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HIGHLIGHTS

• A novel hierarchical structure constructed by encapsulating cobalt sulfide nanowires within nitrogen‑doped porous branched carbon 
nanotubes (NBNTs) is designed for lithium‑ion batteries.

• The unique hierarchical  Co9S8@NBNT electrode displayed a reversible specific capacity of 1310 mAh g−1 at a current density of 0.1 A g−1.

ABSTRACT Lithium‑ion batteries (LIBs) are considered new gen‑
eration of large‑scale energy‑storage devices. However, LIBs suffer 
from a lack of desirable anode materials with excellent specific capac‑
ity and cycling stability. In this work, we design a novel hierarchi‑
cal structure constructed by encapsulating cobalt sulfide nanowires 
within nitrogen‑doped porous branched carbon nanotubes (NBNTs) 
for LIBs. The unique hierarchical  Co9S8@NBNT electrode displayed 
a reversible specific capacity of 1310 mAh g−1 at a current density of 
0.1 A g−1, and was able to maintain a stable reversible discharge capac‑
ity of 1109 mAh g−1 at a current density of 0.5 A g−1 with coulombic 
efficiency reaching almost 100% for 200 cycles. The excellent rate and 
cycling capabilities can be ascribed to the hierarchical porosity of the 
one‑dimensional  Co9S8@NBNT internetworks, the incorporation of nitrogen doping, and the carbon nanotube confinement of the active 
cobalt sulfide nanowires offering a proximate electron pathway for the isolated nanoparticles and shielding of the cobalt sulfide nanowires 
from pulverization over long cycling periods.
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1 Introduction

Recently, rechargeable energy‑storage systems have attracted 
a great deal of interest because of the escalating require‑
ments of various applications such as hybrid electric vehicles 
and electronic devices [1–4]. Among various alternatives, 
lithium‑ion batteries (LIBs) have attracted unprecedented 
attention owing to increasing market demand [5–8]. How‑
ever, LIBs suffer from a lack of high‑performance anode 
materials, which hinders their practical application [7–11]. 
Extensive studies have been conducted to solve these prob‑
lems by structure design to achieve different charge‑storage 
mechanisms [10, 11]. Recently, various transition metal 
sulfides have been proposed because of their high theoreti‑
cal capacities [12–17]. However, they are limited by their 
poor rate performance and sharp capacity fading caused by 
their low electronic conductivity and large volume changes 
during the charging/discharging process [9, 10, 18]. In 
recent years, nanostructured carbonaceous materials have 
been widely investigated to overcome these low capacity 
and kinetic limitations [18]. Carbon nanotubes (CNTs), one 
of the promising nanostructured carbonaceous materials 
with excellent electrical conductivity, large specific surface 
area, electrochemical and thermal stabilities, and easy ion 
accessibility, are expected to be an important option for LIBs 
[19–21]. In particular,  Li+ ions can be intercalated not only 
into the intertube channel, but also into the inner space of 
the tube cavity, leading to excellent rate performance [22]. 
However, using CNTs as active materials is difficult because 
of their limited capacity [23–26].

Therefore, much work has been carried out to design new 
nanostructured hybrids for the construction of transition 
metal sulfide/carbon‑based material composites as next‑
generation anodes [27–32]. One‑dimensional (1D) nano‑
materials, which have a large accessible area, fast ion dif‑
fusion, and percolated electron transport, are considered to 

be ideal nanoscale building blocks for construction of mul‑
tidimensional and multifunctional electrode configurations 
for advanced electrochemical energy storage [27, 33–35]. 
Hence, construction of integrated 1D nanostructured tran‑
sition metal sulfides with CNTs can also be regarded as an 
attractive strategy for developing high‑performance anode 
materials for LIBs. Although high‑capacity transition metal 
sulfides have been incorporated onto the surface of hierar‑
chical CNT networks to improve the rate and cycling perfor‑
mances, these active materials are still unstable because of 
surface exposure and interparticle aggregation [24].

Herein, we demonstrate a unique hierarchical hybrid 
architecture of  Co9S8@NBNT for LIBs, wherein cobalt 
sulfide nanowires are encapsulated inside N‑doped porous 
branched carbon nanotubes (NBNTs) (Fig. 1). Such a unique 
electrode configuration is expected to have the following fea‑
tures: (1) The 3D networks of NBNTs significantly enhance 
the electronic conductivity of the hybrid, promoting  Li+ dif‑
fusion and electron transport through the 3D interconnected 
pathway; and (2) the NBNT branches will inhibit the vol‑
ume expansion of the encapsulated cobalt sulfide during the 
charge/discharge processes so as to maintain the structural 
stability.

2  Experimental

2.1  Materials Synthesis

The  Co9S8@NBNT was synthesized by a catalytic decom‑
position reaction of polyacrylonitrile (PAN) on a Co/MgO 
catalyst in the presence of sodium polysulfide. The Co/
MgO catalyst was prepared as follows. Co(NO3)2·6H2O and 
Mg(NO3)2·6H2O were mechanically mixed and ground, and 
then calcined at 600 °C for 1 h in air to decompose the pre‑
cursor and yield a cluster made of Co and Mg oxides. The 
formed powder was then reduced in  H2 (100 sccm) and Ar 

Co9S8@NBNT
Co9S8

Pores Li+

NBNT

Fig. 1  Illustration of lithium‑ion storage in a  Co9S8@NBNT electrode
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(200 sccm) for 30 min at 600 °C to form Co nanoclusters 
supported on MgO particles, which were collected and used 
as the catalyst.

A sodium polysulfide (Na–poly‑S) solution was prepared 
from sulfur (6 g, Puriss, precipitated, 99.5–100.5%) and 
sodium disulfide (nonahydrate, 18 g, ACS reagent 98%) in 
water (240 g, distilled) by sonication and stirring overnight 
with mild heating (40 °C). l‑Ascorbic acid (80 mg, 99%) 
was dissolved in water (26 g, distilled) in a 40 mL glass 
vial with a PET cap. Subsequently, 4 g of the Na–poly‑S 
solution was added and hand‑shaken. Hydrochloric acid 
(0.1 mL, Puranal 37%, diluted to 5 M) was then added, and 
the vial was hand‑shaken. The vial was closed, hand‑shaken 
and sonicated at 40 °C for 30 min. The Co/MgO catalyst 
particles and PAN powder were placed in a graphite crucible 
enclosed within a graphite susceptor, and heated up to the 
reaction temperature using an induction furnace with a flow 
of Ar (2300 sccm) and  H2 (100 sccm).  H2 was allowed to 
bubble through the vial. The temperature of the susceptor 
was controlled to ensure that Co/MgO catalyst particles were 
heated to 1000 °C. After growth for 15 min, the  H2 flow was 
stopped and the chamber was cooled down to room tempera‑
ture. During the cooling process, the system was purged with 
Ar to prevent a backflow of air from the exhaust line.

The obtained product was washed three times by replacing 
the liquid products with distilled water and HCl, allowing 
soluble components to diffuse out of the product for at least 
2 h. The washed product was freeze‑dried to remove the 
liquid component. The resulting product was cut into disks 
with a razor blade. Prior to use as an anode, the disks were 
dried in a vacuum oven at 90 °C for 1 h and directly trans‑
ferred to an argon‑filled glove box.

Co9S8@CNT was obtained by a catalytic decomposition 
reaction of dimethyl sulfide  (C2H6S) on the Co/MgO cata‑
lyst, which was reported in our previous work [34].

Commercial multiwalled CNTs were obtained from Shen‑
zhen Nano Co. Ltd.

2.2  Characterization

The products were characterized by scanning electron 
microscopy (SEM) and high‑resolution transmission elec‑
tron microscopy (HRTEM, JEM‑2010).  N2 sorption analy‑
sis was performed on an ASAP 2020 accelerated surface 
area and porosimetry instrument (Micromeritics) equipped 

with an automated surface area analyzer at 77 K, using Bar‑
rett–Emmett–Teller (BET) calculations for the surface area. 
The pore‑size distribution (PSD) plot was prepared from the 
adsorption branch of the isotherm based on a density func‑
tional theory (DFT) model. X‑ray powder diffraction (XRD) 
patterns of the sample were recorded using a D/Max‑3C dif‑
fractometer equipped with a Cu‑Kα X‑ray source. Raman 
spectra were measured using a Renishaw inVia Raman 
spectrometer system (Gloucestershire, UK) equipped with a 
Leica DMLB microscope (Wetzlar, Germany) and a 17 mW 
at 633 nm Renishaw helium–neon laser source. X‑ray pho‑
toelectron spectroscopy (XPS) measurements were taken on 
a Kratos XSAM 800 spectrometer with a Mg–Kα radiation 
source. TGA was carried out using a DuPont 2200 thermal 
analysis station.

2.3  Electrochemical Measurements

The electrochemical tests were conducted by cycling two‑
electrode 2032 coin cells with Li disks as both the counter 
and reference electrode, a Celgard 2400 film as the separator, 
and a mixed slurry consisting of the prepared  Co9S8@NBNT 
structure (80 wt%) with poly(vinylidene fluoride) (PVDF, 
20 wt%) in N‑methyl‑2‑pyrrolidone (NMP) without conduct‑
ing agents. The  Co9S8@NBNT composite electrodes were 
pressed before being assembled into the coin cells. The load‑
ing density, diameter, and thickness of the prepared electrodes 
were ~ 1 mg cm−2, ~ 12 mm, and ~ 65–85 μm, respectively. 
The electrolyte was 1 M  LiPF6 in a 50:50 (w/w) mixture of 
ethylene carbonate and diethyl carbonate. Cyclic voltammetry 
and electrochemical impedance spectroscopy were conducted 
with a CHI 660C electrochemical workstation.

3  Results and Discussion

The morphology of the  Co9S8@NBNT nanocomposites is 
shown in Fig. 2a. Energy‑dispersive X‑ray (EDX) spectros‑
copy firmly demonstrated the existence of C, Co, S, and N 
(possible locations for N incorporation into the CNTs are 
shown in Fig. 2c). Figures 2b and S1 show high‑magnifi‑
cation scanning electron microscopy images of  Co9S8@
NBNT, with the porous structures indicated by arrows. Fig‑
ure 2d contains TEM image of the  Co9S8@NBNT, and inset 
shows HRTEM image of the boxed area; the porous structure 
and filled nanowires are clearly shown. Figure 2e shows an 
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enlargement of the boxed area shown in the inset of Fig. 2d. 
It is clearly shown that the nanowires encapsulated in the 
NBNTs consisted of well‑crystallized  Co9S8 cores with a 
unit cell parameter of a = 0.9907 nm (JCPDS No. 75‑2023). 
The multilayered carbon sheath exhibited an interlayer spac‑
ing of 0.34 nm, which corresponds well with the interplanar 

distance of the (001) planes of graphite. The selected‑area 
electron diffraction (SAED) pattern shows the sharp spots 
that could be indexed as the reflections of cubic  Co9S8 with 
the [1, − 1, 0] axis parallel to the electron beam. Remarkably, 
the specific surface area of  Co9S8@NBNT could reach up 
to 985 m2 g−1 (Fig. S2). The corresponding PSD, estimated 
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Fig. 2  a SEM image and corresponding EDX spectra of  Co9S8@NBNT. b High‑magnification SEM images of  Co9S8@NBNT. The porous 
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from the adsorption branches of the isotherms based on a 
DFT model, clearly shows the presence of multiple porosi‑
ties as small as a few nanometers (Fig. 2f). As shown in 
Fig. 2g, the distinct diffraction peaks in XRD pattern can be 
assigned to cobalt sulfide (JCPDS No. 75‑2023) and graph‑
ite. The as‑obtained  Co9S8@NBNT was also characterized 
by Raman spectroscopy (Fig. S3) and XPS (Fig. S4). The 
N 1s band of  Co9S8@NBNT can be deconvoluted into three 
characteristic peaks: pyridinic, pyrrolic, and graphitic N 
species located at 398.6, 400.8, and 401.3 eV, respectively. 
The chemical composition of the NBNTs was estimated as 
41.09 wt%  Co9S8@NBNT, as determined by TGA analysis 
(Fig. S5).

The lithium‑storage properties of the  Co9S8@NBNT 
nanohybrid were evaluated by conducting various electro‑
chemical measurements. Figure 3a shows the first three CV 
curves of the  Co9S8@NBNT electrode in the potential range 
of 0–3.0 V versus Li at a scanning rate of 0.5 mV s−1. Dur‑
ing the first scan, a strong peak was observed at ~ 1.9 V, 
which can be attributed to Li insertion into the  Co9S8 lat‑
tice to form cubic  Li2Co9S8, as illustrated by the following 
reaction:  Co9S8 + 2Li+ + 2e− → Li2(Co9S8). Another peak 

close to 1.3 V was also observed in the CV curves, cor‑
responding to the formation of Co and  Li2S following the 
reaction:  Li2(Co9S8) + 14Li+ + 14e− → 9Co + 8Li2S. Dur‑
ing charging (Li extraction), a pronounced peak at around 
2.3 V can be found, which was attributed to the reconver‑
sion reaction of Co with  Li2S to reform  Co9S8. In the sub‑
sequent cycle onward, it is important to note that the CV 
curves almost overlapped, indicating the stable and superior 
reversibility of the prepared  Co9S8@NBNT. Typical galva‑
nostatic charge/discharge (GCD) curves of the nanohybrid 
are in agreement with the above CV curves (Fig. S6). The 
first reversible capacity of the  Co9S8@NBNT nanohybrid 
is 1310 mAh g−1 at a current density of 0.1 A g−1. The rate 
capabilities of the  Co9S8@NBNT,  Co9S8@CNT, and CNT 
samples are presented in Fig. 3b. The  Co9S8@NBNT nano‑
hybrid electrode delivers a high reversible capacity of ~ 1109 
mAh g−1 at a current density of 0.5 A g−1 with no significant 
decay of capacity after 200 cycles, demonstrating excellent 
reversibility. The capacity retention of  Co9S8@NBNT was 
greater than those of the  Co9S8@CNT and CNT samples at 
500 mA g−1, as shown in Fig. S7. To further confirm this 
benefit, EIS measurements were taken at the initial state and 
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after being charged/discharged for 200 cycles (Fig. S8). The 
Nyquist plots of the  Co9S8@NBNT,  Co9S8@CNT, and CNT 
samples all show a straight line in the low‑frequency region, 
indicating Warburg‑type resistance caused by ion diffusion 
in the electrode, and an arc in the high‑frequency region. The 
diameter of the arc represents the charge‑transfer resistance 
(Rt). Compared with the  Co9S8@CNT and CNT compos‑
ites, the  Co9S8@NBNT composite shows a lower Rt, which 
demonstrates that the  Co9S8@NBNT composite has much 
smaller interfacial charge‑transfer and lithium‑ion‑diffusion 
resistances than that of the  Co9S8@CNT and CNT anodes.

The outstanding cycling capability of  Co9S8@NBNT at 
various current densities shown in Fig. 3c further proves its 
remarkable reversibility and stability. The capacity of the 
 Co9S8@NBNT electrode reached 945 mAh g−1 after the first 
2500 cycles at 1000 mA g−1, 889 mAh g−1 at 2000 mA g−1 
after 1500 cycles, and 779 mAh g−1 after another 1000 
cycles at 5000 mA g−1, respectively. The coulombic effi‑
ciency of the  Co9S8@NBNT electrode was nearly 100% 
after the first few cycles. The irreversible capacity loss in 
the first cycle can mainly be attributed to the incomplete 
extraction of Li ions as a result of lithium being trapped 
in the porous electrodes and unable to be released in the 
first cycle, the irreversible formation of a solid‑electrolyte 
interface layer, and the formation of insulating  Li2S, which 
is generally observed for nanostructured conversion‑based 
anode materials [35, 36]. This result is consistent with the 

CV results in which the cathodic peaks only exist in the first 
cycle and are absent in subsequent cycles.

In order to confirm the structural integrity associated 
with the cycling stability, we carried out a postmortem 
study using Raman, field‑emission SEM, and TEM exami‑
nations. Raman spectra of the pristine and cycled electrodes 
are shown in Fig. 4a. The active material in the electrode 
was well maintained after long‑term cycling. Figure 4b 
shows a SEM image of the  Co9S8@NBNT nanohybrid after 
cycling. By comparison with the fresh electrode (Fig. 2a), 
it can be seen that the hierarchical structure of the  Co9S8@
NBNT electrode was preserved after 200 charging/discharg‑
ing cycles. The cobalt sulfide in the darker color was still 
encapsulated within the NBNTs, as can be seen in the TEM 
image (Fig. 4c). Moreover, the porous structures were pre‑
served (indicated by arrows in Figs. 4c and S9). As shown 
in Fig. 4d, the active cobalt sulfide nanowires could expand 
slightly in the length direction, while expansion in the width 
direction was prevented by the NBNT wall. Clearly, the size, 
shape, and structural integrity the 1D  Co9S8@NBNT were 
well retained. These results demonstrate the great structural 
advantages of such structures. Firstly, the volume expan‑
sion and mechanical stress can be relieved during cycling 
by expansion along the available void space of the tube 
(Fig. 4d). Secondly, the porous structure plus the high spe‑
cific surface area (Figs. 2f and S1) of  Co9S8@NBNT nano‑
hybrid can shorten the ion‑diffusion distance by providing 
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3D interconnected NBNT networks and conducting path‑
ways of the CNT branches to facilitate electron trans‑
port. When the lithium ions were transported through the 
interconnected porous channels, they could penetrate into 
the tube interiors through the micro/mesopores (Fig. 4d). 
Thirdly, the pyridinic and pyrrolic nitrogen (Fig. S4) located 
at defects were beneficial for adsorption of Li and provided 
additional Li storage sites [37–39].

4  Conclusions

In summary, we have designed and prepared a novel hier‑
archical structure constructed by encapsulating cobalt 
sulfide nanowires within nitrogen‑doped porous branched 
carbon nanotubes. The  Co9S8@NBNT nanohybrid exhib‑
ited remarkable electrochemical performance as an anode 
material in LIBs with a very high specific capacity of up to 
1310 mAh g−1 at a current density of 0.1 A g−1, outstand‑
ing rate capability, and long cycle life. The  Co9S8@NBNT 
with hierarchical porosity, the incorporation of nitrogen dop‑
ing, and interconnected NBNT networks played a role in 
improving the rate capability by allowing rapid  Li+ diffusion 
and facilitating electronic transport. The CNT‑confinement 
of the active cobalt sulfide nanowires offered a proximate 
electron pathway for the isolated nanoparticles and shield‑
ing of the cobalt sulfide nanowires from pulverization for 
long cycling time periods. Such a strategy could be readily 
extended to other materials for energy‑storage and conver‑
sion applications.
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