
rates. Their study demonstrated that the proposed fusion-
based warning system effectively categorizes risk levels and 
enables proactive intervention, making it a promising tool 
for real-time LiB safety monitoring [246]. Similarly, Zhang 
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et al. developed a multi-modality, multi-classifier fusion 
decision algorithm for LiB leakage fault diagnosis by inte-
grating decision-level fusion techniques to enhance detection 
accuracy based on real-vehicle data [245]. Their approach 
combined EIS, voltage signal analysis, and incremental 
capacity bar graphs with cloud-based threshold alarms, 
forming a comprehensive feature matrix for ML-based fault 
diagnosis. By leveraging multiple classifiers, including RF, 
extreme gradient boosting (XGBoost), and SVM, the model 
achieved an early warning capability of up to 26 days in 
advance on real-vehicle datasets. The fusion of multiple sen-
sor outputs improved fault quantification and hazard scoring, 
significantly suppressing traditional threshold-based systems 
in detecting electrolyte leakage and preventing TR [245].

However, implementing ML models in real-world BMS 
faces several interconnected challenges. Firstly, the reli-
ability of sensor data is compromised over time due to the 
harsh electrochemical environments within LiBs, leading to 
noisy data that can degrade ML model predictions [231]. To 
mitigate this, employing redundant sensor arrays and self-
calibration algorithms, such as Kalman filters, can enhance 
data integrity. Another critical issue is the computational 
complexity of advanced ML models, such as CNN or LSTM 
networks, which often exceed the processing capabilities of 
embedded BMS hardware, leading to latency in real-time 
decision-making [247]. Furthermore, ML models trained 
on specific battery chemistries, such as NMC, may fail to 
generalize to others, such as LFP, due to differing degrada-
tion patterns, requiring transfer learning techniques to adapt 
models across chemistries with limited datasets. Similarly, 
as batteries age, shifts in data distributions caused by capac-
ity fade or internal resistance changes lead to model drift, 
diminishing prediction accuracy unless online learning 
frameworks continuously update models with fresh data. 
Integration challenges also arise from proprietary BMS 
firmware lacking standardized application programming 
interfaces (APIs), complicating the deployment of ML 
solutions [248, 249]. However, middleware platforms, such 
as cloud-based BMS and the IoT Greengrass, can address 
the challenges of conventional BMS, suggesting seamless 
communication between ML models and existing systems 
to enhance battery efficiency, safety, and reliability [248, 
249]. Furthermore, the durability of electrochemical sensors 
in harsh battery environments affects data quality, making 
it difficult for ML models to distinguish between true bat-
tery anomalies and sensor malfunctions. The performance 

of these models is inherently linked to the volume and qual-
ity of training data, where insufficient or unrepresentative 
datasets can limit their ability to capture diverse operat-
ing conditions [231]. Similarly, effective feature selection 
poses a challenge, as ML models need to prioritize relevant 
parameters such as voltage hysteresis, temperature gradients, 
and impedance spectra to accurately predict states such as 
SoH or RUL [250]. Finally, the intrinsic limitations of ML 
algorithms, such as ANN susceptibility to overfitting, SVM 
sensitivity to feature scaling, and decision tree complexity, 
require careful tuning and regularization to balance accuracy 
and computational efficiency [251–253]. Addressing these 
challenges is essential for deploying robust, adaptive ML-
driven BMS that can enhance battery safety, longevity, and 
performance in real-world applications.

3.4  Wireless Sensor Networks‑Based Sensors

The development of wireless sensor networks (WSNs) for 
LiB monitoring offers unique opportunities for comprehen-
sive, distributed surveillance of battery performance and 
safety parameters. The WSNs comprise multiple wireless 
sensor nodes, usually with reduced size, that collect data 
from different sensors installed in the battery system [254, 
255]. Each node possesses a processor, memory, sensors, a 
wireless communication module, and a power source [255]. 
The wireless nature of the sensor nodes eliminates limita-
tions associated with wired systems, such as complexity, 
weight, and physical constraints, while also reducing instal-
lation and maintenance costs. Similarly, it allows for flexible 
placement of the sensor nodes, making it easier to monitor 
large battery packs or LiB-based systems in remote loca-
tions [256, 257]. As EVs become more autonomous, the 
integration of machine-to-machine (M2M) communication 
is also becoming essential. M2M communication enables 
devices, such as sensors, to exchange information autono-
mously without human intervention, facilitating direct com-
munication between the vehicle’s BMS and charging or bat-
tery swapping stations [258]. This capability ensures that the 
necessary actions, such as initiating charging or swapping, 
can occur automatically based on the real-time battery data 
received from the sensors. M2M systems enable a seamless 
connection across different EV components and external 
infrastructure, such as charging networks, thus enhancing the 
operational efficiency and safety of the entire EV ecosystem 
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[258]. In a study by Florea and Taralunga, a WSN for EV 
battery management was proposed, with a focus on improv-
ing the charging and battery swapping systems [258]. Their 
study introduced the idea of using blockchain and IoT to 
create a decentralized system for monitoring the SoC of EV 
batteries in real-time. This application used two blockchain 
platforms, Ethereum and IOTA Tangle, to manage and verify 
transactions related to battery data and requests for charg-
ing or swapping services. These blockchain systems enabled 
M2M communication, where vehicles and charging stations 
exchanged information directly without requiring human 
intervention. Utilizing M2M allows EVs to autonomously 
detect when battery swapping or charging is required and 
facilitates efficient energy management across a decentral-
ized network of stations. Their study not only improved the 
convenience of EV operation but also enhanced the reli-
ability and security of BMS in real-time scenarios [258].

One of the primary challenges in establishing WSNs 
for LiB applications is the development of energy-effi-
cient protocols and data reliability for effective deploy-
ment in commercial and industrial applications. Sensor 
nodes, typically powered by limited battery resources, 
consume substantial energy during data transmission, 
leading to network lifetime constraints [255]. Strategies 
such as duty cycling, sleep scheduling, and data aggrega-
tion have been proposed to mitigate energy consumption 
[259–261]. However, achieving a balance between energy 
savings and network performance remains a complex task. 
Data reliability faces additional challenges due to signal 
interference, environmental conditions, and hardware limi-
tations, which can cause data loss or inaccuracies [262]. 
Ensuring consistent and accurate data transmission neces-
sitates robust error detection and correction mechanisms, 
as well as fault-tolerant network protocols. Furthermore, 
these wireless communications confront inherent limita-
tions in transmission power, speed, channel capacity, and 
susceptibility to electromagnetic interferences, which hin-
der the effectiveness of WSNs [263]. Advancements in 
energy-efficient communication protocols, such as clus-
tering and routing algorithms, are essential for extending 
the network lifespan without compromising data integrity 
[264]. In a study, Lajara et al. proposed a method to predict 
the SoH of batteries used in WSNs. The study aimed to 
create a simple, computationally efficient model, multi-
layer perceptron (MLP), capable of estimating the bat-
tery degradation over time-based on various parameters 

such as voltage, current, temperature, and the number of 
charge/discharge cycles [254]. The proposed model was 
tested on Telosb motes, and the results showed that MLP 
models outperformed simpler methods, including least 
squares regression and linear regression, providing higher 
accuracy in tracking the SoH. The experimental validation 
revealed that the MLP model achieved an absolute error of 
0.001 and a relative error of 0.7% across a range of condi-
tions, demonstrating its robustness in predicting battery 
health, even under varying environmental conditions, such 
as temperature fluctuations (from − 16 to 45 °C). These 
findings revealed that the model can accurately estimate 
the battery SoH with low computational cost in low-power 
sensor nodes in WSNs applications [254]. The models’ 
ability to handle these diverse factors ensures their practi-
cal application in real-world WSNs, where energy effi-
ciency and battery longevity are critical. Furthermore, 
these models showed robustness in predicting SoC/SoH for 
batteries with varying capacities, suggesting their versatil-
ity in different use cases, such as remote sensing and envi-
ronmental monitoring in energy-constrained scenarios.

Similarly, Ali et al. developed an adaptive method for esti-
mating the SoC of batteries in WSNs using GPR [265], par-
ticularly targeting low-power devices such as sensor nodes 
commonly used in commercial and industrial applications. 
Their study addressed the challenge of accurate SoC esti-
mation for devices operating under variable environmental 
conditions, including temperature fluctuations and diverse 
battery chemistries. The data was collected in a controlled 
laboratory environment, testing batteries under various tem-
peratures (from 5 to 45 °C) and across different types (Li-
ion, nickel-metal hydride, and Li-polymer). Their findings 
showed that the GPR model outperformed other methods, 
such as polynomial regression and SVM, with the GPR 
model achieving an MAE of 2.53% for nickel-metal hydride 
batteries, 2.54% for lithium-polymer, and 2% for LiBs at 25 
°C. The corresponding root mean square error (RMSE) val-
ues were 0.295, 0.292, and 0.35, respectively. This adaptive 
GPR model demonstrated strong robustness and accuracy 
for real-time online SoC estimation on low-power embedded 
platforms, such as ARM Cortex M4-based microcontrollers, 
validating its practical use for WSN applications [265]. The 
adaptability of their model to different battery chemistries 
and temperature ranges, combined with its computational 
efficiency, suggests its integration into BMS and other indus-
trial applications requiring battery monitoring.
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4  Current Trends and Future Prospects 
of Sensor Technologies for LiBs

4.1  Market Trends and Industry Developments

The global battery monitoring systems market is projected to 
grow robustly, driven by escalating demand for LiBs in EVs, 
renewable energy storage, and consumer electronics. This 
growth is underpinned by advancements in sensor technolo-
gies that enhance safety, efficiency, and predictive capabili-
ties. According to future market predictions, the global battery 
monitoring systems market is poised for substantial growth, 
estimated to reach USD 5.5 billion by 2030, with a compound 
annual growth rate (CAGR) of 18.7% during 2022–2030 [266]. 
This projected growth can be attributed to factors such as the 
surge in several EVs, increasing demand for consumer electron-
ics, and the increasing need for battery safety and optimization, 
particularly in the renewable energy sector [267–269]. A key 
trend is the development of multifunctional sensors capable of 
simultaneous real-time monitoring of temperature, pressure, 
and strain, providing accurate data to prevent battery failures 
caused by overcharging, overheating, and mechanical stress. 
For example, optical FBG sensors, due to their small dimen-
sions (Ø < 200 µm), immunity to electromagnetic interference, 
and corrosion resistance, have shown exceptional effectiveness 
in detecting chemo-mechanical stresses during LiBs operation, 
enabling accurate tracking of internal strain and temperature 
gradients through minimally invasive measurements [1, 148]. 
Similarly, integrating IoT and WSNs into BMS allows cloud-
based analytics, remote diagnostics, and firmware updates, 
facilitating proactive maintenance and reducing potential 
failures in LiB systems [226, 252, 270–273]. Khawaja et al. 
explored the application of artificial intelligence in enhancing 
BMS for LiBs [226]. They focused on estimating two criti-
cal battery parameters, SoC and SoH, by employing six ML 
algorithms, including ANN, RF, gradient boost, light gradient 
boosting machine (Light-GBM), extreme gradient boosting 
(XGB), and SVM. Their study found that among these algo-
rithms, the RF regressor achieved the highest accuracy, with 
an  R2 score of 0.9999 and minimal errors in MAE (0.0035), 
median absolute error (0.0013), and RMSE of 0.0097. These 
results demonstrated the potential of artificial intelligence, par-
ticularly ML techniques, to significantly improve the accuracy 
of SoC and SoH predictions, which is crucial for optimizing 
the performance and safety of LiBs in EVs [226]. In addition, 

strategic collaborations between industry leaders (e.g., Tesla, 
Panasonic, LG Chem, and Samsung SDI) and academic institu-
tions are accelerating the adoption of self-powered sensors that 
harvest energy from battery operations. These sensors elimi-
nate external power needs while preserving energy density. 
Innovations, including IoT, ML algorithms, and piezoelectric 
nanogenerators embedded in battery cells, exemplify this trend, 
enabling continuous health monitoring without compromising 
performance [274]. The prospects of LiB sensor technology 
appear promising, with reduced energy losses, enhanced effi-
ciency, decreased weight and cost, and ensured more reliable 
operation under extreme conditions.

4.2  Emerging Research Directions and Opportunities

Recent advances in nanomaterials, such as graphene, CNTs, 
and MOFs, are revolutionizing LiB sensor design by offer-
ing high sensitivity and low power consumption, surpassing 
conventional rigid metal- and semiconductor-based LiB sen-
sors [187, 275, 276]. Graphene-based sensors possess high 
conductivity and mechanical flexibility, making them ideal 
for ultra-sensitive strain detection in electrode materials. 
Their capability to detect gases and biomolecules, combined 
with techniques such as functionalization and hybridization, 
significantly enhances their performance [65, 275, 277]. For 
example, Bree et al. explored the use of surface-mounted 
thin-film graphene sensors to monitor the SoC and volume 
expansion in LiBs [275]. They developed a sensor based on a 
percolative graphene film that detected small changes in the 
electrical resistance of the film caused by the expansion and 
contraction of electrode materials during charge and discharge 
cycles. In addition, due to degradation processes, the sensor 
could detect early signs of irreversible cell expansion, such as 
gas generation or Li plating, providing valuable early warn-
ings of potential failures. Their study demonstrated that the 
highly sensitive graphene sensors can detect small volumetric 
changes that correlate with SoC, facilitating timely interven-
tions to prevent catastrophic cell failure [275]. Chen et al. 
developed a novel in situ pressure measurement technique 
for large-format LiBs using flexible thin-film pressure sensors 
embedded within the battery’s jelly roll structure [65]. Their 
study focused on monitoring the mechanical pressure evolu-
tion during the battery’s operation, as the pressure change 
in the jelly roll reflected the internal mechanical behavior 
critical to battery performance and safety. The sensitive layer 
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consisted of thermoplastic polyurethane (TPU), graphite, and 
CNTs, all of which worked as flexible materials in the sen-
sor fabrication. Their study demonstrated that these pressure 
sensors could detect both reversible and irreversible pressure 
variations associated with the lithiation and delithiation of 
the electrodes, providing valuable data for understanding the 
battery’s mechanical performance and potentially detecting 
issues such as electrode deformation or short circuits [65].

Furthermore, advancements in LiBs monitoring have 
demonstrated the efficacy of MOF-based chemiresistive sen-
sors to detect electrolyte decomposition byproducts (e.g., 
DMF) at ppb-level concentrations [187]. Lu et al. developed 
ultra-sensitive capacitive chemical sensors of IC-MOFs thin 
films for detecting electrolyte leakage in LiBs [187]. These 
sensors could signal a leak while the voltage of the leaking 
cell remained almost the same level as that of a pristine cell. 
Their study demonstrated excellent sensing responses, effec-
tively detecting trace amounts of DMC vapors (50 ppb) and 
electrolyte leakage (20 nL) from LiBs with a t90 of less than 
2 s of exposure [187]. Recent reports indicate that at higher 
temperatures, electrons in the valence band of semiconduc-
tors gain energy and transition to the conduction band. This 
movement enhances the number of charge carriers, result-
ing in a decrease in electrical resistance [278]. In contrast, 
the electrical resistance of carbon-based materials, such as 
CNTs, varies with temperature, allowing for the develop-
ment of highly sensitive and accurate temperature sensors 
[278]. In a study, Zhang et al. developed a flexible integrated 
temperature–pressure sensor using CNTs to monitor the TR 
of LiBs [279]. They utilized the unique resistance–tem-
perature properties of CNTs and nickel (Ni) to create a 
dual-parameter sensor, CNT/Ni/PVP/GF fiber, capable of 
decoupling temperature and pressure measurements simul-
taneously at the same point on the battery surface. The sen-
sor demonstrated temperature sensitivity across a range of 
20–100 °C and pressure sensitivity up to 200 kPa. Their 
design included a circular interdigital electrode to enhance 
pressure sensitivity and minimize temperature interference. 
The sensor’s ability to decouple temperature and pressure 
responses was validated through TR tests, showing its poten-
tial for real-time detection of unsafe conditions in LiBs, such 
as overheating or swelling, which were precursors to TR 
[279]. Similarly, Sun et al. developed a strain-resistant, flex-
ible thermistor sensor array using hybrid CNTs and MXene 
materials, specifically for LiBs and human temperature mon-
itoring [280]. The CNT/MXene hybrid materials exhibited 

excellent thermosensitivity, with a temperature coefficient 
of resistance (TCR) of − 0.52% °C−1, and the sensor dem-
onstrated high precision and fast response times. The sensor 
array showed remarkable mechanical flexibility and dura-
bility, maintaining its performance after over 2,000 bend-
ing cycles. The device could monitor temperature changes 
across a wide range, from − 20 to 220 °C, making it ideal for 
real-time monitoring of LiBs. It was successfully applied to 
commercial LiBs, providing accurate temperature readings 
during charge and discharge cycles, enabling overheating 
detection, and optimizing the battery’s performance and 
safety [280].

Self-repairing sensors signify a paradigm shift in durability 
for harsh battery environments. These sensors integrate smart 
materials inspired by self-repairing approaches using sacrifi-
cial weak bonds. These materials, based on biomolecules or 
polymers, can self-repair through dynamic supramolecular 
self-assembly, involving mechanisms such as non-covalent 
hydrogen (H) bonding, ionic bonding, and host–guest inter-
actions [281–284]. Betermier et al. investigated using cyclo-
dextrins in combination with protein nanopores as an inno-
vative method for discriminating polysulfide species at the 
single-molecule level to advance self-repairing functionalities 
in LiBs [281]. The study demonstrated the ability of cyclo-
dextrins to reversibly form inclusion complexes with poly-
sulfides of varying lengths  (Na2S2,  Na2S3,  Na2S4, and  Na2S5), 
providing a precise molecular recognition mechanism. They 
achieved single-sulfur atom resolution discrimination, as indi-
cated by the distinct ionic current blockades when interacting 
with α-hemolysin nanopores embedded in lipid membranes. 
Notably, the β-cyclodextrin displayed a superior affinity for 
longer-chain polysulfides, evidenced by an association con-
stant  (Kβ5) of 181 ± 4  M−1 for  Na2S5, clearly surpassing the 
affinity toward shorter polysulfides. This precise discrimina-
tion method could be adapted for real-time battery electrolyte 
monitoring, facilitating self-repair by selectively capturing 
unwanted polysulfide species [281]. Similarly, developing 
polymers with dynamic covalent bonds (e.g., Diels–Alder 
adducts, Schiff-base imines, disulfides, etc.) form the back-
bone of modern self-repairing sensors. Without external 
repair, these sensors autonomously repair damage, such as 
cracks or breaks caused by mechanical stress or thermal 
cycling [284]. These bonds can break and reform under stim-
uli (i.e., heat, pressure, or other triggers), allowing a cracked 
sensor network to repair itself and recover electrical pathways. 
This technology promises smart LiBs with embedded sensors 
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that remain reliable despite harsh EV conditions [285]. For 
example, Dodo et al. reported a flexible dynamic polymer 
nanocomposite (DPNs) sensor using an interpenetrating 
network with Diels–Alder crosslinks and multiwalled CNTs 
as conductive nanofillers [284]. The reversible Diels–Alder 
bonds allowed repeated healing triggered by moderate heat 
at about 90 °C for 24 h, while the CNT network provided 
high piezoresistive sensitivity. The sensor achieved a gauge 
factor of 27 ± 3 at 60% strain, indicating high strain sensitivity 
[284]. Notably, after the composite was cut and then thermally 
healed, its electrical continuity was restored, allowing a con-
nected light-emitting diode (LED) to lit up again, effectively 
regaining its functionality. Their study demonstrated near-
complete performance recovery post-healing process. The 
study highlighted that such dynamic networks can endure 
multiple cut/heal cycles with minimal loss in mechanical 
strength or conductivity, indicating approximately ∼ 90% 
stress relaxation over time [284]. The Battery 2030 + road-
map emphasizes integrating high-sensitivity sensors at the 
cell level and even coupling them with battery self-repairing 
mechanisms. By providing durable, long-lived sensing, these 
materials transform smart LiBs into systems that can detect 
and respond to real-time internal changes, enhancing their 
lifespan, safety, and performance. Integrating two research 
domains, the battery interface genome (BIG) and the materi-
als acceleration platform (MAP), into the BIG–MAP frame-
work will transform our approach to understanding and dis-
covering new battery materials and interfaces [285].

Moreover, emerging sensors are addressing sustainability 
challenges by enabling efficient battery repurposing. X-ray 
transmission paired with ML algorithms has been used to 
classify degraded cells for second-life storage applications, 
while hyperspectral imaging (HSI) sensors automate the 
detection of valuable metals (e.g., Co, Au) during recycling 
[286–288]. In a study, Ueda et al. developed an in-line sorting 
system that integrated X-ray transmission scanning with deep 
learning to detect batteries within electronic waste [286]. The 
system employed a three-stage deep learning process: first, it 
estimated the type of e-waste item from X-ray images; sec-
ond, it detected batteries using networks pre-trained for the 
identified item types; and third, it identified any overlooked 
batteries through a follow-up network trained on diverse 
scenarios. This approach achieved high accuracy rates, with 
96.7% for trained e-waste categories and 77.0% for untrained 
categories, surpassing the performance of single-network 
systems, which obtained 90.2% and 71.6%, respectively 

[286]. Similarly, Richter et  al. investigated the spectral 
characterization of components in end-of-life LiBs, focus-
ing on optical sensors for recycling [287]. They utilized five 
reflectance sensors across the visible to long-wave infrared 
spectrum to identify the best spectral range for detecting key 
battery components, including aluminum (Al), copper (Cu), 
and plastic. Their findings included a spectral library, reveal-
ing that the visible to near-infrared range (400–1000 nm) is 
optimal for differentiating materials in the recycling process. 
They also examined hyperspectral imaging (HSI) sensors, 
highlighting their importance for monitoring mechanical 
sorting in battery recycling, which aids in developing auto-
mated sorting systems for efficient battery recycling [287].

4.3  Future Prospects

The rapid evolution of LiBs demands advanced sensor tech-
nologies to enhance safety, efficiency, and lifespan. A recent 
study by Han et al. introduced an integrated sensor utiliz-
ing low-temperature co-fired ceramic (LTCC) technology 
for real-time internal pressure and temperature monitor-
ing within LiBs [289]. This sensor combined a multilayer 
ceramic circuit board with embedded MEMS pressure and 
digital pulse temperature sensors, achieving precise meas-
urements with a pressure resolution of 1 kPa and temperature 
resolution of 0.1 °C, even under harsh electrolyte exposure. 
The sensor’s effectiveness was demonstrated by embedding 
it into pouch-type and cylindrical prototype batteries. It suc-
cessfully captured critical events such as periodic internal 
pressure variations linked to Li-ion intercalation processes 
and distinct temperature and pressure changes associated 
with battery degradation and swelling. Furthermore, the 
sensor maintained high stability after 60 days of immersion 
in the corrosive electrolyte, underscoring its potential for 
long-term battery health monitoring [289]. Building upon 
this advancement, future research direction can focus on a 
roadmap outlining specific priorities as follows:

(1) Development of multi-modal, minimally invasive 
sensing systems, integrating FBG and LTCC sensors. FBG 
sensors offer advantages such as low invasiveness, resistance 
to electromagnetic interference, and the ability to simultane-
ously monitor multiple parameters, such as internal tempera-
ture, strain, gas emissions (e.g.,  CO2,  H2), and electrochemi-
cal states (e.g., SEI growth, Li plating), within LiBs. The key 
priorities of this system should include;
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Optimize wireless, miniaturized, self-powered sensors 
with self-calibration to mitigate signal drift at high cycles 
and self-repairing functionality (e.g., conductive hydrogels).

Ensure compatibility with diverse LiB chemistries (e.g., 
NMC, LFP, solid-state).

Developing hybrid physics-based and ML models (e.g., 
LSTM networks, GPR) can link sensor data to aging mecha-
nisms and accurately predict battery SoH.

(2) Innovation in sustainable sensor materials and scalable 
manufacturing;

Replace non-recyclable polymers (e.g., PDMS) with biode-
gradable composites (e.g., nanocellulose, stable at > 150 °C, 
resistant to electrolyte corrosion) to reduce environmental foot-
prints and utilize scalable manufacturing processes (e.g., roll-
to-roll printing) to facilitate the mass production of sensors.

Leveraging the battery interface genome-materials accel-
eration platform (BIG-MAP) can accelerate sensor material 
discovery and validation. BIG-MAP integrates autonomous 
robotics, computational tools for SEI prediction, and shared 
data infrastructure to streamline the development process 
[148].

(3) Collaborative efforts to unify data standardization;
Collaborating with initiatives such as BATTERY 

2030 + to establish standardized data protocols can ensure 
interoperability with next-generation BMS [290].

Establishing benchmarks for multi-sensor fusion (e.g., 
integration of optical + electrochemical signals) and validat-
ing performance in commercial formats (i.e., pouch, cylindri-
cal) can contribute to the development of safer, smarter LiBs.

5  Potential Challenges and Opportunities 
of Current LiB Sensor Technology

5.1  Cost‑Effectiveness and Scalability of Sensor 
Technology

The present cost of sensor technology for LiB poses sig-
nificant challenges and limitations. The manufacturing 
costs of these sensors, particularly for custom sensors, are 
high due to intricate production processes. Furthermore, 
integrating sensors into LiBs can escalate the cost of the 
final battery product. The maintenance and calibration of 
sensors entail periodic expenses that cumulatively bur-
den the LiB life cycle economics. The process of scaling 
up sensor manufacturing can present industrial hurdles 

necessitating substantive capital investments, potentially 
deterring the proliferation of sensor integration in battery 
systems and, hence, stifling advancement. The integration 
of sensors into the LiBs can also be complex, necessitat-
ing multidisciplinary expertise in both sensor technology 
and battery engineering. These technical and fiscal com-
plexities could marginalize enterprises lacking in resource 
diversity or technical breadth [186, 291, 292]. Despite the 
existing challenges, ongoing research and development 
initiatives focus on establishing cost-efficient and scal-
able sensor technologies for LiB, particularly in the form 
of 3D printing and flexible sensors. The implementation of 
AI and ML algorithms to automate sensor calibration and 
maintenance, thus reducing the need for manual interven-
tion, also holds promise in decreasing maintenance costs 
[76, 291–295].

5.2  Sensor Durability and Compatibility with LiB 
Chemistry and BMS Structure

The compatibility between sensors and evolving LiB chem-
istries, such as solid-state and lithium-air systems, presents 
a multifaceted challenge that demands rigorous interdisci-
plinary research. Sensors integrated into these advanced 
battery systems must operate reliably under harsh chemi-
cal, thermal, and mechanical conditions while maintaining 
chemical stability, sensitivity to dynamic parameter shifts, 
and minimal interference with electrochemical processes 
[295, 296]. For example, in solid-state Li-metal batter-
ies, sensors must withstand the reactivity of Li metal and 
the evolving SEI, necessitating materials with exceptional 
corrosion resistance [1, 122]. Recent studies showed the 
successful embedding of FBG sensors within solid-state 
coin cells to monitor mechanical stresses during cycling, 
demonstrating progress in addressing chemical compatibil-
ity [297]. Similarly, mechanical integrity under repeated 
volume changes during charge–discharge cycles remains 
critical, as sensors must endure physical deformations with-
out compromising accuracy. Embedded strain sensors have 
enabled real-time monitoring of internal stresses, offering 
insights into failure mechanisms [298, 299]. For example, 
Albero Blanquer et al. embedded FBG strain sensors into 
liquid and solid-state electrolyte LiB cells to measure real-
time chemo-mechanical stress during battery cycling. The 
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authors successfully correlated the shifts in optical signals 
(Δλ) to mechanical stress (Δσ), revealing critical insights 
into the internal stress evolution during the charging and 
discharging cycles of the batteries [1]. For example, in 
the case of InLix-based electrodes, they observed a nearly 
linear stress variation during the Li insertion and extrac-
tion cycles, with a reversible stress pattern indicating high 
mechanical stability. Their study revealed the potential of 
FBG sensors in providing localized, internal stress meas-
urements that were previously unattainable with external 
force sensors [1].

Electrochemical interference further complicates sensor 
integration, as foreign materials or sensing mechanisms 
risk disrupting ion transport or side reactions [300]. Inno-
vations such as piezoelectrochemical transducers show 
promise by converting mechanical deformations into 
measurable electrical signals without perturbing electro-
chemical performance [301]. Concurrently, stringent size 
and weight constraints imposed by compact BMS drive 
advancements in micro- and nano-fabrication. Thin-film 
sensors and nanotechnology-enabled designs exemplify 
progress in miniaturization, balancing sensitivity with 
minimal spatial footprint [209, 302]. Solid-state sensors, 
leveraging robust materials including ceramics or com-
posites, are particularly suited for high-stability applica-
tions, while nanomaterials enhance sensitivity to minute 
parameter changes, such as early gas emissions or micro-
scale strain variations [282, 302]. Multi-physical sensing 
systems, integrating thermal, acoustic, and gas detection 
capabilities, further augment holistic monitoring, enabling 
BMS to predict failures and optimize performance [301].

The synergy between sensors and BMS is pivotal, as 
ML algorithms process real-time data to enable predictive 
maintenance and hazard mitigation. For example, tempera-
ture and pressure sensors coupled with adaptive algorithms 
can preempt TR by triggering safety protocols [109]. Future 
advancements hinge on material innovation, such as devel-
oping chemically inert yet responsive sensing materials and 
refining fabrication techniques to enhance scalability and inte-
gration [303]. Hybrid strategies combining advanced sensors 
with modular BMS architectures could further improve sys-
tem responsiveness and data fidelity [282, 301]. Addressing 
these challenges requires a concerted focus on interdiscipli-
nary collaboration, bridging materials science, electrochem-
istry, and data analytics to ensure sensors evolve in tandem 
with next-generation battery chemistries [303]. Such efforts 

will be critical to achieving durable, high-fidelity monitoring 
systems that enhance the safety, efficiency, and longevity of 
smart LiB applications in automotive and beyond.

5.3  Balancing Sensor Integration and LiB Energy 
Density Trade‑offs

Moreover, integrating sensors into LiBs poses a challenge 
due to the limited space within the battery system, which is 
crucial for maintaining or enhancing energy density, par-
ticularly in applications such as EVs and portable electron-
ics, where LiBs are used for high-energy-demand operations 
[199, 304]. These applications extremely rely on maximiz-
ing the energy density of LiB to maximize operational time 
and minimize weight. Therefore, any reduction in energy 
density resulting from sensor integration should be care-
fully evaluated to ensure that the sensor capability surpasses 
the potential drawbacks of reduced energy capacity. Vari-
ous approaches can be employed to mitigate the trade-offs 
associated with energy density. One approach involves 
addressing the miniaturization and integration challenges 
associated with sensors, enabling sensor integration with-
out significantly compromising the overall energy density. 
Moreover, by optimizing sensor design and placement, the 
impact on energy density can be minimized, ensuring the 
enhancement of overall battery performance. Additionally, 
using low-power and miniaturized sensors, such as MEMS-
based sensors, can minimize energy consumption while 
maintaining accurate monitoring capabilities. Similarly, the 
development of ML algorithms can enable efficient utiliza-
tion of sensor data, reducing the need for excessive sensor 
integration and potentially improving energy density.

5.4  Environmental Impact of LiB Sensor 
Manufacturing and Recycling

The considerable surge in LiB sensors, driven by tech-
nology and industry advancements, can pose significant 
sustainability challenges throughout the sensor life cycle. 
One major contributor to these challenges is the extraction 
of raw materials, such as metals and rare earth elements. 
This extraction leads to habitat destruction, soil erosion, 
and water pollution. Furthermore, manufacturing LiB-
powered sensors are energy-intensive, resulting in notable 
carbon emissions. The parametric life cycle assessment 
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(LCA) by Bunyui Manjong et al. revealed reference emis-
sions of 107 kg  CO2  kWh−1 for LFP and 94 kg  CO2  kWh−1 
for NMC811 cells under global average raw material and 
energy conditions [305]. However, carbon emissions var-
ied widely: LFP cells produced in Norway with optimal 
parameters (high ore grades, 98% material recovery, low-
carbon electricity) achieved 27 kg  CO2  kWh−1, while this 
value in China reached 127 kg  CO2  kWh−1 [305]. For 
NMC811, emissions spanned  27–155  kg  CO2  kWh−1, 
mainly driven by nickel sulfate  (NiSO4) production. Their 
results indicated that key material contributors included 
aluminum for LFP and nickel for NMC811, underscoring 
the necessity of decarbonizing raw material extraction and 
refining. Their study emphasized that achieving low-car-
bon LiBs requires holistic strategies addressing ore grades, 
material efficiency, technology upgrades, and renewable 
energy adoption across global supply chains [305].

Semiconductor fabrication for sensor chips and integrated 
circuits is resource-intensive, requiring substantial electric-
ity and water while emitting potent GHGs and even releas-
ing hazardous fumes or waste (e.g., solvents, flux). Simi-
larly, improper disposal of LiB-enabled sensors presents 
environmental and safety hazards. When LiB cells or sen-
sors are improperly discarded in general waste or recycling 
systems, physical damage (e.g., crushing or puncturing) can 
trigger fires or leak toxic electrolytes and heavy metals. In 
landfills or informal recycling processes, these components 
risk leaching plastics, lithium compounds, and other pol-
lutants into soil and groundwater, undermining circular 
economy goals. Challenges such as low collection rates, 
non-removable batteries, and the persistence of hazardous 
materials further complicate efforts to establish sustainable 
end-of-life pathways for sensor technologies [306, 307].

Transitioning to a circular economy for LiB sensors will 
necessitate design and system changes that facilitate reuse 
and recycling. One significant opportunity lies in adopting 
greener alternatives that utilize biodegradable or organic 
components. For example, battery electrodes and sensor 
components can incorporate bio-based polymers (e.g., 
cellulose or other biomass-derived binders) that provide 
necessary conductivity while being biodegradable [308]. 
Even the LiB packaging itself can be made from bio-plastics 
derived from renewable resources, which naturally break 
down over time, reducing plastic waste from discarded sen-
sors [308]. Further opportunity is to eco-design for disas-
sembly, which involves designing devices that can easily 

remove and replace batteries, sensors, and key components. 
This requirement encourages manufacturers to move away 
from permanently sealed-in batteries, allowing consumers 
or recyclers to extract battery components before disposal.

Regulatory bodies and industry leaders have recognized 
the need to improve the sustainability of batteries and sen-
sors. Various initiatives and new regulations are accelerat-
ing the adoption of sustainable practices throughout the life 
cycle of LiB-powered sensors. For example, the European 
Union has introduced comprehensive regulations to gov-
ern the entire battery life cycle, which affects LiB sensor 
devices. Notably, this regulation requires that by 2027, all 
portable batteries in appliances must be user-removable and 
replaceable [309]. This is a direct push against sealed, dis-
posable sensor gadgets, prompting the design of sensors for 
end-of-life recovery and the incorporation of recycled mate-
rials into battery production. Leading tech companies have 
launched initiatives to reduce the environmental footprint 
of their devices, including those with LiBs. For example, 
Apple Inc. has committed to using recycled materials at 
unprecedented levels. By 2025, Apple vows to use 100% 
recycled cobalt in the batteries of its products [310]. Apple 
also reports using recycled tin solder and gold plating on 
circuit boards [310]. These efforts reduce the demand for 
newly mined metals and cut down the life-cycle impacts 
of their sensors and gadgets. Battery recycling companies, 
including Redwood Materials, are now able to recover over 
95% of critical metals from LiBs cells and sensors [311]. 
Recovered lithium, nickel, cobalt, copper, etc., are refined 
and supplied back to battery manufacturers, effectively cre-
ating a circular supply chain for battery materials [311].

6  Conclusion

The critical role of LiB in the growing EVs and renewable 
energy sector necessitates a relentless pursuit of safety and 
efficiency. This review article has elucidated the pivotal 
function of advanced sensor technologies in BMS and their 
significance in enhancing the performance, longevity, and 
intrinsic safety of smart LiB. In the integration of sensors 
within LiB systems, a more resilient energy storage solution 
can be achieved through meticulous surveillance of critical 
parameters. As we approach a technologically transforma-
tive era, the emergence of innovative sensor technologies, 
driven by miniaturization, cutting-edge nanomaterials, and 
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the application of ML algorithms and wireless sensing para-
digms, marks a new epoch. These advancements not only 
promise to mitigate energy inefficiencies but also streamline 
battery operation, even under challenging environmental 
conditions. The convergence of accuracy, responsiveness, 
and predictive maintenance in LiB secures their position as 
a backbone for a sustainable and electrified future.

However, this technological approach is not without for-
midable trials. The compatibility of sensor technologies 
with ever-evolving battery chemistries, the concern for 
sensor durability, the economic considerations of cost and 
scalability, balancing sensor integration with LiB energy 
density trade-offs, and environmental impact represent 

significant barriers on the path to universal LiB sensor 
implementation. Overcoming these challenges requires col-
laborative efforts from researchers, engineers, and indus-
try stakeholders to transform the landscape of LiB sensor 
technology. In conclusion, the path of LiB sensor advance-
ments presents, at its core, an incorporation of potential, 
challenge, and opportunity. As our reliance on EVs and 
renewable energy continues to grow, it becomes imperative 
for us to fully harness the capabilities of sensor technology. 
Through collaboration and unwavering curiosity, we can 
optimize the performance and safety of LiBs, reinforcing 
the foundational pillars of an environmentally conscious 
and energy-secure society.

List of nomenclature and acronyms

Name Nomenclature Acronym Chemical formula

Lithium-ion – Li-ion Li+

Lithium cobalt oxide Lithium(I) cobalt(III) oxide LCO LiCoO2

Lithium titanate Lithium oxido(oxo)titanium LiTi Li4Ti5O12

Copper/Nickel – Cu/Ni Cu+/Ni+

Lithium nickel manganese cobalt oxide Lithium Nickel (8 parts)-Cobalt (1 part)-Manganese 
(1 part) oxide

NCM811 or NMC LiNi0.8Co0.1Mn0.1O2

Lithium nickel cobalt aluminum oxide Lithium nickel cobalt aluminum oxide NCA LiNiCoAlO2

Trinitrotoluene 2-Methyl-1,3,5-trinitrobenzene TNT C7H5N3O6

Ethylene Ethene ET C2H4

Polyvinylidene fluoride Poly(1,1-difluoroethylene) PVDF C2H2F2

Sulfur dioxide Sulfur dioxide SO2 SO2

Lithium iron phosphate Lithium iron (II) phosphate LFP LiFePO4

2-(2-hydroxyphenyl) naphthoxazole 2-(2-hydroxyphenyl) naphtho[2,1-b] oxazole HPNO C18H11NO2

Poly(dimethylsiloxane) Poly(dimethylsiloxane) PDMS C2H6OSi
9,10-dimethylanthracene 9,10-dimethylanthracene DMA C16H14

Lithium manganese oxide Lithium manganese (IV) oxide LMO LiMn2O4

Lithium intercalated graphite – LIG LixC6

Hydroxyl group – –OH –OH
Amino group – NH –NH2

Methyl group – CH H3C
Lithium hexafluorophosphate/ ethylene 

carbonate/ diethyl carbonate
Lithium hexafluoridophosphate ion/1,3-dioxolan-

2-one/Ethyl carbonate
LiPF6/EC/DEC LiPF6/C3H4O3/C5H10O3

Poly(anthraquinonyl sulfide) Poly(anthraquinonyl sulfide) PAQS –
Dimethyl carbonate Dimethyl carbonate DMC C3H6O3

Aluminum oxide Aluminum (III) oxide Al2O3 Al2O3

Copper dioxide Copper (II) oxide CuO CuO
1,3-dioxolan 1,3-dioxolan DOL C4H8O2

1,2-dimethoxyethane Ethylene glycol dimethyl ether DME C4H10O2

Ethyl methyl carbonate Ethyl methoxycarbonylformate EMC CH3OCO2C2H5

Poly- (vinylidene fluoride-trifluoroeth-
ylene)

Poly(1,1-difluoroethylene-1,2,2-trifluoroethylene) PVDF-TrFE (C2H2F2)-(C2HF3)
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Name Nomenclature Acronym Chemical formula

Triethyl 1,3,5-triazine-2,4,6-tricarbox-
ylate

Ethyl 2,4,6-tris(ethylamino)-1,3,5-triazine-2,4,6-
tricarboxylate

TETAT C12H18N3O6

Vinylene carbonate 1,2-epoxy-3-propenyl carbonate VC C3H2O3

Poly-(anthraquinonyl sulfide) Poly-(anthraquinonyl sulfide) PAQS (C14H6O2S)n
Fluorinated dimethoxybutane 1,1-difluoro-2,3-dimethoxybutane FDMB –
Lithium bis(fluorosulfonyl)imide Lithium bis(fluorosulfonyl)imide LiFSI LiN(SO2F)2

Lithium phosphorus oxynitride Lithium phosphorus oxynitride – LixPOyNz

Lithium nickel oxide Lithium nickel oxide LNO LiNiO2
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