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HIGHLIGHTS

• The mixed-dimensional type II heterojunction of GaSb nanowires (NWs) and  Bi2O2Se nanosheets (NSs) with a built-in electric field 
of ~ 140 meV is successfully constructed.

• As-fabricated NW/NS and NW array/NS mixed-dimensional heterojunction photodetectors exhibit as-expected high-performance 
self-powered photodetection behaviors, including ultralow  Idark (0.07 and 0.08 pA), superior  Ilight/Idark ratios (82 and 182) and ultrafast 
photoresponse (< 2/2 and 6/4 ms).

• As-fabricated NW array/NS mixed-dimensional heterojunction self-powered photodetector promises the future imaging and photo-
communication.

ABSTRACT With high surface-to-volume ratio, the abundant sur-
face states and high carrier concentration are challenging the near-
infrared photodetection behaviors of narrow band gap semiconduc-
tors nanowires. In this study, the narrow band gap semiconductor of 
 Bi2O2Se nanosheets (NSs) is adopted to construct mixed-dimensional 
heterojunctions with GaSb nanowires (NWs) for demonstrating the 
impressive self-powered NIR photodetection. Benefiting from the 
built-in electric field of ~ 140 meV, the as-constructed NW/NS mixed-
dimensional heterojunction self-powered photodetector shows the low 
dark current of 0.07 pA, high Ilight/Idark ratio of 82 and fast response 
times of < 2/2 ms at room temperature. The self-powered photodetec-
tor performance can be further enhanced by fabricating the NW array/
NS mixed-dimensional heterojunction by using a contact printing technique. The excellent photodetection performance promises the as-
constructed NW/NS mixed-dimensional heterojunction self-powered photodetector in imaging and photocommunication.
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1 Introduction

Near-infrared (NIR) photodetector has attracted much more 
attention in remote sensing, medical imaging and environ-
mental monitoring, due to its ability to penetrate biologi-
cal tissues and the atmosphere [1–12]. With the moderate 
narrow band gap of 0.72 eV, the highest hole mobility of 
850  cm2  V−1  s−1 among III–V semiconductors and the broad 
spectral absorption ability, GaSb nanowires (NWs) have 
been utilized for near-infrared photodetection in the past 
decade, which is in forms of photoconductor, field-effect 
phototransistor and Schottky photodiode [13–17]. With high 
surface-to-volume ratio, the abundant surface states and high 
carrier concentration are challenging the NIR photodetec-
tion behaviors of GaSb NWs [17–19]. First of all, the sur-
face state will act as the carrier traps, resulting in the bias 
stress instability of GaSb NW NIR photodetectors [15]. 
Furthermore, the surface state will cause the famous Fermi 
level pinning, resulting in the inability to modulate the dark 
current  (Idark) of the NIR photodetector through the metal/
semiconductor contact barrier [13, 20]. At the same time, the 
high carrier concentration will cause the NIR photodetector 
to suffer from a large  Idark, resulting in a low  Ilight/Idark [21].

To date, the surface passivation, van der Waals integra-
tion and construction of heterojunction have been devel-
oped to optimize the NIR photodetection behaviors of 
low-dimensional semiconductors [13, 20, 22–24]. Among 
them, the construction of heterojunction is a popular and 
meaningful approach, because the built-in electric field 
and depletion region would be introduced at the semi-
conductor–semiconductor heterointerfaces by designing 
reasonably the energy band engineering, benefiting to the 
quick separation and collection of photogenerated elec-
tron–hole pairs, which facilitates the faster photoresponse 
speed [25–31]. Furthermore, the built-in electric field and 
depletion region benefit to the success construction of self-
powered photodetector, which operates effectively without 
an external energy source, hold great potential applications 
in Internet of Things and low power dissipation. At the 
same time, the  Idark will be significantly suppressed and 
photosensitivity is effectively enhanced due to the bar-
rier at the interfaces and the absence of an external bias, 
benefiting to the smart photodetection of NIR light [32].

It is worth pointing out that the type II semiconductor 
heterostructure promotes the separation of photogenerated 

carriers by directing electrons and holes across the inter-
face in opposite directions [33–35]. This property makes 
the type II heterojunctions ideal candidates for ultrasensi-
tive and self-powered photodetectors [36–41]. With nar-
row band gap of 0.8 eV,  Bi2O2Se nanosheets (NSs) are 
adopted to construct mixed-dimensional type II hetero-
junctions with GaSb NWs for demonstrating the impres-
sive self-powered NIR photodetection, optical imaging 
and photocommunication in this work [42, 43]. Benefit-
ing from the built-in electric field, the as-fabricated NW/
NS heterojunction photodetector exhibits excellent self-
powered photodetection performance, that is, the Idark is as 
low as 0.07 pA, the Ilight/Idark ratio is as high as 82, and the 
response times are as fast as < 2/2 ms, which significantly 
outperform the NW and NS photodetectors. Furthermore, 
the self-powered photodetection performance is further 
improved by constructing NW array/NS heterojunction 
photodetector. The fabricated NW array/NS heterojunc-
tion self-powered photodetector exhibits low Idark of 0.08 
pA, high Ilight/Idark ratio of 182 and fast optical response 
times of 6/4 ms. In the end, the fabricated NW array/NS 
heterojunction also enables self-powered imaging and pho-
tocommunication capabilities. These results demonstrate 
that the construction of GaSb NW/Bi2O2Se NS mixed-
dimensional heterostructures promises the next-generation 
high-performance self-powered NIR photodetection.

2  Experimental Section

2.1  Growth of GaSb NWs and Bi2O2Se NSs

GaSb NWs are prepared by using a surfactant-assisted 
CVD method in a dual-zone horizontal tube furnace [44]. 
High-purity GaSb powder (99.999%) is placed in the 
upstream zone, a Si/SiO2 growth substrate coated with a 
1-nm Pd catalyst is positioned in the downstream zone, and 
sulfur powder (99.99%) is placed between the two zones. 
The precursor vapor from the upstream zone is carried 
to the downstream zone by using hydrogen gas (99.999% 
purity). The CVD system is evacuated to 6 ×  10–3 Torr and 
purged with 200 sccm of  H2 for 30 min prior to heating. 
Upon reaching the designated time, the source and sub-
strate heaters are turned off simultaneously, allowing the 
system to cool to room temperature under a hydrogen flow.
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The  Bi2O2Se NSs are prepared on the mica by CVD 
method in a dual-zone horizontal tube furnace [45]. 
Source powder of  Bi2O3 (0.1  g, 99.99%) is placed in 
the heating center of the first zone, and  Bi2Se3 powder 
(0.01 g, 99.99%) is placed 6 cm upstream. The freshly 
cleaved mica is placed 6 cm upstream of the heating center 
in the second zone. Argon (200 sccm, 99.999%) with a 
tube pressure maintained at 60 Torr is employed as the 
carrier gas to transport the precursors onto a mica surface 
for the growth of  Bi2O2Se NSs. The temperatures in the 
two zones are set as 690 and 560 °C for 40 min to obtain 
the  Bi2O2Se NSs. After the growth process, the system is 
subsequently cooled to room temperature while maintain-
ing a flow of argon gas.

2.2  Fabrication of GaSb/Bi2O2Se Mixed‑Dimensional 
Heterojunctions Photodetectors

First, for a single GaSb NW photodetector, the as-prepared 
NWs are suspended in an ethanol solution using ultrasonica-
tion and subsequently transferred onto Si substrates with a 
50-nm  SiO2 layer via drop casting. For NW array photode-
tectors, the ordered GaSb NWs are transferred onto Si sub-
strates with a 50-nm  SiO2 layer using a contact printing tech-
nique. Subsequently, the prepared  Bi2O2Se NS is transferred 
from mica onto a  SiO2/Si substrate with GaSb NW or NW 
array using a wet transfer method, supported by polymethyl 
methacrylate (PMMA) in a 1% dilute HF solution and finally 
cleaned with acetone. Finally, the contact electrodes are pat-
terned using standard electron beam lithography, followed 
by the deposition of 50-nm Ni metal electrodes through a 
thermal evaporation system.

2.3  Characterization of GaSb/Bi2O2Se Mixed‑Dimen‑
sional Heterojunctions and Photodetectors

The morphology of the as-prepared GaSb NWs and  Bi2O2Se 
NSs is characterized using a microscope (Olympus micro-
scope BX53 M) and scanning electron microscopy (SEM, 
KYKY-EM6900). A scanning probe microscope (Horiba 
Bruker Multimode 8) equipped with atomic force micros-
copy (AFM) and Kelvin probe force microscopy (KPFM) 
modules is used to study the material thickness and surface 
potential. The photodetection performance of the as-pre-
pared photodetectors is measured using an Agilent B1500A 

semiconductor analyzer connected to a probe station at room 
temperature. Diode lasers are used as light sources for pho-
todetection measurements.

3  Results and Discussion

3.1  Design and Construction of Mixed‑dimensional 
NW/NS Heterojunctions

GaSb NWs and  Bi2O2Se NSs are prepared by chemical 
vapor deposition (CVD) method in a dual-zone tube fur-
nace. The detailed experimental procedures are described 
in “Methods” section. SEM image in Fig. 1a shows that the 
as-prepared GaSb NWs have uniform diameter and smooth 
surface. Optical microscopy (OM) image reveals that the 
as-prepared  Bi2O2Se NSs exhibit regular square morphol-
ogy with size up to approximately 20 μm. X-ray diffrac-
tion (XRD) patterns (Fig. 1b) confirm that the GaSb NWs 
have a pure zinc-blende crystal structure (JCPDS card No. 
07–0215), while  Bi2O2Se NSs exhibit tetragonal crystal 
phase (JCPDS card No. 25–1463). The as-prepared GaSb 
NWs and  Bi2O2Se NSs are then adopted to construct mixed-
dimensional heterojunctions by PMMA-assisted wet transfer 
method, as reported in the literature [42]. Figure 1c displays 
the OM and SME images of as-constructed GaSb/Bi2O2Se 
NW/NS and NW array/NS mixed-dimensional heterojunc-
tions, demonstrating the high-quality contact between NWs 
and NSs. AFM is then employed to measure the diameter 
of GaSb NW and the thickness of  Bi2O2Se NS in the as-
constructed GaSb/Bi2O2Se NW/NS mixed-dimensional het-
erojunction, as shown in Fig. 1d, e. As a result, the diameter 
is 25 nm and the thickness is 30 nm. Furthermore, the Kelvin 
probe force microscopy (KPFM) is adopted to measure the 
surface potentials of GaSb NW and  Bi2O2Se NS, demon-
strating the Fermi level difference. The measured area is as 
same as the AFM image in the inset of Fig. 1d. In this case, 
the potential curve is obtained from the cross of NW and NS, 
as depicted by the white line in the inset of Fig. 1f. As shown 
in Fig. 1f,  Bi2O2Se NS exhibits a higher surface potential 
than GaSb NW, with a Fermi level difference of approxi-
mately 140 meV. The schematic of energy band alignment 
is then shown in Fig. 1g-i, benefiting to the explanation of 
photogenerated carrier transfer behavior at the heterostruc-
ture interface. As reported in the studies, the band gaps of 
GaSb NW and  Bi2O2Se NS are approximately 0.72 and 
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0.8 eV, respectively [14, 20]. When GaSb and  Bi2O2Se come 
into contact, the higher Fermi level of  Bi2O2Se facilitates 
the transfer of electrons into GaSb, leading to the thermal 
equilibrium and unified Fermi level. At the same time, the 
band will bend at the interface, forming a useful type II het-
erojunction. It is worth pointing out that the built-in elec-
tric field and depletion region form at the interface, which 
directs from  Bi2O2Se NS to GaSb NW. In this case, under 
the illumination with wavelength shorter than 1310 nm, the 
photogenerated electron–hole pairs will be separated and 
collected quickly without an external energy source, which 
facilitates the self-powered photodetection behaviors with 

faster photoresponse speed and reduced  Idark. In summary, 
the as-constructed GaSb/Bi2O2Se mixed-dimensional het-
erojunctions promise the next-generation self-powered high-
performance NIR photodetection.

3.2  Photodetection Behaviors of Mixed‑dimensional 
NW/NS Heterojunction

After the success in constructing NW/NS heterojunction, 
the corresponding photodetection behaviors are then stud-
ied in Fig. 2. Figure 2a presents the I–V curves of NW, 

Fig. 1  Construction of GaSb/Bi2O2Se mixed-dimensional NW/NS heterojunctions for self-powered photodetection. a, b SEM, OM images and 
XRD patterns of GaSb NWs and  Bi2O2Se NSs, respectively. c OM and SEM images of NW/NS and NW array/NS heterojunction, respectively. 
d, e Height profiles of  Bi2O2Se NS and GaSb NW. Inset is the AFM image of GaSb/Bi2O2Se NW/NS heterojunction. f Surface potential differ-
ence profile of GaSb/Bi2O2Se NW/NS heterojunction. g–i Schematic of the self-powered GaSb/Bi2O2Se NW/NS heterojunction photodetector 
(the  Ec,  Ev and  Ef are the conduction band minimum, valance band maximum and Fermi level, respectively)
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NS and NW/NS heterojunction photodetectors in dark and 
under the illumination of 1310-nm laser with an intensity 
of 0.57 mW  mm−2. It is worth pointing out that both of 
the as-fabricated GaSb NW and  Bi2O2Se NS photodetec-
tors exhibit Ohmic contacts, which rules out the influence 
of the Schottky barrier for the heterostructure, as depicted 
in Fig. S1. Under −3 V bias, the NW/NS heterojunction 
photodetector shows the lowest Idark of 0.5 nA and the high-
est Ilight/Idark ratio of 20. Figure 2b shows the wavelength-
dependent photoresponse of the three photodetectors under 

−3 V bias. Benefiting from the narrow band gaps of GaSb 
and  Bi2O2Se, the as-fabricated NW, NS and NW/NS hetero-
junction photodetectors all exhibit broadband photodetection 
capability. Notably, the Idark is significantly suppressed after 
constructing NW/NS heterojunction. As shown in Fig. 2c, 
as expected, due to the suppressed Idark, the Ilight/Idark ratio 
of the heterojunction photodetector is improved across the 
wavelength range of 405–1310  nm. The Ilight/Idark ratio 
of NW/NS heterojunction photodetector is substantially 
enhanced by factors of 294 and 122 compared to NW and 

Fig. 2  Photodetection behaviors of GaSb NW,  Bi2O2Se NS and GaSb/Bi2O2Se mixed-dimensional NW/NS heterojunction. a I–V characteristics 
of the NW, NS and NW/NS mixed-dimensional heterojunction photodetectors in dark and under the illumination of 1310-nm laser with power 
intensity of 0.57 mW  mm−2. b Wavelength-dependent temporal photoresponse of the NW, NS and NW/NS heterojunction photodetectors. c  Ilight/
Idark ratio, D* and response time of the NW, NS and NW/NS heterojunction photodetectors under the illuminations of 405–1310-nm laser with 
power intensity of 0.57 mW  mm−2. d, e I–t curves of the NW, NS and NW/NS heterojunction photodetectors under the illumination of 520- and 
1310-nm lasers, respectively. f, g  Ilight/Idark ratio and D* of the NW, NS and NW/NS heterojunction photodetectors under the illumination of 405- 
and 1310-nm laser, respectively. h Response times of the NW, NS and NW/NS heterojunction photodetectors
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NS photodetectors. Two critical parameters of responsivity 
(R) and detectivity (D*) are also optimized in Figs. S2 and 
2c. R can be defined as Iph/(PA), and D* can be defined as 
 RA1/2/(2eIdark)1/2, in which P is the incident power density, 
A is the effective irradiated area, e is the electronic charge, 
and  Iph is defined as Ilight−Idark [46]. In this case, the values 
of R and D* are 2.3 ×  103, 3.2, 9.7 ×  102 A  W−1 and 1.0 ×  109, 
1.7 ×  108, 4.1 ×  1010 Jones for NW, NS and NW/NS hetero-
junction photodetectors, respectively.

The intensity-dependent photoresponse of the three pho-
todetectors under the illuminations of 520- and 1310-nm 
lasers is shown in Figs. 2d, e and S3. The  Ilight of all three 
devices increases linearly with the increase in the incident 

light intensity. Among them, the  Ilight of NW/NS heterojunc-
tion photodetector increases from 59.7 and 7.7 nA to 247.7 
and 17.3 nA under the illuminations of 520- and 1310-nm 
lasers with the intensity increases from 0.11 to 1.14 mW 
 mm−2. Figure 2f, g shows the intensity-dependent  Ilight/Idark 
ratio and D* of the three photodetectors. The Ilight/Idark ratio 
increases with the increase in the laser intensity, while the 
D* decreases as the laser intensity increases. Notably, the 
NW/NS heterojunction photodetector achieves a maximum 
Ilight/Idark ratio of 545 and 38, and a D* of 8.4 ×  1010 and 
1.0 ×  1010 Jones, respectively, under the illuminations of 
520 and 1310 nm, further demonstrating the decreased  Idark 
and excellent photosensitivity. The response time, including 

Fig. 3  Self-powered NIR photodetection behaviors of GaSb/Bi2O2Se mixed-dimensional NW/NS heterojunction. a Wavelength-dependent pho-
toresponse of the NW/NS heterojunction self-powered photodetector. b, c Intensity-dependent photoresponse under the illuminations of 520- 
and 1310-nm lasers. d‑f Response time, R, D* and long-term stability of NW/NS heterojunction self-powered NIR photodetector. g  Idark and 
response time comparison between this work and other photodetectors previously reported in the studies, including GaSb NW,  Bi2O2Se NS, 
mixed-dimensional heterojunctions. References to the selected work can be found in Table S1
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the rise time (τr) and the decay time (τd), is another critical 
parameter of photodetectors. It refers to the time required for 
photocurrent to rise from 10 to 90% or fall from 90 to 10% 
[47]. As shown in Fig. 2h, the NW/NS heterojunction pho-
todetector achieves τr/τd values of 4/4 ms, much shorter than 
the 20/160 and 45/120 ms of NW and NS photodetectors, 
respectively. In short, the as-constructed NW/NS mixed-
dimensional heterojunction promises the next-generation 
high-performance photodetectors.

The built-in electric field facilitates the self-powered NIR 
photodetection behaviors of NW/NS heterojunction photo-
detector, which are detailedly studied in Fig. 3. As shown 
in Fig. 3a, NW/NS heterojunction photodetector exhibits 
as-expected broadband photodetection capability under no 
external bias voltage, along with extremely low  Idark of 0.07 
pA. The dark current fluctuation is caused by the resolution 
limitation of semiconductor analyzer. The self-powered pho-
todetection behaviors of the NW/NS heterojunction photode-
tector are further studied under the illumination of 520- and 
1310-nm lasers, as shown in Fig. 3b, c. The  Ilight increases 

from 3.8 and 2.5 to 9.5 and 5.9 pA under the illuminations 
of 520- and 1310-nm lasers with the intensity increases 
from 0.11 to 1.14 mW  mm−2, while the Idark is maintained 
at a level of 0.07 pA. The Ilight/Idark ratio increases with the 
increase in the laser intensity, referring the superior photo-
sensitivity of the NW/NS heterojunction. In self-powered 
mode, the photodetector exhibits τr and τd of < 2 ms each, as 
illustrated in Fig. 3d. The NIR photodetection performance 
of the NW/NS heterojunction photodetector is further evalu-
ated by R and D*, as shown in Fig. 3e. Under the illumina-
tion of 1310 nm with power intensity of 0.11 mW  mm−2, the 
R and D* reach 84 mA  W−1 and 2.85 ×  108 Jones, respec-
tively. Operation stability is a critical metric of photodetec-
tors. Figure 3f exhibits the photoresponse of the NW/NS 
heterojunction self-powered photodetector over an operation 
time of 1000 s. No significant  Ilight attenuation demonstrates 
the excellent operational stability. The as-fabricated NW/NS 
heterojunction photodetector is compared with other photo-
detectors with similar material systems or configurations in 
Fig. 3g. Clearly, the as-fabricated NW/NS heterojunction 

Fig. 4  Photodetection behaviors of GaSb array and GaSb/Bi2O2Se mixed-dimensional NW array/NS heterojunction. a I–V characteristic curves 
of the NW array and NW array/NS heterojunction photodetectors in dark and under the illumination of 1310-nm laser (0.57 mW   mm−2). b 
Wavelength-dependent temporal photoresponse of the NW array and NW array/NS heterojunction photodetector. c Response time of the NW 
array and NW array/NS heterojunction photodetectors under the illumination of 1310-nm laser. d Self-powered photodetection behaviors of NW 
array/NS mixed-dimensional heterojunction photodetector under the illumination of 1310-nm laser. e R and D* of the self-powered NW array/
NS heterojunction photodetector versus the incident light (1310-nm) intensity
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photodetector outperforms most counterparts in terms of 
fast response speed and exceptionally low  Idark. In summary, 
the NW/NS mixed-dimensional heterojunction photodetec-
tor exhibits outstanding self-powered NIR photodetection 
performance.

3.3  Photodetection Behaviors of Mixed‑dimensional 
NW Array/NS Heterojunction

Ordered NW array has been considered promising can-
didates for the large-scale integration of optoelectronic 
devices [57, 58]. The ordered NW array is obtained by the 
reported contact printing technology [59, 60]. Then, the 
photodetection behaviors of NW array and the NW array/
NS mixed-dimensional heterojunction photodetectors are 
studied in Fig. 4. Figure 4a exhibits the I–V curves of NW 

array and NW array/NS mixed-dimensional heterojunction 
photodetectors in dark and under the illumination of 1310-
nm laser with an intensity of 0.57 mW  mm−2. Under −3 V 
bias, the NW/NS heterojunction photodetector shows the 
lowest Idark of 32 nA and the highest Ilight/Idark ratio of 60. 
The Idark of the NW array/NS heterojunction photodetector 
is significantly reduced, approximately 600 times lower 
than that of the NW array photodetector. The wavelength-
dependent photoresponse of the NW array and NW array/
NS heterojunction photodetectors is  shown in Figs. 4b 
and S4a, further demonstrating the improved Ilight/Idark 
ratio and decreased Idark (0.08 pA). More importantly, the 
increased contact area between GaSb NWs and  Bi2O2Se 
NS results in a larger photocurrent, which is twice as 
large as that of the NW/NS photodetector. The τr and τd 
of the NW array/NS heterojunction self-powered photo-
detector are 6 and 4 ms, significantly lower than the τr/τd 

Fig. 5  Imaging and optical communication functions of GaSb/Bi2O2Se mixed-dimensional NW array/NS heterojunction self-powered NIR pho-
todetector. a Schematic illustration of the NW array/NS heterojunction photodetector for imaging. b Photodetection imaging demonstration of 
a panda. c Schematic diagram of ASCII code signal transportation system. d Photocommunication demonstration of ASCII codes of “HAPPY”
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of 30/20 ms under −3 V bias and τr/τd of 40/154 ms for 
the NW array photodetector (Figs. 4c and S4b). Under 
the illumination of 1310-nm laser, the self-powered NIR 
photodetection behavior of the NW array/NS heterojunc-
tion photodetector is further investigated in Figs. 4d and 
S4c. With increasing incident light intensity from 0.11 
to 1.14 mW  mm−2, the Ilight rises proportionally from 4.7 
to 14 pA, leading to a maximum Ilight/Idark ratio of 182. 
The NIR photodetection performance of the as-fabricated 
self-powered NW array/NS heterojunction photodetector is 
evaluated by calculating the R and D*, as shown in Fig. 4e. 
With the 1310-nm light of 0.11 mW  mm−2, the R is up 
to 31 mA  W−1, while D* is up to 2.21 ×  108 Jones. In a 
word, the splendid photodetection performance confirms 
the effective strategy of constructing the NW array/NS 
mixed-dimensional heterojunction for the self-powered 
NIR photodetection.

3.4  Imaging and Photocommunication of Mixed‑dimen‑
sional NW Array/NS Heterojunction

The ultrafast photoresponse and superior photosensitivity 
of as-constructed NW array/NS mixed-dimensional hetero-
junction self-powered photodetector hold great promise in 
imaging and photocommunication. Figure 5a provides a con-
ceptual diagram illustrating the imaging principle of the NW 
array/NS heterojunction photodetector. Figure 5b displays 
the single-pixel imaging result, showing a clear "panda" 
image and highlighting the NW array/NS heterojunction 
photodetector’s significant potential for self-powered imag-
ing. Figure 5c depicts a schematic diagram of the NW array/
NS mixed-dimensional heterojunction self-powered photo-
detector integrated into a NIR photocommunication system. 
A signal generator encodes the ASCII message "HAPPY" 
into a voltage signal, which is then used to control laser 
emission. Upon receiving the optical signal, the NW array/
NS mixed-dimensional heterojunction self-powered pho-
todetector produces a photocurrent signal corresponding 
to the ASCII message "HAPPY" as illustrated in Fig. 5d. 
This photocurrent signal is decoded into the message 
"HAPPY" effectively demonstrating the feasibility of NIR 
photocommunication.

4  Conclusion

In conclusion, the high-performance self-powered NIR 
photodetectors are achieved by constructing the mixed-
dimensional heterojunction of GaSb NWs and  Bi2O2Se NS, 
promising the photodetection imaging and photocommuni-
cation. Due to the formation of a ~ 140 mV Fermi level dif-
ference, the as-fabricated NW/NS and NW array/NS mixed-
dimensional heterojunction photodetectors exhibit ultralow 
Idark (0.07 and 0.08 pA) and ultrafast photoresponse (< 2/2 
and 6/4 ms). Furthermore, the as-fabricated NW array/NS 
mixed-dimensional heterojunction self-powered photodetec-
tor successfully demonstrated its potential for applications in 
imaging and photocommunication. Overall, this study prom-
ises the as-constructed mixed-dimensional GaSb/Bi2O2Se 
NW/NS heterojunction, a novel platform for next-generation 
high-performance self-powered NIR photodetection, imag-
ing and photocommunication.
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