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Fig. S1 BET and pore size of G, NG, PG, and NPG 
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Fig. S2 Partial enlarged drawing of the XRD from the degree from 25 to 27 

 

Fig. S3 XPS spectra of C 1s of NPG 

 

Fig. S4 a Full spectrum and high-resolution XPS spectra of b C 1s and c N 1s of NG 
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Fig. S5 a Full spectrum and high-resolution XPS spectra of b C1s, c P 2p and of NPG 

 

Fig. S6 Typical galvanostatic lithiation/delithiation curves of a G, b NG, and c PG 

electrodes at different current densities. Cycling stability of d G, e NG, and f PG 

electrode at the current density of 100 mA g-1 

 

Fig. S7 Qualitative analysis of capacity contribution of G, PG, NG, and NPG at the 

current density of 0.2 A g 
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Fig. S8 Rate capabilities of NPG electrodes at different current densities and cycling 

performance in the potassium battery 

 

Fig. S9 Electrochemical performance characteristics of AC in a half-cell configuration 

 

Fig. S10 CV curves of NPG//AC LIC in various weight ratio (Scan rate of 5 mV s-1) 

Table S1 Nitrogen adsorption isotherms for G, NG, PG, and NPG 

Samples  BET (m2 g-1) 

G  410.9 

NG  435.7 

PG  463.7 

NPG  457.9 

https://link.springer.com/journal/volumesAndIssues/40820


Nano-Micro Letters 

S5/S7 

 

Table S2 Calculated Re and Rct via fitting of the impedance spectra 

 Re (Ω) Rct (Ω) 

Before 2.511 140.7 

After 5.461 58.3 

Table S3 Comparison of the electrochemical performance of various N-doped carbon, 

P-doped carbon, and N, P co-doped carbon anodes 

Material Methods N content P content 
Electrode 

loading 

Current 

density 

(mA g-1) 

Capacity 

(mAh g-

1)/cycle 

Refs. 

N-doped porous 

graphene 

Mix and 

pyrolysis 
12 at% --- 1mg 74.4 900/150 [S1] 

N-doped graphene 

sheets 

Mix and 

pyrolysis 
19.5 at% --- 

Thickness 20 

mm on Cu 

foils 

100 751/108 [S2] 

N-doped graphene 
Mix and 

pyrolysis 
2.1 at% --- 

Disk pieces 

with diameter 

of 1.4 cm 

50 682/95 [S3] 

N-doped graphene 

sheets 

Mix and 

pyrolysis 
13.1 at% --- 

0.3-0.5 mg cm-

2 
100 1050/185 [S4] 

P-doped graphene 
Mix and 

pyrolysis 
--- 1.81 at% 1mg 100 460/80 [S5] 

Phosphorus Particles 

Embedded in Graphene 

Mix and 

pyrolysis 
--- 35.09 at% --- 500 247/500 [S6] 

Graphite/phosphorus 
Mixed by 

grinding 
--- 28.6 wt% 6 mg cm-2 100 485/50 [S7] 

Phosphorus-graphene 

nanosheet hybrids 
Ball-milling --- 70 wt% 

0.8-1.5 mg cm-

2 
260 1570/300 [S8] 

Phosphorus/nitrogen-

doped graphene paper 

Mix and 

pyrolysis 
4.8 wt% 66 wt% 1-3 mg cm-2 1500 809/350 [S9] 

P and N dual-doped few-

layered porous graphene 

Chemical vapor 

deposition 
2.6 at% 0.6 at% 1 mg 1500 750/1000 [S10] 

Porous P and N dual 

doped graphene 

Mix and 

pyrolysis 
4.38 at% 1.93 at% 1.5 mg 1675 638/500 [S11] 

N and P Dual-Doped 

Graphene Aerogel 

Mix and 

pyrolysis 
4.54 at% 6.72 at% 

0.9-1.0 mg cm-

2 
50 260/50 [S12] 

N-doped graphene 

sheets 
Arc-discharge 3.31 at% --- 1 mg cm-2 100 627/1000 

This 

work 

P-doped graphene 

sheets 
Arc-discharge --- 1.18 at% 1 mg cm-2 100 570/1000 

This 

work 

N, P-co-doped 

graphene sheets 
Arc-discharge 3.2 at% 1.3 at% 1 mg cm-2 1000 787/1000 

This 

work 
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