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HIGHLIGHTS

• A facile strategy for fabricating  NixCo1−xSe hollow nanocages was developed, and the formation mechanism was well explained.

• Ni0.2Co0.8Se outperformed a Pt/C + RuO2 catalyst in rechargeable and all‑solid‑state Zn–air battery tests, as well as in overall water splitting.

• The hydrogen adsorption onto  NixCo1−xSe was simulated, and Gibbs free energies were calculated.

ABSTRACT Developing Earth‑abundant, highly efficient, and anti‑
corrosion electrocatalysts to boost the oxygen evolution reaction (OER), 
oxygen reduction reaction (ORR), and hydrogen evolution reaction 
(HER) for the Zn–air battery (ZAB) and for overall water splitting is 
imperative. In this study, a novel process starting with  Cu2O cubes was 
developed to fabricate hollow  NixCo1−xSe nanocages as trifunctional 
electrocatalysts for the OER, ORR, and HER and a reasonable formation 
mechanism was proposed. The  Ni0.2Co0.8Se nanocages exhibited higher 
OER activity than its counterparts with the low overpotential of 280 mV 
at 10 mA cm−2. It also outperformed the other samples in the HER test 
with a low overpotential of 73 mV at 10 mA cm−2. As an air–cathode 
of a self‑assembled rechargeable ZAB, it exhibited good performance, 
such as an ultralong cycling lifetime of > 50 h, a high round‑trip efficiency of 60.86%, and a high power density of 223.5 mW cm−2. For the 
application in self‑made all‑solid‑state ZAB, it also demonstrated excellent performance with a power density of 41.03 mW cm−2 and an 
open‑circuit voltage of 1.428 V. In addition,  Ni0.2Co0.8Se nanocages had superior performance in a practical overall water splitting, in which 
only 1.592 V was needed to achieve a current density of 10 mA cm−2. These results show that hollow  NixCo1−xSe nanocages with an optimized 
Ni‑to‑Co ratio are a promising cost‑effective and high‑efficiency electrocatalyst for ZABs and overall water splitting in alkaline solutions.
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1 Introduction

The rapid depletion and heavy reliance on fuel cells and 
associated global environmental concerns have motivated 
extensive research on the development of eco‑friendly and 
sustainable energy technologies in the past decade. Among 
these technologies, Zn–air batteries (ZABs) and water‑
splitting devices have become viable eco‑friendly energy 
technologies owing to recent advances in the preparation of 
highly active electrocatalysts [1–3]. The oxygen evolution 
reaction (OER) and oxygen reduction reaction (ORR) are the 
key reversible reactions occurring at the cathode of ZABs 
and largely determine the energy‑conversion efficiency of 
ZABs [4]. The OER and the hydrogen evolution reaction 
(HER) are the two electrochemical reactions for catalyzing 
overall water splitting [5–7]. Pt‑based materials have been 
widely considered as state‑of‑the‑art electrocatalysts for the 
ORR and HER [8–12], while  RuO2 and  IrO2 are the standard 
high‑efficiency OER catalysts [13, 14]. However, the large‑
scale commercial implementation of both Pt‑based and Ru‑/
Ir‑based materials has been significantly hampered by their 
scarcity, high cost, and poor long‑term durability. Therefore, 
it is imperative to develop Earth‑abundant, cost‑effective, 
high‑efficiency, and robust electrocatalysts [12, 15–24].

Among the various alternative materials, transition metal 
chalcogenides have been attracting increasing research atten‑
tion, mainly owing to their high availability, low cost, and 
eco‑friendliness [25–32]. In particular, because of the high 
conductivity of metallic Se compared with O and S, transi‑
tion metal selenides (MSe, M = transition metal) have supe‑
rior electrocatalytic performance to transition metal oxides 
and sulfides [30, 31]. Therefore, transition metal selenides 
have received tremendous research attentions from the elec‑
trocatalytic community. For instance, Zheng et al. devel‑
oped a novel hot‑injection process to precisely control the 
phase and composition of a series of  NixSe nanocrystals 
and discovered that  Ni0.5Se nanoparticles exhibited supe‑
rior OER activity comparable to that of  RuO2, that  Ni0.75Se 
nanoparticles exhibited the best performance for the HER 
and ORR, and that both could be engineered for efficient 
rechargeable ZABs and water splitting [33]. Cao et al. dem‑
onstrated a facile strategy for in situ coupling of ultrafine 
 Co0.85Se nanocrystals with N‑doped C, and the as‑prepared 
 Co0.85Se@NC was employed as a trifunctional catalyst for 
the HER, ORR, and OER, exhibiting great potential for 

ZABs and water splitting [34]. Rather than using only one 
transition metal, recent studies showed that superior elec‑
trocatalytic performance for ZABs and water splitting could 
be achieved by employing mixed transition metal selenides. 
For example, Xu et al. [35] prepared a Ni–Fe diselenide 
 (NixFe1−xSe2) and used it as a templating precursor to form 
ultrathin nanosheets of the corresponding oxide, which 
exhibited a very low overpotential of only 195 mV in an 
alkaline solution at 10 mA cm−2 for the OER. Recently, Lv 
et al. [36] have designed Ni–Fe selenide  (NiFeSe2) hollow 
nanoparticles, hollow nanochains [37], and Co–Fe selenide 
 (CoFeSe2) nanosheets [38] for the OER, and the  Co0.4Fe0.6Se 
nanosheets not only exhibited superior OER performance 
with a low overpotential of 217 mV at 10 mA cm−2 and a 
small Tafel slope of 41 mV dec−1 but also had a ultrahigh 
durability. There have been several reports of  NiCoSe2‑based 
materials for electrochemical energy storage and conversion. 
Yuan et al. reported monodisperse metallic  NiCoSe2 hollow 
sub‑microspheres for electrochemical supercapacitors [39]. 
 NiCoSe2−x/N‑doped C mushroom‑like core/shell nanorods 
on N‑doped C fiber were prepared by Li et al. [40] for overall 
water splitting, and a low cell voltage of 1.53 V to obtain 
a current density of 10 mA cm−2 was observed. Recently, 
Chen and Tan have directly grew ultrathin ternary selenide 
 (CoNiSe2) nanorods on Ni foam, which delivered a current 
density of 100 mA cm−2 with an overpotential as low as 307 
and 170 mV for the OER and HER, respectively, and eventu‑
ally reduced the cell voltage in the full water‑splitting reac‑
tion to 1.591 V to obtain a current density of 10 mA cm−2 
[41]. Chen and Wang groups prepared a three‑dimensional 
Ni–Co selenide  (NiCoSe2) nanonetwork for the OER, and 
the overpotential at 10 mA cm−2 was 274 mV, exhibiting 
room for improvement [42].

Despite the progress regarding  NiCoSe2, direct prepara‑
tion of  NiCoSe2 with precise manipulation of the morphol‑
ogy for ZABs and overall water splitting remains largely 
unexplored. Moreover, the stoichiometric ratio of Ni to Co 
has not been optimized for enhancing the synergistic cata‑
lytic effects. In light of the significant effects of the mor‑
phology, crystal structure, and stoichiometry on the electro‑
catalytic performance, a systematic investigation of  NiCoSe2 
with a well‑defined surface structure and an optimized Ni/Co 
stoichiometry for establishing the structure–function rela‑
tionship of  NiCoSe2 materials is of great importance. This 
was the primary goal of the present study.
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In this study, we employed a facile strategy to prepare a 
series of  NixCo1−xSe samples with hollow cages and inves‑
tigated them as trifunctional electrocatalysts for the OER, 
ORR, and HER. A novel process with  Cu2O cubes as the 
starting material was developed to fabricate the  NixCo1‑xSe 
nanocages, and a reasonable formation mechanism was 
proposed. In electrochemical tests,  Ni0.2Co0.8Se exhibited 
higher OER and HER activity than the other samples in 
the  NixCo1−xSe series. To investigate the applications of 
the  Ni0.2Co0.8Se sample, it was used as an air–cathode of 
a self‑assembled rechargeable ZAB and an all‑solid‑state 
ZAB and employed as a catalyst for overall water splitting 
in an alkaline solution.

2  Experimental Section

2.1  Materials

Copper (II) chloride dihydrate  (CuCl2·2H2O, 99%), sodium 
hydroxide (NaOH, ≥ 96.0%), L‑ascorbic acid (AA, ≥ 99.7%), 
nickel (II) chloride hexahydrate  (NiCl2·6H2O, ≥ 98.0%), 
cobalt (II) chloride hexahydrate  (CoCl2·6H2O, ≥ 99.0%), pol‑
yvinylpyrrolidone (PVP, K30, 99%), anhydrous sodium thio‑
sulfate  (Na2S2O3, 99%), sodium selenite  (Na2SeO3, ≥ 99.7%), 
absolute ethanol (≥ 99.7%), and ethylene glycol (EG, 99.0%) 
were used. Water was obtained from a Barnstead Nanopure 
water system (resistivity: 18.3 MΩ cm). All the chemicals 
were used as received, without further purification.

2.2  Synthesis of  Cu2O Cubes

Cu2O cubes were synthesized by following a previously 
reported procedure [43]. Typically, 341 mg of  CuCl2·2H2O 
was first dissolved in 200 mL of Nanopure water. Then, 
the solution was heated to 55 °C and stirred for 30 min. 
Subsequently, 20 mL of a 2 M NaOH solution was slowly 
added to the aforementioned solution, forming a brown 
suspension. After 10 min of stirring, 20 mL of 0.6 M AA 
was added dropwise to the solution. The solution gradu‑
ally changed from dark red to brick red, and the mixture 
was aged for 3 h. The formed precipitates were collected 
via suction filtration, washed with copious distilled water 
and ethanol 3–5 times, and eventually dried in vacuum at 
35 °C overnight.

2.3  Synthesis of  Ni0.2Co0.8(OH)2 Nanocages

In a typical procedure, 100 mg of cuprous oxide was dis‑
solved into a mixed solvent of absolute ethanol and Nan‑
opure water (100  mL, volume ratio = 1:1) with 30  min 
of ultrasonic treatment. Then, 34 mg of  NiCl2·6H2O and 
 CoCl2·6H2O (molar ratio of 2:8) was added to the solution, 
with stirring. Subsequently, 3.33 g of PVP was dispersed in 
the resulting suspension under another 30 min of ultrasonic 
treatment. Then, 40 mL of 1 M  Na2S2O3 was slowly added 
to the mixture. Upon the addition of an excessive amount 
of sodium thiosulfate solution, the mixture changed from 
orange–red to transparent green, indicating that cuprous 
oxide was converted into  Ni0.2Co0.8(OH)2. The reaction was 
conducted for 10 min to ensure that it was complete. The 
product was then collected via centrifugation, washed with 
copious Nanopure water and ethanol 3–5 times, and eventu‑
ally dried in a vacuum at 35 °C overnight. For the synthesis 
of  Ni0.5Co0.5(OH)2,  Ni0.8Co0.2(OH)2, Ni(OH)2, and Co(OH)2, 
the same procedure was adopted, but the molar ratio of Ni 
to Co was changed to 5:5, 8:2, 1:0, and 0:1, respectively.

2.4  Synthesis of  Ni0.2Co0.8Se Nanocages

In a typical procedure, 37 mg of  Na2SeO3 was dissolved in a 
mixed solvent of Nanopure water and EG (10.0 mL, volume 
ratio = 1:1). Then, 10 mg of  Ni0.2Co0.8(OH)2 was added to 
the solution, with 30 min of ultrasonication to ensure uni‑
form dispersion. Subsequently, the mixture was transferred 
into an autoclave and kept at 200 °C for 6 h. Finally, after 
cooling to room temperature, the product was collected via 
centrifugation.

2.5  Characterization

The morphologies and surface structures of the samples were 
observed via field emission scanning electron microscopy 
(SEM, Hitachi S‑4800) and high‑resolution transmission 
electron microscopy (HRTEM, Tecnai G2 F30). X‑ray dif‑
fraction (XRD) patterns in the Bragg’s angle (2θ) range of 
10°–90° were recorded using a Bruker D8 diffractometer 
with Cu  Kα radiation (λ = 0.1541 nm). X‑ray photoelectron 
spectroscopy (XPS) was conducted using an ESCALAB 250 
photoelectron spectrometer (Thermo Fisher Scientific, USA).



 Nano‑Micro Lett. (2019) 11:2828 Page 4 of 17

https://doi.org/10.1007/s40820‑019‑0258‑0© The authors

2.6  Electrochemistry

Electrochemical measurements were taken using a CHI 750E 
electrochemical workstation (CHI Instruments Inc.) in a 1 M 
KOH aqueous solution at ambient temperature. A three‑elec‑
trode system was utilized in both HER and OER tests. Here, 
Ag/AgCl was used as the reference electrode [44–46], and C 
rod and C cloth electrodes were employed as the counter elec‑
trode and the working electrode, respectively. The catalyst ink 
was prepared as follows. Firstly, 10 mg of the catalyst was ultra‑
sonically dispersed in 1000 μL of absolute ethanol, followed 
by the sequential addition of 900 μL of Nanopure water and 
100 μL of Nafion (5%, Sigma‑Aldrich), yielding a uniform sus‑
pension. Then, 20 μL of the suspension was cast dropwise onto 
a single‑sided C cloth (1.5 × 0.5 cm2, load area of 0.5 cm2), fol‑
lowed by drying at room temperature. The catalyst loading was 
calculated as ~ 200 μg cm−2. The solution was saturated with  N2 
or  O2 at least 30 min before each measurement. For the HER, 
the cyclic voltammetry (CV) test potential range was − 0.077 to 
0.623 V (vs. reversible hydrogen electrode (RHE)), and the scan 
rate was 100 mV s−1. In addition, linear sweep voltammetry 
(LSV) was conducted in a potential range of − 0.477 to 0.323 V 
(vs. RHE), at a scan rate of 10 mV s−1. OER measurements 
were taken in the same manner as the HER measurements. LSV 
was performed in a  N2‑saturated 1 M KOH solution within the 
potential range of + 1.023 to + 2.023 V (vs. RHE), at a scan 
rate of 10 mV s−1. A relatively simple two‑electrode system 
was used in the water‑splitting test, where the same catalyst 
was loaded on two clip electrodes: an anode and a cathode. 
The operation method was similar to that for the OER test, but 
the LSV test voltage was 1.0–2.0 V. We recorded the chrono‑
amperometric responses in a 1 M KOH solution for 40,000 s 
and performed an accelerated durability test (ADT), where 
the catalyst was cycled 1000 times in the potential range of 
+ 1.023 to + 1.423 V (vs. RHE) for the OER and from − 0.077 
to 0.623 V for the HER. The scan rates for the HER and OER 
were 100 and 50 mV s−1, respectively. Details regarding the 
calculation of the electrochemically active surface area (EASA) 
are presented in Supplementary Material.

2.7  Measurements of Liquid ZAB and All‑Solid‑State 
ZAB

In the rechargeable ZAB test, a Zn sheet (thickness of 0.5 mm) 
was used as the anode, the C cloth loaded with the catalyst was 

employed as the air–cathode, and 6 M KOH + 0.2 M ZnAc was 
used as the electrolyte. The procedure for preparing the catalyst 
ink was as follows. First, 3 mg of the sample was dispersed 
in 700 μL of a Nafion solution (70 μL of Nafion in 630 μL of 
absolute ethanol), followed by ultrasonication for 15 min. Sub‑
sequently, 600 μL of the catalyst was loaded on a C cloth, and 
the loading area was approximately 1 cm2. For the preparation 
of Pt/C + RuO2 as the control, 1.5 mg of commercial Pt/C and 
1.5 mg of  RuO2 were mixed in 630 μL of absolute ethanol, and 
then, 70 μL of Nafion was added. After 30 min of ultrasoni‑
cation, 600 μL of the dispersion was employed for a control 
test. A ZAB test was performed at room temperature using a 
CHI‑440 electrochemical workstation (CHI Instruments Inc.). 
LSV was conducted in the voltage range of 0.3–2.7 V at a scan 
rate of 10 mV s−1. The galvanostatic charge–discharge cycling 
curves were recorded at 10 mA cm−2 via chronopotentiometry, 
with 5 min of discharging and 5 min of charging. The electro‑
chemical test method for the all‑solid‑state ZAB was similar to 
that for the liquid ZAB, with the differences being the electro‑
lyte and the thickness of the Zn sheet (0.3 mm). The preparation 
method for the polyvinyl alcohol (PVA) electrolyte gel was as 
follows. Firstly, 666 mg of PVA‑1788 and 333 mg of PVA‑1799 
were placed in a flask, and then, 10 mL of 6 M KOH + 0.2 M 
ZnAc was added. The mixture was kept under magnetic stir‑
ring at room temperature for 1 h and then transferred into an 
oil bath at 95 °C for 30 min. Subsequently, it was poured into 
a mold while being hot, frozen in a ‑70 °C refrigerator for 1 h, 
and finally removed and defrosted at 2 °C for 4 h to obtain the 
electrolyte gel. The catalyst loading was approximately 2 mg 
 cm−2 for the all‑solid‑state ZAB test. The discharge power den‑
sity was determined via LSV and calculated as Eq. 1 [47].

The specific capacity was determined using the galvanostatic 
discharge plot and calculated as Eq. 2.

3  Results and Discussion

3.1  Preparation of  NixCo1−xSe Nanocages, Formation 
Mechanism, and Electron Microscopy

Figure 1a shows schematics of the fabrication process for 
the  NixCo1−xSe nanocages. Firstly,  Cu2O nanocubes were 

(1)
Power density

(

mW cm−2
)

= Voltage × Current density

(2)

Specific capacity
(

mAh g−1
)

=
Current × Service hours

Weight of consumed Zn
.
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synthesized by following a previously reported procedure 
[43]. Subsequently, in the presence of  NaS2O3, the  Cu2O 
reacted with  Co2+ and  Ni2+ ions to form NiCo hydroxide. 
After the selenization of the NiCo hydroxide,  NixCo1−xSe 
nanocages were formed. SEM and TEM images of the  Cu2O, 
 Ni0.2Co0.8(OH)2, and  Ni0.2Co0.8Se are shown in Fig. 1b–d. 
The  Cu2O exhibited a well‑defined cube shape, with some 
cubes clustered together. These well‑defined cube morpholo‑
gies are clearly recognized in  Ni0.2Co0.8(OH)2, despite the 
numerous fine flocci appearing on the surface. To exam‑
ine the structure of  Ni0.2Co0.8(OH)2, we conducted XRD, 
energy‑dispersive X‑ray spectroscopy (EDX), and Fourier 
transform infrared (FT‑IR) spectroscopic measurements 
(Fig. S1). The XRD results indicate that the  Ni0.2Co0.8(OH)2 
had an amorphous structure. Similar preparations and struc‑
tures of  NixCo1−x(OH)2 have been well documented [43, 48]. 
According to the EDX results, the atomic ratio of Ni to Co 
was 18.26:81.74, which is approximately 2:8. In the FT‑IR 
spectrum, the broadband at 3447 cm−1 can be assigned to 
the stretching vibration of O–H groups, which were hydro‑
gen‑bonded to  H2O molecules in the interlayer space. The 
band centered at 662 cm−1 is ascribed to δ(Ni–O–H), and 

the absorption band at 459 cm−1 is attributed to υ(Co/Ni–O) 
stretching vibrations [39]. Together, the results of XRD, 
EDX, and FT‑IR confirm that  Ni0.2Co0.8(OH)2 with an amor‑
phous structure was successfully prepared. For  Ni0.2Co0.8Se, 
hollow nanocages were observed, and their detailed surface 
structure was examined via HRTEM, as discussed later. The 
size evolution was monitored throughout the fabrication pro‑
cess, and the size distribution histograms are presented in Fig. 
S2. The average length of the  Cu2O cubes,  Ni0.2Co0.8(OH)2 
nanocages, and  Ni0.2Co0.8Se nanocages was approximately 
509.2 ± 140.6, 573.8 ± 157.7, and 429.6 ± 85.1 nm, respec‑
tively, indicating that the size was not significantly changed 
by the chemical treatments as shown in Eqs. 3–7.

(3)Cu2O + xS2O
2−
3

+ H2O →

[

Cu2(S2O3)x
]2−2x

+ 2OH−

(4)xNi2+ + (1 − x)Co2+ + 2OH−
→ Ni

x
Co1−x(OH)2

(5)2SeO2−
3

+ CH2OHCH2OH → 2Se + H2C2O4 + 4OH−

(6)3Se + 6OH−
→ 2Se2− + SeO2−

3
+ 3H2O

(7)Se2− + Ni
x
Co1−x(OH)2 → Ni

x
Co1−xSe + 2OH−

Cu2O

Na2S2O3

NixCo1-x(OH)2 NixCo1-xSe

Ni2+,Co2+ Selenization

(a)

(d)(c)(b)

500 nm 500 nm 500 nm

Fig. 1  a Schematics of the fabrication process for the  NixCo1−xSe nanocages. Representative SEM images of b the  Cu2O cubes and c the 
 Ni0.2Co0.8(OH)2 nanocages. d Representative TEM image of the  Ni0.2Co0.8Se nanocages
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A possible mechanism for the formation of hollow 
 NixCo1−xSe nanocages is described as follows. According 
to the Pearson’s hard and soft acid–base principle, cuprous 
oxide can react with sodium thiosulfate to form a soluble 
complex, accompanied by the release of hydroxide ions 
(Eq. 3). In the presence of hydroxide ions, upon the intro‑
duction of Ni and Co ions, the immediately formed NiCo 
hydroxide precipitates can aggregate in situ, leading to the 
formation of  NixCo1−x(OH)2 nanocages (Eq. 4). The seleni‑
zation proceeds via an anion exchange mechanism. Under 
a high temperature and high pressure, EG can react with 
 SeO3

2−, generating elemental Se, hydroxide ions, and oxalic 
acid (Eq. 5). In the presence of hydroxide ions, the elemen‑
tal Se can undergo the disproportionation reaction, forming 
 SeO3

2− and  Se2− (Eq. 6). Finally, the generated  Se2− and the 
 OH− ions complete the anion exchange reaction, forming the 
 NixCo1−xSe nanocages (Eq. 7).

Figure  2a, b presents typical TEM images of the 
 Ni0.2Co0.8Se nanocages with different magnifications. The 
hollow cube cage morphology is clearly observed. On the 
surface of the cages, there were numerous flocci, some of 
which were stacked or intersected together. According to the 

HRTEM image in Fig. 2c, the lattice spacing was 0.272 nm, 
which can be assigned to the crystal phase of NiCo (101). A 
representative high‑angle annular dark‑field imaging scan‑
ning TEM (HAADF‑STEM) image of an  Ni0.2Co0.8Se par‑
ticle is shown in Fig. 2d, where a well‑defined cage shape 
is clearly observed. The corresponding elemental mapping 
images of Ni, Co, and Se in Fig. 2e–g indicate that the three 
elements were homogeneously distributed with excellent 
uniformity, and all the elements had higher densities on 
the edges than in the core. These results confirm that the 
hollow nanocages of  Ni0.2Co0.8Se were acquired via our 
designed strategy. Additionally, the atomic percentages 
were approximately determined using the EDX spectrum. 
As illustrated in Fig. S3, the calculated Ni–Co–Se atomic 
ratio was 10.03:38.90:50.07, which corresponds well to the 
initial loading molar ratio of 0.2:0.8:1.

3.2  XRD and XPS Analyses

XRD measurements were taken to further elucidate the crys‑
tal structure of the  NixCo1−xSe samples. In Fig. 3a, the series 

(c)(b)(a)

eS(g)(f)iN(e)(d) Co

200 nm

200 nm 200 nm 200 nm

100 nm 3 nm

0.272 nm
(101)

Fig. 2  a–c Representative TEM and HRTEM images of the  Ni0.2Co0.8Se nanocages. d HAADF‑STEM image of  Ni0.2Co0.8Se and e–g the cor‑
responding elemental mapping images of Ni, Co, and Se
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of peaks at 32.9°, 44.6°, 50.3°, 59.6°, 61.5°, and 69.1° for 
 Ni0.2Co0.8Se are in good accordance with the standard card 
of  NiCoSe2 (JCPDS No. 70‑2851), and these Bragg reflec‑
tions can be assigned to the crystal phases of (101), (102), 
(110), (103), (201), and (202), respectively [39, 41, 49]. 
The XRD patterns of the other samples in the series, along 
with NiSe and CoSe, are shown in Fig. S4.  Ni0.5Co0.5Se and 
 Ni0.8Co0.2Se exhibit patterns similar to those of  Ni0.2Co0.8Se, 
and the patterns for NiSe and CoSe agree well with the pre‑
viously recorded feature [33, 34]. The peak of  Ni0.2Co0.8Se 
is slightly offset from that of the standard card. As the Co 
ratio increases, the XRD peak position moves toward a 
larger diffraction angle, indicating that Co atoms were suc‑
cessfully doped into the  Ni0.5Co0.5Se (same as the  NiCoSe2 
standard) lattice (Fig. S4). In contrast, the XRD peak of 
 Ni0.8Co0.2Se had a smaller diffraction angle than that of 
 Ni0.5Co0.5Se (Fig. S4). This strongly indicates the formation 
of  Ni0.2Co0.8Se ternary compounds rather than a mixture of 

two solid phases. Because  Ni0.2Co0.8Se,  Ni0.5Co0.5Se, and 
 Ni0.8Co0.2Se had the same hexagonal crystal structure and 
similar lattice parameters, the  Ni0.5Co0.5Se compound was 
intentionally prepared as a reference, and its diffraction pat‑
tern fully matched the standard card of JCPDS No. 70‑2851. 
The results indicate that the designed method for prepar‑
ing the compounds was rational and successful. Such subtle 
manipulation of the lattice through the optimization of the 
substrate elements has been previously reported [33, 43].

Subsequently, the chemical states of the composites 
were investigated via XPS, and the spectra are shown in 
Fig. 3b–d. In Fig. 3b, the two striking peaks with binding 
energies of 873.1 and 855.2 eV and the two satellite peaks 
can be assigned to the Ni 2p1/2 and Ni 2p3/2 electrons, respec‑
tively, strongly indicating that elemental Ni existed as Ni(II) 
[39]. In Fig. 3c, the Co 2p1/2 and Co 2p3/2 signals (797.4 and 
781.3 eV) and two satellite peaks are characteristics of Co(II) 
[39]. The high‑resolution Se 3d spectra can be deconvoluted 
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into two peaks at 55.6 and 54.8 eV, which correspond well to 
the Se 3d3/2 and Se 3d5/2 electrons, respectively. Interestingly, 
the peak at 59.3 eV indicates the formation of  SeOx, which 
was probably due to the surface oxidation of selenide [49].

The high‑resolution XPS spectra of the Ni 2p, Co 2p, 
and Se 3d electrons of  Ni0.5Co0.5Se,  Ni0.8Co0.2Se, NiSe, and 
CoSe are shown in Fig. S5. In the Ni 2p spectrum (S5c1) and 
the NiSe and Co 2p (S5d1) spectrum for CoSe, the binding 
energies correspond to the Ni(II) and Co(II) species. For 
 Ni0.5Co0.5Se, there are two distinctive peaks at 855.6 and 
873.4 eV in the Ni 2p spectrum (S5a1), and both binding 
energy values correspond to the chemical valences exhibited 
by the Ni element in  Ni0.2Co0.8Se, suggesting the presence 
of Ni(II). In the Co 2p spectrum (S5a2), the two sharp peaks 
(Co 2p3/2 and Co 2p1/2) at 781.2 and 797.9 eV are attributed 
to the Co(II) species. For  Ni0.8Co0.2Se, the core‑level Ni 2p 
spectrum (S5b1) exhibits two peaks at 855.4 and 873.3 eV, 
which are indexed to the Ni 2p3/2 and Ni 2p1/2 electrons, 
respectively, and there are two corresponding shakeup satel‑
lite peaks at 861.6 and 880.1 eV. The Co 2p spectrum (S5b2) 
exhibits a similar feature to the Co 2p spectrum for CoSe, 
implying that the Co exists as Co(II). Furthermore, the core‑
level Se 3d spectra (S5a3, b3, c2, and d2) of  Ni0.5Co0.5Se, 
 Ni0.8Co0.2Se, NiSe, and CoSe all exhibit two distinct charac‑
teristic peaks around 55.1 and 59.3 eV. The peak at 55.1 eV 
can be fitted into two sub‑peaks representing the Se 3d5/2 
and Se 3d3/2 electrons from the Se element. The other peak 
at 59.3 eV is probably due to the oxidation of surface Se and 
the formed Se–O bonds [49].

3.3  OER Performance

The electrochemical properties of the  NixCo1−xSe series 
toward the OER were examined, and the electrocatalytic 

performance is compiled in Table 1. Figure 4a shows the 
LSV curves of the  NixCo1−xSe series, NiSe, and CoSe 
tested in  N2‑saturated 1 M KOH. With the decrease in the 
Ni percentage in the total transition metal, the OER activity 
gradually intensified. The  Ni0.2Co0.8Se sample exhibited the 
best activity. NiSe had negligible OER activity, whereas the 
performance of CoSe was only slightly inferior to that of 
 Ni0.2Co0.8Se. For obtained current density of 10 mA cm−2, 
the required overpotential was 280, 360, 350, and 345 mV 
for  Ni0.2Co0.8Se,  Ni0.5Co0.5Se,  Ni0.8Co0.2Se, and CoSe, 
respectively.  Ni0.2Co0.8Se exhibited the best OER activity 
in the series, and its OER activity was markedly superior 
to that of the benchmark  IrO2 catalyst for the OER (Fig. 
S6, overpotential of 354 mV at 10 mA cm−2). The corre‑
sponding Tafel plots are presented in Fig. 4b, where the 
Tafel slope can be extrapolated and calculated. As expected, 
NiSe exhibited the largest slope of 225.6 mA cm−1, owing 
to the sluggish reaction kinetics. The Tafel slope was 86.8, 
98, 95.2, and 89.3 mV dec−1 for  Ni0.2Co0.8Se,  Ni0.5Co0.5Se, 
 Ni0.8Co0.2Se, and CoSe, respectively.  Ni0.2Co0.8Se had the 
lowest value in the series, which was lower than that of the 
benchmark  IrO2 catalyst (117.6 mV dec−1), indicating fast 
reaction kinetics. Electrochemical impedance spectros‑
copy (EIS) was then conducted, as shown in Fig. 4c. NiSe 
exhibited a near‑straight line in the wide potential widow, 
in good accordance with its weak OER activity. Among the 
 NixCo1−xSe compounds,  Ni0.2Co0.8Se exhibited the smallest 
semicircle, indicating that it had the lowest electron‑transfer 
resistance. Lastly, the long‑term stability of  Ni0.2Co0.8Se 
toward the OER was examined, as shown in Fig.  4d. 
According to the chronoamperometric i–t curve, 82.56% of 
the initial current was retained after continuous testing for 
10 h. Additionally, as shown in the inset of Fig. 4d, after 
1000 cycles of potential scans, an extremely low additional 

Table 1  OER and HER activity for the  NixCo1−xSe series, including the results of OER and HER tests in 1 M KOH, as well as the electrochem‑
ical properties

Sample OER (1 M KOH) HER (1 M KOH) CDL (mF) EASA  (cm2)
Overpotential
@ 10 mA cm−2 (mV)

Overpotential
@10 mA cm−2 (mV)

Ni0.2Co0.8Se 280 73 24.13 603.25
Ni0.5Co0.5Se 360 112 1.87 46.75
Ni0.8Co0.2Se 350 93 2.62 65.50
NiSe 390 150 0.52 13.00
CoSe 345 99 3.13 78.25
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overpotential of 24.4 mV was needed to obtain a current 
density of 10 mA cm−2.

3.4  HER Performance

Next, the  NixCo1−xSe samples were subjected to an HER 
test (Table 1). Figure 5a presents the LSV curves. To obtain 
a current density of 10 mA cm−2, the required overpo‑
tential was 73, 112, 93, 150, and 99 mV for  Ni0.2Co0.8Se, 
 Ni0.5Co0.5Se,  Ni0.8Co0.2Se, NiSe, and CoSe, respectively. 
NiSe exhibited the weakest catalytic activity, and the per‑
formance of CoSe was inferior to that of  Ni0.8Co0.2Se and 
 Ni0.2Co0.8Se, in contrast to the results of the OER test. The 
best HER performance was exhibited by the  Ni0.2Co0.8Se 
sample, whose activity was close to that of the benchmark 

Pt/C catalyst for the HER (Fig. S7, overpotential of 38.1 mV 
at 10 mA cm−2). The Tafel plots of the samples are presented 
in Fig. 5b, and the Tafel slopes were calculated. The Tafel 
slope was 54.8, 148.4, 86.8, 176.2, and 114.9 mV dec−1 for 
 Ni0.2Co0.8Se,  Ni0.5Co0.5Se,  Ni0.8Co0.2Se, NiSe, and CoSe, 
respectively. This trend matches the aforementioned overpo‑
tential values.  Ni0.2Co0.8Se exhibited the lowest Tafel slope 
value, indicating that it had the fastest reaction kinetics. Its 
Tafel slope is close to that of Pt/C (40.3 mV dec−1), sug‑
gesting that a Tafel–Volmer mechanism occurred and that 
the rate‑determining step in the HER was probably the elec‑
trochemical desorption of  H2 [50, 51]. Figure 5c shows the 
electrochemical impedance spectra of the samples. As antici‑
pated, NiSe exhibited the largest semicircle.  Ni0.2Co0.8Se 
exhibited the smallest semicircle, indicating that it had 
the lowest electron‑transfer resistance, which agrees well 
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Fig. 4  a IR‑corrected LSV curves of  Ni0.2Co0.8Se,  Ni0.5Co0.5Se,  Ni0.8Co0.2Se, NiSe, and CoSe in an  N2‑saturated 1 M KOH solution obtained 
at a scan rate of 10 mV s−1. b Tafel plots of the  Ni0.2Co0.8Se,  Ni0.5Co0.5Se,  Ni0.8Co0.2Se, NiSe, and CoSe catalysts for the OER in 1.0 M KOH. c 
EIS Nyquist plots, where Rs represents the electrolyte resistance, C represents the double‑layer capacitance, and Rct represents the charge‑trans‑
fer resistance. d Chronoamperometric response of  Ni0.2Co0.8Se nanocages. The inset shows the LSV curves of an  Ni0.2Co0.8Se electrode tested 
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with its high HER activity. Finally, the long‑term stability 
of the samples was tested via both i–t measurements and 
an ADT. As illustrated in Fig. 5d, after continuous testing 
for approximately 10 h, 90.33% of the initial current was 
retained in the chronoamperometric measurement. The inset 

shows that after 1000 cycles of potential scans, at the cur‑
rent density of 10 mA cm−2, the overpotential only shifted 
by 16.3 mV. Both tests indicate the robust stability of the 
 Ni0.2Co0.8Se sample in the long‑term operation for the HER. 
To determine the reason for the high activity of  NixCo1−xSe 
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toward the HER, the Gibbs free energy of H adsorption was 
calculated using the Norskov scheme (see details in Sup‑
plementary Material). First, the H adsorption free energy 
on the surface of pure NiSe(101) and CoSe(101) was cal‑
culated. Then, to elucidate the interplay between the Ni and 
Co dopants, models of the Ni‑doped CoSe bulk material 
and the Co‑doped NiSe bulk material with corresponding 
Co‑to‑Ni ratios were constructed, and all possible adsorp‑
tion sites on the (101) planes were examined. Figure 5e 
illustrates the HER principle for the theoretical calculations 
under alkaline conditions, accompanied by the active sites of 
 Ni0.2Co0.8Se. The active sites of the other samples are shown 
in Fig. S8. According to the reaction pathways, the enthalp‑
ies of the rate‑determining Volmer step on the  NixCo1−xSe 
(101) surfaces were determined. For hydrogen adsorption, 
as shown in Fig. 5f,  Ni0.2Co0.8Se exhibited the lowest Gibbs 
free energy among the samples. The simulation results are 
in good accordance with the experimental results, provid‑
ing theoretical evidence that  Ni0.2Co0.8Se has the best HER 
performance among the samples in the series.

3.5  EASA Analysis and ORR Performance

The OER and HER performance of the  Ni0.2Co0.8Se sam‑
ple is comparable, if not superior, to that of most recently 
reported transition metal selenide‑based materials, and the 
comparison results are presented in Table S1. For instance, 
in 1 M KOH for the OER, to obtain a current density of 
10 mA cm−2, the required overpotential of  Ni0.2Co0.8Se 
was 280 mV, which is lower than those for  CoSe2/Mn3O4 
(450 mV) [52],  NixSe (330 mV) [33],  Co0.85Se (320 mV) 
[34], and  NiSe2/Ti (295 mV) [53] and comparable to those 
for Co(S0.22Se0.78)2 (283 mV) [54],  Ni0.75Fe0.25Se2 (272 mV) 
[36], and NiSe/NF (270  mV) [55]. In the HER test, at 
10 mA cm−2, the overpotential was 73 mV for  Ni0.2Co0.8Se, 
which is significantly lower than those for  NixSe (233 mV) 
[33],  Co0.85Se (230 mV) [34], Co(S0.22Se0.78)2 (175 mV) 
[54], and NiSe/NF (96 mV) [55] and comparable to that for 
 NiSe2/Ti (70 mV) [53] under the same conditions. These 
comparison results indicate that  Ni0.2Co0.8Se is a superior 
multifunctional catalyst for the OER and HER.

To determine the reason for the difference in electrocata‑
lytic activity among the samples, EASA measurements were 
taken [43]. The EASA values were estimated according to 
the electrochemical double‑layer capacitance (CDL) of the 

catalyst, and the CDL was measured via cyclic voltammo‑
grams (Fig. S9) within a potential range where no apparent 
Faradaic process occurred. The detailed calculations are pre‑
sented in Supplementary Material, and the calculation results 
are presented in Table 1. The EASA values well explain 
the trend of the electrocatalytic performance, as they are in 
good accordance with the OER activity order of the series 
 (Ni0.2Co0.8Se > CoSe > Ni0.8Co0.2Se > Ni0.5Co0.5Se > NiSe). 
The EASA of  Ni0.2Co0.8Se was the largest among the sam‑
ples and was approximately 10 times larger than those of 
 Ni0.8Co0.2Se and  Ni0.5Co0.5Se.

In addition, the ORR performance of the  NixCo1−xSe 
series was evaluated in an alkaline solution. Figure S10 
shows the LSV polarization curves obtained with a rota‑
tion rate of 1600 rpm in 0.1 M KOH. The ORR activity 
matched the trend of the EASA values. As expected, the 
 Ni0.2Co0.8Se sample had the best activity in the series. Its 
onset potential was 0.87 V, and its diffusion‑limiting current 
density was 4.45 mA cm−2. Although its half‑wave poten‑
tial (0.769 V) was inferior to that of the commercial Pt/C 
(0.86 V), its limiting current density was higher than that 
of Pt/C (4.32 mA cm−2). A large anode peak appeared at 
approximately 1.0 V, which was mainly due to the oxidation 
of the metal ions. A corresponding reduction peak appeared 
at approximately 0.7 V, which is ascribed to the reduction of 
 Ni3+  (Co3+) to  Ni2+  (Co2+) [56]. Additionally, there was a 
broad peak caused by the oxidation or reduction of surface 
Se, which was observed in previous studies [57, 58].

3.6  ZAB Performance

Inspired by the excellent performance of  Ni0.2Co0.8Se toward 
the OER and HER, we investigated its practical applicabil‑
ity by employing it as a multifunctional electrocatalyst for a 
ZAB and for overall water splitting. First, a proof‑of‑concept 
liquid ZAB was assembled (Fig. S11), which comprised 
 Ni0.2Co0.8Se as the air–cathode, a Zn plate as the anode, 
and 0.2 M ZnAc + 6 M KOH as the electrolyte [51, 59]. 
The reactions between the anode and the cathode during 
the charging and discharging of the ZAB are expressed as 
Eqs. 8–12 [60].

(8)Anode ∶ Zn + 4OH−
→ Zn(OH)2−

4
+ 2e−

(9)Zn(OH)2−
4

→ ZnO + H2O + 2OH−

(10)Cathode ∶ O2 + 4e− + 2H2O → 4OH−
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The ZAB based on the  Ni0.2Co0.8Se air–cathode exhibited 
a stable open‑circuit voltage of 1.44 V, which is close to that 
of the Pt/C + RuO2 electrode (1.46 V) (Fig. S12), indicating 
that its performance is at least comparable to that of the 
conventional precious metal‑based Pt/C + RuO2 catalyst. The 
 Ni0.2Co0.8Se exhibited the highest open‑circuit potential in 
the series (Fig. S12). The undulating charge–discharge volt‑
ages of  Ni0.2Co0.8Se and Pt/C + RuO2 are shown in Fig. 6a. 
With continuous testing for over 50 h, the voltage gap of 
 Ni0.2Co0.8Se remained at approximately 0.873 V, which is 
comparable to that of the Pt/C + RuO2 catalyst (0.845 V). 
For  Ni0.2Co0.8Se, the initial round‑trip efficiency at 5 h 
was 61.04%, and after 50 h of constant current charge–dis‑
charge cycles, the round‑trip efficiency was 60.86% with no 
attenuation of the performance, which is superior to that of 
Pt/C + RuO2 (58.91%) at 50 h. Furthermore, as indicated by 
the galvanostatic charge–discharge curves of the  NixCo1−xSe 
samples (Fig. S13a), only  Ni0.2Co0.8Se maintained a high 
stability and minimal voltage gap after 50 h of continuous 
operation. Thus,  Ni0.2Co0.8Se has excellent charge–discharge 
performance and stability. Figure 6b shows the charge–dis‑
charge polarization curves of rechargeable ZABs using 
 Ni0.2Co0.8Se and Pt/C + RuO2.  Ni0.2Co0.8Se (0.9436  V) 
exhibited a smaller voltage gap than Pt/C + RuO2 (0.9638 V) 
at the current density of 50 mA cm−2, indicating that it had 
a higher charge–discharge capacity. The charge–discharge 
polarization curves (Fig. S13b) of  Ni0.5Co0.5Se,  Ni0.8Co0.2Se, 
NiSe, and CoSe show that the voltage gaps were 1.160, 
1.186, 1.347, and 1.157  V, respectively, at the current 
density of 50 mA cm−2.  Ni0.2Co0.8Se exhibited the small‑
est voltage gap, indicating its excellent charge–discharge 
performance. Moreover, the discharge and corresponding 
power density curves are presented in Fig. 6c.  Ni0.2Co0.8Se 
had a high power density of 223.5 mW  cm−2, which is 
higher than that of the Pt/C + RuO2 catalyst (210.4 mW 
 cm−2), indicating its superiority for practical ZAB applica‑
tions. Figure S13c shows that the maximum power density 
of  Ni0.5Co0.5Se,  Ni0.8Co0.2Se, NiSe, and CoSe was 153.8, 
160.3, 134.4, and 181.3 mW cm−2, respectively. All of these 
values are lower than that of  Ni0.2Co0.8Se. Thus,  Ni0.2Co0.8Se 
had the highest discharge power density in the  NixCo1−xSe 
series. Figure S13d depicts the typical galvanostatic dis‑
charge profile at the current density of 10 mA cm−2 with 

(11)Overall reaction ∶ 2Zn + O2 → 2ZnO

(12)Parasitic reaction ∶ Zn + 2H2O → Zn(OH)2 + H2

 NixCo1−xSe as the air–cathode. The specific capacity nor‑
malized to the weight of the consumed Zn plate was 698.6, 
685.9, 664.8, 553.1, and 620.5 mAh g−1 for  Ni0.2Co0.8Se, 
 Ni0.5Co0.5Se,  Ni0.8Co0.2Se, NiSe, and CoSe, respectively. 
 Ni0.2Co0.8Se exhibited the best performance. Given the 
excellent performance of  Ni0.2Co0.8Se in the primary liquid 
ZAB, a portable, simple, and industrialized all‑solid‑state 
ZAB was fabricated, and the performance of  Ni0.2Co0.8Se 
in this device was examined. Figure 6d shows a schematic 
of the all‑solid‑state ZAB, and the fabrication steps are pre‑
sented in Fig. S14. Figure 6e shows that the all‑solid‑state 
ZAB had a significant cycle life with an initial voltage gap 
of 0.71 V. After 240 cycles, the round‑trip efficiency was 
attenuated from 61.96 to 55.26%. The efficiency decay of 
only 6.7% confirms the excellent stability of the all‑solid‑
state ZAB using  Ni0.2Co0.8Se. Owing to the high contact 
resistance of the battery components and the poor conduc‑
tivity of the sand‑absorbing alkaline PVA electrolyte, the 
all‑solid‑state ZAB was slightly less efficient than the liq‑
uid ZAB [61]. The charging and discharging polarization 
curves of the all‑solid‑state ZAB are presented in Fig. 6f. 
At the current density of 20 mA cm−2, the voltage gap was 
0.87 V, indicating outstanding charging and discharging 
performance. Figure 6g shows the polarization curves. The 
power density of the  Ni0.2Co0.8Se‑modified all‑solid‑state 
ZAB was calculated as 41.03 mW cm−2. This battery also 
exhibited an impressive open‑circuit potential of 1.428 V 
(Fig. 6h). Finally, we connected three all‑solid‑state ZABs in 
series with an open‑circuit voltage of approximately 4.36 V 
(Fig. S15) and thus powered a board that illuminated light‑
emitting diodes (LEDs) with “SCUT” symbols (Fig. 6i).

The performance of  Ni0.2Co0.8Se in both the liquid ZAB 
and the all‑solid‑state ZAB was superior to that of the 
recently reported Co‑based nanostructures. The compari‑
son results are presented in Table S2. In the liquid ZAB test 
under the same conditions, the open‑circuit potential for 
 Ni0.2Co0.8Se was higher than those for Co‑NDC [62] and 
NGM‑Co [63], and the power density was higher than those 
for  CoN4/NG [64], NGM‑Co [63], and Co‑NDC [62]. In 
the all‑solid‑state ZAB test, the open‑circuit potential for 
 Ni0.2Co0.8Se was higher than those for NC‑Co/CoNx [65], 
Co‑NDC [62], and  Co3O4/N‑rGO [29]; the round‑trip effi‑
ciency was higher than that for  CoN4/NG [64]; and the 
power density was higher than those for  CoN4/NG [64], 
NGM‑Co [63], and  Co3O4/N‑rGO [29]. The outstanding per‑
formance of  Ni0.2Co0.8Se in the ZAB test is largely attributed 
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to its excellent electrocatalytic performance, as discussed 
previously.

3.7  Overall Water‑Splitting Test

Next,  Ni0.2Co0.8Se was employed for overall water splitting 
in an alkalic solution, in comparison with the Pt/C + RuO2 
catalyst [51, 66, 67].  Ni0.2Co0.8Se was used as the catalyst in 
both the cathode and the anode. In a control experiment, Pt/C 
was used as the cathode catalyst, and  RuO2 was employed 
as the anode catalyst. Figure 7a presents the water‑splitting 

polarization curves of  Ni0.2Co0.8Se and Pt/C + RuO2 in 
a 1 M KOH solution. For obtaining a current density of 
10 mA cm−2, the required cell voltage was 1.592 V for 
 Ni0.2Co0.8Se, which is significantly lower than that for the 
Pt/C + RuO2 catalyst (1.628 V). Thus,  Ni0.2Co0.8Se had a 
better water‑splitting capability than the combined precious 
metal‑based standard catalyst in the alkaline solution. The 
long‑term durability of the  Ni0.2Co0.8Se sample was evalu‑
ated via chronoamperometric measurement for 50,000 s. As 
shown in Fig. 7b, after constant water‑splitting operation for 
approximately 13 h,  Ni0.2Co0.8Se retained 78.5% of its initial 
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current. The inset shows that  H2 and  O2 bubbles were visible 
at the cathode and anode, respectively. These findings con‑
firm that  Ni0.2Co0.8Se is a promising high‑efficiency, cost‑
effective electrocatalyst for overall water‑splitting devices 
in alkaline solutions.

4  Conclusions

We demonstrated the facile fabrication of a series of 
 NixCo1−xSe samples with well‑defined cages and inves‑
tigated their catalytic performance for OER, HER, and 
ORR electrocatalysis. Among the  NixCo1−xSe compounds, 
 Ni0.2Co0.8Se exhibited the best performance, as indicated 
by the lowest overpotential of 280 and 73 mV to obtain 
a current density of 10 mA cm−2 for the OER and HER, 
respectively. Moreover,  Ni0.2Co0.8Se was engineered as an 
air–cathode of both a rechargeable ZAB and an all‑solid‑
state ZAB and employed as a catalyst for overall water 
splitting. It endowed both ZAB devices with outstanding 
performance, including a long cycling lifetime, high round‑
trip efficiency, and high power density, and achieved total 
water splitting with excellent efficiency at a low cell voltage. 
The study paves a pathway for preparing transition metal 
selenides with a well‑defined morphology and optimized 
stoichiometric ratio as promising catalysts for renewable 
energy technologies, such as rechargeable and all‑solid‑state 
metal–air batteries and water‑splitting devices.
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