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HIGHLIGHTS

• A comprehensive review focused on the recent advancement of the advanced and artificial intelligence (AI) chip is presented.

• The design tactics for the enhanced and AI chips can be conducted from a diversity of aspects, with materials, circuit, architecture, 
and packaging technique taken into considerations, for the pursuit of multimodal data processing abilities, robust reconfigurability, 
high energy efficiency, and enhanced computing power.

• A broad outlook on the future considerations of the advanced chip is put forward.

ABSTRACT Recent years have witnessed transformative changes brought 
about by artificial intelligence (AI) techniques with billions of parameters for 
the realization of high accuracy, proposing high demand for the advanced and 
AI chip to solve these AI tasks efficiently and powerfully. Rapid progress has 
been made in the field of advanced chips recently, such as the development of 
photonic computing, the advancement of the quantum processors, the boost 
of the biomimetic chips, and so on. Designs tactics of the advanced chips can 
be conducted with elaborated consideration of materials, algorithms, models, 
architectures, and so on. Though a few reviews present the development of the 
chips from their unique aspects, reviews in the view of the latest design for 
advanced and AI chips are few. Here, the newest development is systematically 
reviewed in the field of advanced chips. First, background and mechanisms are 
summarized, and subsequently most important considerations for co-design of 
the software and hardware are illustrated. Next, strategies are summed up to obtain advanced and AI chips with high excellent performance 
by taking the important information processing steps into consideration, after which the design thought for the advanced chips in the future 
is proposed. Finally, some perspectives are put forward.
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1 Introduction

The past decade has witnessed the rapid progress of artifi-
cial intelligence (AI) techniques, which has revolutionized a 
wide range of fields, including the way to interpret informa-
tion, the approach to discovery new materials, the method 
for creative work, and so on [1–9]. Particularly, great pro-
gress has been made in the functional materials and novel 
devices [10–12], which calls for AI to further promote these 
fields. Models of AI contain billions of parameters for the 
realization of high accuracy, which proposes high demand 
for the energy efficiency of processors. For instance, the 
deep neural network (DNN) model which contains many 
parameters can greatly promote the development of the 
recognition of images [13], the classification of videos, the 
transcription of speech [14, 15], and so on. To be specific, 
it has been verified that transformer and recurrent neural 
network transducer (RNNT) models with up to one billion 
parameters have shown a remarkable decrease in word error 
rate (WER) for the automated transcription of spoken Eng-
lish-language sentences. In addition to transcription, deep 
learning (DL) has also enhanced the performance of com-
puter vision remarkably, which has been widely applied in 
the fields of autonomous driving [16], intelligent robotics 
[17], smart wearable devices [18, 19], and so on. Accord-
ingly, new challenges have been put forward for the chips to 
handle these AI tasks. The advanced chips, which are fea-
tured with improved computing efficiency, reduced energy 
consumption, enhanced reliability, and excellent flexible 
expansion to be qualified for dealing with massive data, 
parallel tasks, and high concurrent requests proposed by the 
AI tasks, have drawn great attention, and significant progress 
of the advanced chips has been made by means of not only 
making improvements on the current silicon materials and 
silicon technologies, but also developing novel materials 
and modes [20]. For instance, data center chips, which are 
specifically designed for data centers, are featured with high 
performance and energy efficiency, and therefore, they are 
applied for cloud computing, AI training and inference, and 
big data analysis. Edge computing chips, which mainly pay 
attention to low latency, low power consumption, and min-
iaturization, have their advantages for the tasks required for 
real-time processing and environmental adaptability. Design 
thought for advanced chips referred to the process of trans-
forming circuit structures and functions into physical layouts 

for the application of high-performance computing, covers 
wide aspects, which include but not limited to materials 
selection, device and circuit design, architecture optimiza-
tion, and packaging technique development, and therefore, 
it is of importance for the rapid progress made in this field.

Many endeavors have been made to meet the challenges 
proposed by the AI tasks, with a lot of achievements and 
techniques emerging as the most promising approaches to 
address these issues [21–26]. For example, photonic com-
puting makes it possible to process data faster and more 
energy efficiently [27]. At the meantime, the utilization of AI 
for optics can also improve the design and control of these 
optical systems [28–33]. Both the model training and infer-
ential capability have been taken into considerations with the 
large-scale photonic chiplet and fully forward mode training 
being put forward. Computing-in-memory (CIM) which is 
inspired by the way in which human brain is used to process 
information has been put forward to resolve the von Neu-
mann bottleneck [34]. Not only various synaptic arrays, but 
also efficient neuronal devices are developed. The advanced 
cognitive capabilities owned by the human brain have fueled 
a significant amount of AI research, which promote the 
development of sophisticated brain-inspired algorithms, as 
well as neuromorphic hardware with the pursuit to simu-
late various aspects of neural processing. Efforts have been 
made to develop efficient neuronal electronics. For instance, 
a novel dendrite function-like neuron has been developed 
[34]. Biocomputing, which is widely an interdisciplinary 
field combining biology and computer technology and uses 
other units instead of electrons or photons for information 
processing, has also emerged to address the existing issues. 
In addition to novel materials and new modes, improvements 
have also been made in areas of the conventional silicon-
based chips, and more advanced preparation and packaging 
technology are proposed to deal with the increasing system 
complexity.

Significant progress has been made in both the hard-
ware and the software of the advanced chips recently, 
which favors the fabrication of the chips. It is proposed 
that the fabrication of the chip bears some analogy to the 
construction of buildings. The fabricated chips can then 
be applied to handle various information to realize com-
plexed and AI tasks, including computer vision, speech 
recognition and transcription, parallel imaging and all-
optical classification, patients’ gaits classification, and 
other various fields, with Internet of Things (IoT), smart 
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travel, smart robot, and smart home included (Fig. 1). An 
analog-AI chip with 35 million phase-change memory 
(PCM) devices has been developed [1]. A systemic energy 
efficiency of 74.8 peta-operations per second per watt 
is managed to be achieved by a type of all-analog pho-
toelectronic chip [27]. Further to the inference chip, a 
fully forward mode (FFM) learning has been proposed for 
the training of optical neural networks, which is able to 
accomplish the compute-intensive training process on the 
physical system [35]. The fully hardware implementation 
of CIM has been experimentally realized by integrating 
neuron devices with a low accuracy loss [34]. Neuromor-
phic hardware equipped with associative learning abili-
ties has been fabricated [36]. The low processor resting 
power of 0.42 mW has been achieved by a neuromorphic 
system on chip with the features of no-input calling for no 
energy, while a real-time power of as low as 0.70 mW can 
be realized for this system by the co-design of algorithm, 
software, and hardware [37]. The large-scale photonic 
chiplets, Taichi, which has millions-of-neurons capability 
with 160-tera-operations per second per watt (TOPS/W) 
energy efficiency, have been put forward. It has been veri-
fied that the high-fidelity AI-generated content can be 
realized by the photonic chiplet with up to two orders of 
magnitude of improvement in efficiency [38]. Publication 
number and the citation frequency of the papers concern-
ing about the AI chip are counted from web of science. 

The data are collected with “AI chip” or “advanced chip” 
as topic words and are also filtered according to the actual 
relevance of the topic. As a result, an increasing number 
of original works have been published with high impact 
and sharply increasing citation frequency, which is dem-
onstrated in Fig. 2. These results show that the research 
focused on the advanced chips has drawn great attention. 
The design strategies have been launched from various 
aspects, including materials, devices, circuits, archi-
tecture, and packaging techniques with the pursuit for 
multimodal data processing, reconfigurability, enhanced 
computing power, and high energy efficiency (Fig. 3). 
For instance, for multimodal data processing, which is 
required to handle different types of data, like images, 
sounds, and texts, proper packaging technology can facil-
itate the integration of different processing units more 
closely to enhance the processing speed, while reducing 
latency. Besides, the reconfigurable architecture which 
makes it possible for the hardware structure to be recon-
figured according to different tasks also makes contribu-
tion to the multimodal data processing with the adjust-
ment to different algorithm. However, reviews from the 
view of recent design tactics for AI chips are few. Herein, 
this review focused on the advanced design of the high-
performance chips by means of not only making improve-
ments on the current silicon materials and silicon tech-
nologies, but also developing novel materials and modes, 
like photonic computing, and the quantum processors, 

Fig. 1  Overview of the advanced and AI chip. The design for the 
software and hardware favors the fabrication of the chips, which bears 
some analogy to the construction of buildings. The fabricated chips 
can then be applied to handle various information to realize com-
plexed and AI tasks

Fig. 2  Publication and the citation frequency of the papers concern-
ing about the AI chip. The data are collected from web of science 
with “AI chip” or “advanced chip” as topic words, and are also fil-
tered according to the actual relevance of the topic
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among which many can meet the challenges proposed by 
the rapidly developing AI technology.

In this review, the basic background of AI chips was 
introduced first, as well as their working mechanisms, 
after which the design ideas in regard to software and 
hardware from the aspects of both the technique devel-
opment for the conventional silicon-based chips, and 
the adoption of novel modes that extend the informa-
tion processing from electrons, to photons, quantum, 
and biological elements, were demonstrated. Key factors 
which should be under consideration when designing the 
advanced chips were discussed from the view of the infor-
mation processing procedures. Last but not least, we put 
forward some ideas with respect to the outlook of the 
advanced chips.

2  Mechanisms

The chips are applied to deal with various information and 
data. For instance, data can be collected from multimodal 
sensors. As for a typical task, the information is first cap-
tured by the sensors and is then digitized by a large num-
ber of analog-to-digital converters (ADCs) [27] (Fig. 4a). 
Data are then processed and transmitted (Fig. 4b, c). The 
neural network (NN) on a digital processing unit can then 
be made use of to process the information for recognition, 
classification, and other purposes. Edge computing can 
implement data processing at the sensors. In particularly, 
as to a sensing-computing system on chip (SoC), the sen-
sors can be integrated onto the chips to provide the infor-
mation to be processed. For example, by leveraging the 
DVS as the eye of the chip, an asynchronous chip can be 
designed [44–46]. As the brightness of the scene changes, 
the DVS is managed to generate a stream of events asyn-
chronously and sparsely, which can then be processed 
by the operation of the processor in the chip. However, 
it is proposed that not all sensors are solid state due to 
the diverse types of sensors, and therefore some are not 
suitable for integrated computing units. In addition to the 
sensing-computing system, there is also a high demand for 
large language model (LLM) acceleration, and therefore, 
how to provide strong computing power support should be 
taken into considerations.

The neuromorphic hardware learning from the informa-
tion processing of human brain is a promising candidate 
for next-generation computer architectures because of its 
massive parallelism, robust fault tolerance, and high effi-
ciency, which is different to the conventional architecture. 
The exploiting of the neuromorphic computing systems 
makes it possible to implement the parallel processing, 
which enables the execution of separate complex tasks by 
making use of several processors simultaneously, lead-
ing to the enhanced processing efficiency [39, 47–50]. 
Moreover, it is also expected for the neuromorphic sys-
tems to accomplish the processing of integrated signals 
from various inputs. The development of materials has 
promoted the realization of these functions greatly. The 
electrochemical artificial synapses can facilitate the simul-
taneous processing of multi-input signals via a unit device. 
The working mechanisms of the electrochemical artificial 
synapses composed of the electrolyte-based dielectric and 

Fig. 3  Design strategies about the advanced chips. Design strategies 
carried for a material/device, reproduced with permission from Ref. 
[36] Copyright 2024, Springer, b circuit, reproduced with permission 
from Ref [39]. Copyright 2024, Wiley–VCH GmbH, c architecture, 
reproduced with permission from Ref. [27] Copyright 2023, Nature, 
and d packaging technique, reproduced with permission from Ref. 
[40] Copyright 2024, Nature. The design objective of realizing e mul-
timodal data processing, reproduced with permission from Ref [41]. 
Copyright 2024, Nature, f reconfigurability, reproduced with per-
mission from Ref [42]. Copyright 2023, Wiley–VCH GmbH, g high 
energy efficiency, reproduced with permission from Ref. [1] Copy-
right 2023, Nature, and h enhanced computing power, reproduced 
with permission from Ref. [43] Copyright 2024, Nature
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ion-permeable semiconducting layer origin from the resist-
ance tuning of the channel with penetrated ions and the 
retentive relaxation property.

Information is expected to be processed by the chips as 
the way of human brain, including learning, reasoning, and 
memorizing [39]. It turns out that human brain is managed 
to run even more complex neural networks with a total 
energy need of only 20 W [51, 52]. A variety of behav-
iors in the biological synapses, which are responsible for 
the information transmission between biological neurons, 
are simulated by the artificial neuromorphic electronics to 
handle the information collected by the sensors. Inspira-
tions are also expected to be obtained from some high-level 
brain dynamic mechanisms in regard to the design of neu-
romorphic chips [53]. For the human brain, an important 
feature is to allocate its resources dynamically according 
to the required demand. To be specific, the salient stimuli 

can receive greater attention, which can be manifested by 
the heightened spiking activity in brain regions or the cor-
responding neurons associated with the stimulus. This 
high-level dynamic computing nature of the human brain is 
expected to be learned by the neuromorphic chips which are 
featured with minimal energy consumption for no input and 
significant variations for input changes. From the perspective 
of functional materials, some potential candidates, like two-
terminal memristors which are featured with their compact 
synapse-like structures, have been extensively explored to 
equip the electronics with high complexity and improved 
completeness like the biological neurons for information 
transmission and processing [54, 55].

High capacity and high-throughput computing architec-
tures are then required to handle the complex multimodality 
information collected from the environment [56] (Fig. 4d), 
and finally, the chips can be applied to implement various 

Fig. 4  Schematic illustration for the working mechanism of the advanced chips. Schematic illustration for the stage of a sensing, reproduced 
with permission from Ref [41]. Copyright 2024, Nature, b memorizing, reproduced with permission from Ref. [36] Copyright 2024, Springer, c 
transmitting, reproduced with permission from Ref. [59] Copyright 2022, Nature, d computing, reproduced with permission from Ref. [27] Cop-
yright 2023, Nature, and e task implement, reproduced with permission from Ref [39]. Copyright 2024, Wiley–VCH GmbH. Schematic illustra-
tion for the method to improve the performance of chips by f borrowing high-level brain dynamic mechanisms, reproduced with permission from 
Ref. [37] Copyright 2024, Nature, g adopting bionic Design method, reproduced with permission from Ref. [36] Copyright 2024, Springer, and 
h applying novel modes, reproduced with permission from Ref. [43] Copyright 2024, Nature
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tasks (Fig. 4e). Great endeavors have been made to enhance 
these processes to improve the overall performance of the 
whole systems by a series of attempts, including borrowing 
high-level brain dynamic mechanisms (Fig. 4f), adopting 
bionic design approach (Fig. 4g), applying novel modes 
(Fig. 4h), and so on. Photonic processors are proposed to 
be a key to the hardware-based AI accelerators [23, 57, 58]. 
For the realization of in-memory photonic convolutional 
processing free of data movement between the memory and 
photonic processors, photonic tensor core incorporating 
phase-change-material photonic memories has been made 
use of. Generally, the data carried by each input coherent 
light at different wavelengths are weighted by the phase-
change-material photonic memories. As a result, vari-
ous tasks can be accomplished by the chips, ranging from 
computer vision, speech recognition, to gaits classification, 
which makes them to be qualified for a diversity of fields, 
including  IoTs, smart homes, intelligent robotics, and so on.

3  Co‑design of the Software and Hardware

AI relies on hardware and software to simulate human intel-
ligence, and it is critical to carry out the co-design of both 
the software and the hardware for the advanced and AI chips. 
Specifically, software programming is of importance for the 
construction and training of  NN, while hardware is crucial 
to process and handle the data for AI operation [60–62]. 
For example, although a highly programmable accelerator 
architecture for analog-AI has been proposed, it has yet to 
be demonstrated in hardware for the reason that the simu-
lation study contains several design assumptions, among 
which one is the application of a dense and efficient circuit-
switched 2D mesh for the exchange of massively parallel 
vectors of neuron-activation data over short distances, and 
another is the successful realization of DNN models which 
are large enough to be relevant for the commercial applica-
tions while maintaining high accuracy [1]. As a result, these 
issues should be solved for the design and fabrication of the 
analog-AI chips. Another case in point is that efforts have 
been made to design the CIM-based hardware systems in 
accordance with the requirements of the AI algorithm to 
successfully implement the extensive tasks of AI, promoting 
the commercial production of the CIM-based chips [34]. In 
this case, elaborate designs are essential in terms of both 
the optimized algorithms and innovative hardware for the 

neuromorphic computing systems. Besides, an algorithm-
software-hardware co-design has also been put forward to 
realize the spike-based dynamic computing in the neuro-
morphic chip, with the hardware featured with no running 
energy for no-input, and the complete software toolchain 
for the efficient deployment of algorithms in a variety of 
dynamic vision applications [37].

3.1  Software

3.1.1  Some General Principles for Software Design

AI algorithms have been evolved rapidly. The intricate cog-
nitive capabilities achieved by the human brain have sparked 
extensive research in AI with the promotion of sophisticated 
brain-inspired algorithms. It is worthwhile mentioning that 
the device-algorithm co-optimizations need to be carried 
out for the real-world application. Particularly, the software 
toolchain with data management, model simulation, and 
host management included is beneficial to deploy the algo-
rithms and models efficiently for various applications [37]. 
Moreover, when developing different chips, the challenges 
and solutions at the software level are various, and design 
of the software is of important for all of these techniques, 
which lies in the aspects of model, algorithm adaptation, 
and toolchain. For instance, as to memristor, the integrated 
memory and computing architecture is required, while opti-
cal path programming is essential for photonic computing.

3.1.2  To Collaborate with the Hardware

The design of the software plays a crucial role in achiev-
ing various advantages of the advanced chips by working 
together with the hardware [37]. For instance, endeavors 
were made to combine the high-level dynamic computing 
nature of the brain with machine intelligence to equip the 
neuromorphic computing with energy advantages. The hard-
ware was developed to meet the demand from dynamic com-
puting, which indicated that no-input consumed no energy. 
Meanwhile, the design for an attention-based framework was 
also carried out to meet the challenge of dynamic comput-
ing which was featured with the fact that varied inputs con-
sumed the energy with large variance. To accomplish this 
goal, inspirations for designing the dynamic spiking neural 
networks (SNNs) were gained from the understandings of 
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visual attention in neuroscience. To be specific, since atten-
tion is a limited resource, the brain only processes a part of 
sensory input selectively. The neural related to attention can 
be divided into four structural levels, including circuit level, 
area level, neuron level, and synaptic level, and a general 
classification of attention neural circuits is the top-down 
versus bottom-up dichotomy (Fig. 5a). Top-down allocates 
the attention to internal behavioral goals of the brain, which 
can be presented through the priority map, while bottom-
up deploys attention corresponding to the physical salience 
of a stimulus. As for the design of the framework for neu-
romorphic computing, a typical spiking neuron model and 

attention-based dynamic SNNs were illustrated as Fig. 5b, c. 
It was worthwhile mentioning that the dynamic framework 
acted as plug-and-play attention modules with the membrane 
potential optimized in a data-dependent manner, and com-
binable strategies of refinement and masking were provided 
by this dynamic framework. It was verified that a real-time 
power as low as 0.70 mW was successfully achieved by this 
neuromorphic system.

Fig. 5  Schematic of how software designs facilitate the development of advanced chips. a Schematic diagram for the attention-based dynamic 
response in neuroscience. Illustration for b a typical spiking neuron model and c attention-based dynamic SNNs. a–c Reproduced with permis-
sion from Ref. [37] Copyright 2024, Nature. d Schematic diagram of the optical neural network model for multimodal classification. e Sche-
matic diagram of the drop-out algorithm. d–e Reproduced with permission from Ref [41]. Copyright 2024, Nature



 Nano-Micro Lett.           (2026) 18:13    13  Page 8 of 31

https://doi.org/10.1007/s40820-025-01850-w© The authors

3.1.3  To Conduct the Design of Algorithm

Some challenges brought by the explosive growth of the AI 
can be met by the design of algorithm, like the issue that mul-
tiple types of data are needed to be handled along with the 
boost development of the artificial intelligence generated con-
tent (AIGC) [63–66]. For example, it was pointed out that the 
majority of photonic neuromorphic processors for DL were 
able to handle only a single data modality for the reason that 
abundant parameters for training in optical domain were lack. 
To address this issue, a trainable diffractive optical neural net-
work (TDONN) chip weas developed. In particular, the optical 
neural network model designed for the multimodal classifica-
tion tasks was formed by three parts with an input layer, five 
hidden layers, and an output layer included (Fig. 5d). After 
the procedures of feature extraction and feature fusion, a fea-
ture vector was got from the datasets of different modalities, 
which was then applied as the input of the NN with the size 
of the feature vector matching the number of neurons. Each 
of the vector element was encoded into the optical signal by 
intensity modulation. In the hidden layers, the neurons were 
arranged in accordance with a multi-layer layout. The con-
nection weights between each neuron were adjusted during 
training, and therefore trainable neurons were deemed as a 
critical prerequisite for reconfigurable TDONN, since the 
strong reconfigurability was essential for the multimodal DL. 
It took two steps for training of the TDONN chip, with the 
first one to extract the features and the second step to train 
the tunable diffractive units to accomplish the target tasks. It 
was worthwhile mentioning that customized gradient descent 
algorithm and drop-out mechanism of optical neurons were 
designed for the realization of the function. Firstly, an iteration 
threshold Titer was set for each neuron in the hidden layer of 
TDONN. During the iteration process, for the condition where 
the neuron could not increase CF after T adjustments, the neu-
ron was set to be inactivated, and in the following iterations, 
this inactivated neuron would not be adjusted. As the training 
progresses, the number of deactivated neurons increased, and 
only the activated neurons needed to be tuned, leading to the 
reduce of the workload (Fig. 5e).

3.2  Hardware

3.2.1  Some General Principles for Hardware Design

Hardware design is imperative for promoting the develop-
ment of different types of chips, the reason that it can solve 
the problems of different chips, making full use of these 
chips in various fields. To be specific, memristor, which 
can simulate the plasticity of biological synapses, plays 
a critical role in the brain-inspired computing. Photonic 
computing is featured with ultra high-speed, while it is 
also encountered with the problem of poor compatibility 
with silicon-based electronic chip. The computing power 
of quantum computing to deal with specific problems far 
exceeds that of classical computers, but the extremely low-
temperature requirement is usually a challenge. Neuro-
morphic computing is managed to mimic the structure of 
human brain, and it can realize event-driven computing by 
means of asynchronous SNN, which is qualified for real-
time perception and IoT. Accordingly, new circuit layout 
or material structure design is carried out to meet these 
challenges.

3.2.2  To Develop the Materials

The development of materials is served as one of the 
most important supports for the thriving chip industry. 
For instance, CIM-based hardware systems are designed 
according to the requirements from AI algorithm to accel-
erate the extensive computations by means of eliminat-
ing frequent data transfers between memory and process-
ing units [67–69]. Accordingly, many endeavors have 
been made on the development of non-volatile memories 
(eNVMs) for the purpose of storing the weights in neural 
networks, with the PCM, RRAM, ferroelectric field effect 
transistor (FeFET), and other eNVMs included. Besides, 
more advanced functions are expected to be realized with 
high-efficiency algorithm while maintaining low hard-
ware costs and high flexibility for the accomplishment of 
different application scenarios. As for the design of the 
hardware, a series of factors, like the stability, uniformity, 
and feasibility for large-scale realization, should be taken 
into consideration. Accordingly, efforts have been made 
not only by adopting novel modes, like the neuromorphic 
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computing, photonic computing, and quantum computing, 
but also by improving the existing silicon chips, like the 
development of the package technique.

3.2.3  To Exploit New Mode: Neuromorphic Computing

Much efforts have been made on mapping the biological 
behavior in the nervous system to the electrical behavior in 
various devices, and many techniques have been emerged 
as the most promising approaches to meet the challenges 
brought by the AI tasks. It turns out that excessive energy 
consumption occurs with a significant amount of data mov-
ing between memory and processor, which is known as 
the von Neumann bottleneck [1]. CIM is proposed to be 
a promising approach to meet the challenge of increasing 
computational tasks brought about by the rapidly booming 
AI [34]. For the DNN models containing many large fully 
connected (FC) layers for the natural language processing 
(NLP), enormous movements of data are required in con-
ventional digital implementation, while amortization over 
the subsequent computing is lacking. Analog-AI hardware 
is managed to meet this challenge by means of leveraging 
arrays of non-volatile memory (NVM) to perform the  mul-
tiply–accumulate (MAC) operations, so that these work-
loads can be dominated directly in the memory [70–73]. 
When neuron-excitation data are moved to the location of 
the weight data, where the computation is executed, both 
the time and the energy are promising to be reduced. When 
taking the finite endurance and the power-hungry program-
ming of NVM devices into consideration, it is inevitable that 
such analog-AI systems should be fully weight stationary. A 
highly heterogeneous and programmable accelerator archi-
tecture for analog-AI has been developed with the energy 
efficiencies 40–140 times higher than those of cutting-edge 
graphics processing units, but it has yet to be demonstrated 
in hardware due to the fact that several design assumptions 
are included [74].

Although the rapid progress has been made in CIM technol-
ogy, it is crucial to recognize that the majority of the non-linear 
computations for the results after linear matrix–vector multi-
plying relies on conventional complementary metal oxide sem-
iconductor (CMOS) circuits, with ADCs and digital circuits 
for complex arithmetic included, leading to excessive area and 
energy costs [75, 76] (Fig. 6a). It is crucial to make explo-
ration for hardware implementation of activation functions 

on the basis of emerging devices and functional materials. 
Inspiration was obtained from dendritic computation of the 
pyramid neurons in the brain cortex to deal with the over-
head in the hardware implementation of activation functions 
[34]. The distinguished calcium-mediated dendritic action 
potentials (dCaAPs) were brought into focus of the research-
ers which were in the pyramid neurons of the human layer 
2 and 3 cortex. When compared to conventional all-or-none 
action potentials (APs), it was observed that the amplitude of 
dCaAPs becomes maximal for a certain threshold-level stimuli 
and was dampened for stronger stimuli (Fig. 6b), and therefore 
it was proposed that this distinctive dCaAP made it possible 
for a single neuron to implement XOR classification which 
typically required multilayered neural networks because of its 
inherent linear non-separability. It was pointed out that the 
electronic elements featured with negative differential resist-
ance (NDR) were promising candidates of such mimicry, for 
which the measured response decreased as the stimulus inten-
sity increased (Fig. 6c). NDR characteristics could be found 
in a wide range of electronics, among which Mott materials 
were one of the best candidates. As a well-studied Mott mate-
rial, vanadium oxide  (VO2) was investigated as a potential 
substitute for conventional activation units of NN. Moreover, 
this novel activation unit was managed to be integrated within 
a non-von Neumann architecture, which was verified by co-
implementing 1T1R arrays and these neurons on a single hard-
ware platform (Fig. 6d).

In addition to the imitating of the essential synaptic func-
tions, the in-depth study of the underlying learning and 
memory mechanisms in the biological brain is also vital for 
the realization of intelligent information processing at the 
hardware level [77]. For instance, it is proposed that the hard-
ware realization of associative learning makes contribution to 
improving the functionality of NN, enhancing the performance 
of machine learning (ML) algorithms [78, 79]. Furthermore, 
it can also promote the development of more autonomous 
machines which are featured with the ability to adapt and learn 
in dynamical environments without the requirement for pre-
programming [80–82].

3.2.4  To Exploit New Mode: Photonic Computing

In the post-Moore era, greater challenges have been pro-
posed for the continuous demand of higher performance 
[38]. Photonic computing has offered significant advantages 
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Fig. 6  Schematic of how hardware design promotes the development of different types of chips. a Schematic of the DNN structure and how 
to be realized by conventional hardware. b Schematic illustration of the calcium-mediated dendritic action potentials (dCaAPs) and the con-
ventional all-or-none APs. c Schematic of NDR, insulator–metal transition (IMT), and the XOR operation realized in a single device. d Sche-
matic illustration for the fully-hardware implementation of DNN. a–d Reproduced with permission from Ref. [34] Copyright 2024, Wiley–VCH 
GmbH. e Optical image of the completed spin qubit wafer. f Schematic of the device alignment and contact. g Various measurements used to 
extract the data. h The data used for statistical analysis. e–h Reproduced with permission from Ref. [100] Copyright 2024, Nature. i Circuit tier 
prefabrication on a sacrificial substrate. j Physically peeling off circuit tier, and k van der Waals dry lamination. l Optical images and m the 
zoomed-in image of prefabricated circuit tier on 2 inch sacrificial substrate. n Optical image of the final device. o Schematic diagram and p opti-
cal image of a 10-tier M3D system. i–p Reproduced with permission from Ref. [40] Copyright 2024, Nature
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for the unprecedented light-speed and low-consumption 
computing [21, 22], which empowers much faster and more 
energy-efficient processing of data. In this case, the features 
of light are made use of to represent the information, and 
propagation and interference are taken advantaged of for 
computing [57, 83–95]. Meanwhile, the utilization of AI for 
optics can promote the design and control of optical systems. 
Recently, both the photons and the electrons have been used 
in an all-analog way to come up with a practical solution 
for the intelligent computing [27]. Moreover, the develop-
ment of integrated photonics also makes contribution for the 
implementation of intelligent tasks by the photonic comput-
ing chips [25, 96–99].

3.2.5  To Exploit New Mode: Quantum Computing

In addition to the neuromorphic computing and photonic 
computing, quantum computing has been emerged as 
another advanced type of computing [100]. To promote the 
applications of spin qubit technology, physical qubit count 
is required to increase substantially, which makes it essential 
to fabricate spin qubit devices with the density, volume, and 
uniformity comparable with those of classical computing 
chips composed of billions of transistors [101]. The spin 
qubit technology is featured with its inherent advantages 
for scaling due to the qubit size, and another advantage is 
the native compatibility with CMOS manufacturing infra-
structure. As a result, it is pointed out that manufacturing 
spin qubit devices with the same infrastructure as classi-
cal computing chips is managed to release the potential of 
spin qubits for scaling, and it is possible for them to offer 
an approach for building the fault-tolerant quantum com-
puters. Furthermore, the scale of cryogenic device testing 
must be launched to enable efficient device screening [102, 
103]. Spin qubits based on electrons in Si have demonstrated 
impressive control fidelities, but the challenges exist in the 
aspects of yield and process variation. Recently, some pro-
gress has been made to address this issue. One case in point 
was that a testing technique taking advantages of the cryo-
genic 300-mm wafer prober for collecting the data in high 
volume on the performance of hundreds of industry-manu-
factured spin qubit devices at 1.6 K was developed. It took 
about 2 h to cool 300-mm wafers to an electron temperature 
of 1.6 K [100], and the transmission electron micrograph of 
a Si/SiGe quantum dot qubit device cross section is shown 

in Fig. 6e. As is demonstrated in Fig. 6f, the device pads 
were then aligned to the probe pins, and devices were con-
nected to measurement electronics at room temperature. A 
diversity of measurements could then be used to extract the 
data (Fig. 6g), and when this process on many devices across 
the wafer was repeated, the statistical analysis of wafer-scale 
trends was managed to be implemented by making use of the 
device data, which is illustrated in Fig. 6h.

3.2.6  To Promote the Integrating Technique

Besides the new materials and novel modes for the develop-
ment of the advanced chips, progress has also been made in 
the aspect of integrating technique [40]. Monolithic three-
dimensional (M3D) integration, for which multiple stacked 
tiers are fabricated sequentially on the same wafer by deposi-
tion of the upper tiers, has been proposed to overcome the 
scaling limitation with higher device density, and it ena-
bles new 3D computation systems, in which case various 
tiers, like the logic, memory, and sensor, are managed to 
be vertically interconnected [104–106]. As to the silicon-
based M3D integration, challenges exist in the aspect of the 
low thermal budget, for which the process temperature of 
upper tiers should not exceed the back-end-of-line tempera-
ture to get rid of the performance degradation. It has been 
pointed out that two-dimensional (2D) semiconductors are 
promising for M3D integration, which is attributed to their 
dangling-bonds-free surface and the ability to be integrated 
to various substrates [107–113]. Recently, an alternative 
low-temperature M3D integration method by van der Waals 
lamination of entire prefabricated circuit tiers has been 
developed. The detailed integration processes included the 
procedures of circuit tier prefabrication on a sacrificial sub-
strate, physically peeling off circuit tier and van der Waals 
dry lamination, which is demonstrated in Fig. 6i–k. It was 
noticeable that the prefabrication of all circuit stacks was 
based on standard photolithography processes, and it was 
compatible with wafer-scale M3D integration, which is dem-
onstrated in Fig. 6l–n. A 10-tier M3D circuit within a total 
thickness of approximately 8 μm could be realized to verify 
the high-density M3D systems with multiple circuit tiers in 
the vertical direction, which is shown in Fig. 6o, p.
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4  Strategies to Design Advanced and AI Chip 
with Enhanced Overall Performance

4.1  For Memory Purpose

The complexed and comprehensive simulations about 
the functions of the biological learning and memory are 
expected to be accomplished by the artificial neuromorphic 
devices [36]. A large amount of research has been launched 
focused on the neuromorphic electronics featured with mas-
sive parallelism, high efficiency, and capability. In particu-
larly, as a form of associative learning, classical condition-
ing generally comprised of conditional stimuli (CS) and 
unconditioned stimuli (US) contains four features, including 
acquisition, extinction, recovery, and generalization, which 
are relevant to information storage, elimination of outdated 
information, rememorizing, and storage of new information 
in a cycle [114]. Accordingly, synaptic electronics equipped 
with associative learning capabilities are potential candi-
dates for next-generation AI. Light has been used to coor-
dinate with electrical devices to fully realize the aforemen-
tioned four features of classical conditional when taking the 
shortcomings of crosstalk, poor sustainability, and complex 
circuits for purely electrical signals with into account [36]. 
What is more, the difference in the aspect of relaxation times 
between and electrical stimuli and light endows the devices 
an inherent advantage to realize the characteristics of clas-
sic conditioning. The associative learning was accomplished 
by optoelectronic memristors based on Ag/TiO2 nanowires 
(NWs): ZnO quantum dots (QDs)/FTO (ATZ-based device). 
As is shown in Fig. 7a, the flower nectar was served as the 
US that caused the proboscis extension, while the flower 
odor was served as CS which must be trained through the 
coordination of the olfactory and proboscis nerves to trig-
ger the proboscis extension directly. A two-port ATZ-based 
memristive device was designed to simulate the synaptic 
behavior with a structure of the vertical arrangement similar 
to that of the synapses (Fig. 7b), and the SEM of the as-pre-
pared device is demonstrated in Fig. 7c. It was verified that 
in addition to the basic synaptic behaviors, more advanced 
synaptic functions like learning-forgetting-relearning func-
tions could also be achieved.

4.2  During Transmitted Process

The issue of data transfer limit for high-performance silicon 
chips has drawn a lot of attention, for which several schemes 
have been proposed [59]. Optical computing has great poten-
tial in improving the speed of a diversity of ML applica-
tions, which is attributed to its enhanced data transfer, low 
latency, and fast computation rate when taking the fact that 
light travels much faster than electrical signal under consid-
erations [13, 23, 58, 115, 116]. Besides, the use of optical 
interconnects has become as a potential technology that can 
address this problem. It is pointed out that the chip-scale 
optical interconnects are promoted by the development of 
wavelength-division multiplexing (WDM) technique, which 
makes it possible to realize the parallel signal transmission 
by means of encoding data independently carried on mul-
tiple frequencies of light [117, 118]. After that, in order to 
further increase the link bandwidth, attentions have been 
paid on the other promising dimension of signal encoding 
for multiplexing, like the spatial domain. To be specific, the 
light can be decomposed into a series of optical beams with 
orthogonal spatial cross sections, and these orthogonal spa-
tial modes can act as independent communication channels 
[119–126]. It is possible for each of them to support a full 
WDM link, leading to the multiplicative effect on the band-
width of an optical link provided by the mode-division mul-
tiplexing (MDM). Latterly, progress has been made focused 
on the integrating mode and WDM on a chip [127–133].

In an attempt to offer new dimensions of data transfer 
with the aim of fulfilling the growing need for speed, 
an integrated multi-dimensional system that integrated 
wavelength and mode multiplexing on a silicon pho-
tonic circuit for the on-chip and chip-to-chip intercon-
nects was put forward [59] (Fig. 7d). A multi-wavelength 
laser source was evenly distributed into multiple WDM 
transmitter circuits with each WDM circuit encoding data 
independently onto different frequencies of light. An 
inverse-designed MDM multiplexer took the overlapping 
modes from the multiple WDM transmitters, and after 
that they were transformed into copropagating spatially 
orthogonal modes. The data could then be transmitted 
through chip-to-fiber couplers and multimode fiber to the 
receiver. The MDM-WDM demultiplexers were used to 
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separate the mode and wavelength channels, and photodi-
odes were taken advantages of for detection. It was veri-
fied that a 1.12-Tb/s natively errorfree data transmission 
could be fulfilled.

4.3  At the Computing Stage

Dynamic computing is a promising approach in DL, and 
the dynamic neural networks are managed to adapt the 
computational graphs to the input in the inference stage, 
showing the attractive properties in many aspects [134]. The 

Fig. 7  Schematic for the design strategies of AI chips in regard to data memory and transfer. a Schematic illustration of the proboscis extension 
response. b Schematic of the ATZ-based device. c SEM of the as-prepared device. a–c Reproduced with permission from Ref. [36] Copyright 
2024, Springer. d Schematic illustration of the multi-dimensional communication. d Reproduced with permission from Ref. [59] Copyright 
2022, Nature
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neuromorphic and traditional AI systems are two typical par-
adigms for dynamic computing [37]. Particularly, neurons 
in SNNs communicate through spike trains, and the spike-
based neuromorphic computing is naturally featured with 
a dynamic computational graph, with only a small portion 
of the overall spiking neurons being active at any moment 
and the rest being idle. In contrast, the neurons in traditional 
Artificial Neural Networks (ANNs) exchange information 
via continuous values and are controlled by static computa-
tional graphs. As a result, dynamic algorithms are developed 
to implement dynamic computing (Fig. 8a, b).

The energy constraints become a major restriction to 
deploy traditional AI methods, and therefore high demand 
for the energy efficiency has also been proposed for the 
computing. Correspondingly, much efforts have been made 
to come up with the schemes for energy-efficient comput-
ing. For example, better energy efficiency can be offered 
by analog in-memory computing (analog-AI) as it can per-
form matrix–vector multiplications (MVM) in parallel on 
‘memory tiles’ [1]. Besides, the neuromorphic computing 
provides a promising way for energy-efficient machine intel-
ligence by learning from the way by which information is 
processed via brain, taking advantages of artificial neurons 
and the SNNs on neuromorphic chips. The neuromorphic 
computing meets the challenges of how to learn from the 
high-level brain dynamic mechanisms to realize the excel-
lent computational efficiency [37].

In addition to the requirement from dynamic computing 
and energy constraints, high demand has also been put for-
ward for the weight-reconfigurable capacity of computing 
for some fields, like the healthcare monitoring, on which 
occasion it is essential to finely reconfigure the relative 
intensity of weight from each input. In an attempt to achieve 
the precise and independent modification of each input, a 
neuromorphic computing system that was managed to inte-
grate two different environmental information with recon-
figurable weights by making use of a simple circuitry based 
on electrochemical artificial synapses was designed [39]. 
From the perspective of dealing with various environmen-
tal information, a complex logic circuit was essential with 
the increased complexity of the processor, since more envi-
ronmental factors need to be taken into consideration for a 
conventional CMOS-based processor, while a single device 
was managed to handle these environmental information by 
neuromorphic computing with an electrolyte-based multi-
input synapse, which is demonstrated in Fig. 8c. Schematic 

illustration of the neuromorphic signal integration system is 
shown in Fig. 8d. To be specific, the sensors were responsi-
ble for the transform of the raw data into electrical signals, 
and then a weight control circuit was made use of to assign 
weights to the signals. The processing synapse could then 
integrate the signals, and finally a logical decision could be 
made by the artificial neuron. Correspondingly, the sche-
matic signal flow of this system is demonstrated in Fig. 8e. 
Action was executed if the synapse output exceeded the level 
of the criteria. It was noticeable that the potentiation of the 
processing synapse was modulated with the different weights 
for signals, leading to the different final action state even for 
the same environmental signals. A hydrogen explosion risk 
assessment system was designed accordingly, with the sche-
matic circuit diagram shown in Fig. 8f and the photographic 
image demonstrated in Fig. 8g. Hydrogen concentration and 
temperature were used as the inputs, and the signals were 
then updated by the weight control circuit, after which pro-
cedure they were converted into a postsynaptic current to 
represent the hydrogen explosion risk by taken advantages 
of the multi-input artificial synapse.

5  Design Considerations for Future Advanced 
and AI Chip

A sharply increased calculations have been brought about 
with the development of AI technology [39]. The prosper-
ity of AI is largely empowered by a significant amount of 
parameters and improved computing powers [34]. As to 
many vision tasks, short exposure time is essential to com-
plete the tasks with ultra-low latency, calling for extremely 
high computing power [27]. In addition, the computing 
capability and energy efficiency are critical issues which 
need to be balanced for high-performance computing [135].

5.1  For High‑Performance Computing

5.1.1  To Accelerate Computing Speed

The computing speed should be further accelerated to coop-
erate with the improved performance of various tasks at 
the algorithmic level [13, 136]. Large-bandwidth and high 
energy efficiency computing can be achieved by optical AI 
for which optics and photonics are fully leveraged. A fact 
that cannot be ignored is that digital devices remain to be 
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Fig. 8  Schematic for the design strategies of AI chips in regard to computing. Comparison between a spiking neuron and artificial neuron, and b 
the neuromorphic and traditional computing for a dynamic computing. a, b Reproduced with permission from Ref. [37] Copyright 2024, Nature. 
c Comparison between conventional and neuromorphic computing. d Schematic illustration and e schematic signal flow of the neuromorphic 
signal integration system. f The circuit diagram and g photographic image of the hydrogen explosion risk assessment system. c–g Reproduced 
with permission from Ref [39]. Copyright 2024, Wiley–VCH GmbH
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the mainstream, and therefore it is essential to convert the 
optical signals into digital ones for vision tasks even after 
optical computing by means of large-scale photodiodes and 
power-hungry ADCs to conduct the necessary postprocess-
ing procedures [27] (Fig. 9a). In an effort to address this 
issue, an optoelectronic hybrid architecture was designed, 
which was managed to reduce massive ADCs, and therefore 
vision tasks could be accomplished in a power-efficient and 
high-speed manner (Fig. 9b). To be specific, the information 
was encoded into light fields. The features of high-resolu-
tion images were extracted by using a multi-layer diffractive 
optical computing module at light speed, which was optical 
analog computing (OAC). It was worthwhile mentioning that 
the demand for optoelectronic conversion could be reduced 
by dimension reduction all optically. The electronic analog 
computing (EAC) with a 32 × 32 photodiode array was then 
introduced to convert optical signals into analog electronic 
ones due to the photoelectric effect, working as a nonlinear 
activation. These photodiodes are either connected to the 
V + positive line or  V- negative line according to the weights 
in the static random-access memory (SRAM). Based on 
Kirchhoff’s law, the generated photocurrents were summed 
up on both lines, after which process the differential volt-
age of the computing lines  V+ and  V- was calculated by 
the analog subtractor as the output node. It was noticeable 
that by means of resetting the computing lines and updating 
weights, this system can output another pulse with different 
connections of photodiodes. The output could be used either 
as predicted labels of classification categories or as inputs 
of another digital neural network. Schematic diagram of the 
all-analog photoelectronic chip is demonstrated as Fig. 9c.

Another challenge met by the optical computing is that 
they are implemented in silico on electronic computers, 
and therefore both strict modeling and large amounts of 
training data are essential (Fig. 9d). In particularly, optical 

AI primarily includes the optical emulation of electronic 
ANNs, and the photonic architecture design is conducted 
on electronic computers [24, 137]. Accordingly, it pro-
poses the challenge of correcting the experimental system 
error which calls for extensive work to characterize the 

Fig. 9  Design considerations of AI chips for high-performance com-
puting. The workflow of a traditional optoelectronic computing, and 
b all-analog photoelectronic computing. c Schematic diagram of the 
all-analog photoelectronic chip. a–c Reproduced with permission 
from Ref. [27] Copyright 2023, Nature. d Schematic diagram for the 
conventional optics-related AI and e the general optical systems. f 
Schematic illustration of FFM onsite ML. d–f Reproduced with per-
mission from Ref. [35] Copyright 2024, Nature. Schematic illustra-
tion of g a generalized unit cell with coherent light sources, and h 
the proposed photonic convolutional processing system with partially 
coherent light. i Schematic illustration for the N-fold enhancement in 
regard to parallelism. g–i Reproduced with permission from Ref. [43] 
Copyright 2024, Nature

▸
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optical propagation spatially and temporally [83, 96, 98, 
138]. As to AI empowered optical design, the system must 
also be modeled analytically or implicitly [139–141]. It 
consumes more time for analytical and numerical mod-
eling with the increase of the system complexity. It is 
pointed out that the precise modeling of a general opti-
cal system is difficult to be achieved due to the system 
imperfections and the complexity of light-wave propaga-
tion. Some efforts have been made to address these issues 
[35]. FFM learning was developed, which mapped optical 
systems to parameterized onsite neural networks. It was 
worthwhile mentioning that by taking advantages of spa-
tial symmetry and Lorentz reciprocity, the necessity of 
backward propagation in the gradient descent training was 
eliminated. Specifically, as for general optical systems, 
free-space lens optics and integrated photonics were con-
tained, with the modulation regions marked as dark green 
and propagation regions demonstrated as light green, in 
which occasion the refractive indexes were respectively, 
tunable and fixed (Fig. 9e). These regions in the optical 
system could be mapped to weights and neuron connec-
tions, which made it possible to construct a differenti-
able onsite neural network between the input and output 
(Fig. 9f).

5.1.2  To Realize High‑Capacity Signal Processing

In addition to the method mentioned above, parallel multi-
thread processing is also one of the key approaches to 
achieve high-speed and high-capacity signal processing, 
which is a promising way to meet the increasing demand 
for high-capacity datasets processing [142]. Recently, a 
photonic convolutional processing system using partially 
coherent light to realize boost computing parallelism with-
out substantially sacrificing the accuracy has been proposed 
[43]. It was pointed out that a variety of system architectures 
for photonic convolutional processing was developed with 
the coherent light sources being applied in all of these cases. 
However, the operation of the coherent nanophotonic cir-
cuits needed the precise control of numerous phase shifters 
so that the desired coherent interference in the circuit could 
be achieved. A generalized unit cell to perform multiply-
and-accumulate operations is illustrated in Fig. 9g, while 
a system with partially coherent light for parallelized pho-
tonic computing is proposed as Fig. 9h. It was worthwhile 

mentioning that for the system with partially coherent light 
for parallelized photonic computing, the coherent light 
source was not necessary, leading to less rigorous feedback 
control and thermal-management requirements. As for the 
partially coherent system, a Gaussian-shaped optical car-
rier could be sent to all input channels and summed in a bus 
waveguide, while for a coherent system, different input chan-
nels should receive optical carriers at distinct wavelengths to 
avoid intensity fluctuation. As a result, one MVM operation 
for input vectors of dimension N called for only one optical 
band for partially coherent system, while N optical bands 
were required with coherent light being applied, making it 
possible for the N-fold enhancement in parallelism as using 
partially coherent light (Fig. 9i).

5.2  With Improved Energy Efficiency

5.2.1  General Approaches to Improve the Energy 
Efficiency

In addition to the enhanced computing performance, the 
high energy efficiency is another important requirement for 
the advanced chips. For example, in regard to many vision 
tasks, the ADCs with high throughput and high precision 
reduce the imaging frame rate on account of limited data 
bandwidth, causing remarkable energy consumption [27]. 
Accordingly, efforts have been made on the design of an 
optoelectronic hybrid architecture in an all-analog way, to 
reduce the massive ADCs for the accomplishment of power-
efficient vision tasks. Furthermore, neuromorphic comput-
ing tends to be a promising approach for energy-efficient 
machine intelligence by simulating the neurons of the human 
brain and using spiking neural networks [37]. It is proposed 
that the human brain is managed to allocate its resources 
dynamically according to the required demand [143, 144]. 
As a result, greater attention is paid to salient stimuli, which 
is proved via the heightened spiking activity of the brain 
regions or neurons associated with the stimulus. Addition-
ally, endeavors have also been made to design the neuromor-
phic chip with no needs for the global or local clock signal, 
which efficiently avoids the redundant power consumed by 
the clock empty flips [37]. Furthermore, it is worthwhile 
mentioning that CIM is important in the field of AI, for 
which both the memory and processing functions can be 
integrated within the same module, leading to the enhanced 
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efficiency. Memristors, which are featured with their strik-
ing similarity with biological counterparts in the aspect of 
device dynamics, play an important role in this field [145].

5.2.2  Analog In‑memory Computing

The vast amounts of data transferred between memory and 
processor lead to the unessential energy consumption. Both 
the time and the energy are expected to be saved by the 
Analog-AI hardware with the function to apply arrays of 
non-volatile memory (NVM) to execute the MAC opera-
tions. One case in point was that an analog-AI chip was 
designed to recognize and transcript speech energy effi-
ciently. It was noticeable that not only the fully end-to-end 
 SWeq accuracy for a small keyword-spotting network but also 
the near-SWeq accuracy on the much larger MLPerf RNNT 
was verified [1]. Particularly, the tiny-model task of key-
word-spotting network (KWS) on the Google speech-com-
mands dataset was targeted. The MLPerf version of RNNT, 
which was a large data center network, was implemented on 
Librispeech. It was worthwhile mentioning that the model 
contained 45 million weights, which was implemented by 
more than 140 million PCM devices across five chips. This 
system demonstrated excellent power performance. To be 
specific, Chip 4 showed the best power performance of 12.40 
TOPS/W, which was attributed to the most on-chip weights 
(Fig. 10a). It was proposed that there existed a correlation 
between the reported TOPS/W and the number of weights 
that were encoded on-chip. Another 25% improvement in 
TOPS/W could be achieved for chip 4 caused by the reduc-
ing the maximum input duration without large WER deg-
radation, which is illustrated in Fig. 10b. Energy efficiency 
at different levels is illustrated in Fig. 10c, which reflected 
how the costs of data communication, incomplete tile usage, 
as well as the inefficient digital computing resulted to the 
fact that the large peak TOPS/W of the analog tile itself 
was down to the final sustained value of 6.94 TOPS/W. The 
full processing time of the overall system was estimated 
(Fig. 10d). It was noticeable that the average processing 
time for each sample was more than  104 times faster than 
the actual speech time, leading to a real-time factor of only 
8 ×  10–5. Number of operations performed on-chip versus 
off-chip in the RNNT experiment is shown in Fig. 10e. In 
contrast to the MLPerf submissions, a 14-fold improvement 

was managed to be realized by this system in regard to the 
samples per second per watt and TOPS/W (Fig. 10f).

5.2.3  Dynamic Computing with Asynchronous Chip

To reach the goal of energy efficiency, the composition 
of different power consumption should be taken into con-
siderations. The power that is required to operate an AI 
system is usually composed of two aspects, resting power 
which is determined by the hardware design, and running 
power which relies on the model as the hardware is fixed 
[37] (Fig. 10g). It is proposed that for the great majority of 
hardware a significant amount of energy is consumed even 
when no computing is being done, leading to very high ratio 
of the resting power to the overall power. Consequently, it 
is difficult to reduce the overall power only by reducing the 
running power (Fig. 10h, i). To be specific, the chip architec-
ture (asynchronous/synchronous) can leave an impact on the 
power consumption, and it has been proposed that the asyn-
chronous architecture, for which the change of the circuit 
state is only caused by the change of the external input, is 
featured with the advantage of low power consumption com-
pared with synchronous circuits. The event-driven mecha-
nism is an approach for asynchronous chips to coordinate 
the work of each module. When taking the design strategies 
for sensing-computing chip into considerations, event-driven 
chips can be made use of, since the sensor can only wake up 
the chip when the environmental changes (such as tempera-
ture changes or motion triggers) are detected to complete 
data collection and transmission, leading to the improved 
energy efficiency and low latency.

In contrast to the most common neuromorphic hardware 
design which begins with the bottom of the compute stack, 
elaborated design can be conducted for the customization 
of the neuromorphic hardware which is to be applied at the 
edge for the specific purposes with low power consump-
tion taken into consideration. One case in point was that a 
sensing-computing neuromorphic chip, Speck, was designed 
with a 128 × 128-pixel DVS integrated onto an asynchronous 
spike-based AI chip, which is shown in Fig. 10j. Speck was 
a sensing-computing end-to-end SoC with the always-on 
hardware applicable to various scenarios, such as Internet of 
things, smart travel, smart home, intelligent robotic, and so 
on (Fig. 10k, l). It was worthwhile mentioning that its pro-
cessing pipeline was built with asynchronous digital logic, 
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Fig. 10  Design considerations of AI chips with improved energy efficiency. a Measured power and TOPS/W corresponding to each chip. b An 
improvement in TOPS/W caused by the reducing the maximum input duration. c Energy efficiency at different levels. d Processing time and 
actual speech time. e Number of operations performed on-chip versus off-chip in the RNNT experiment. f Samples per second per watt and 
TOPS/W compared with MLPerf submissions. a–f Reproduced with permission from Ref. [1] Copyright 2023, Nature. g Power composition 
of AI systems. The case of h high resting power and i low resting power. j Physical display of Speck. k Illustration for the sensing-computing 
end-to-end SoC, and l its application scenarios. m Fully asynchronous architecture of Speck. The design of n SNN core, and o the asynchronous 
event-driven convolution. g–o Reproduced with permission from Ref. [37] Copyright 2024, Nature
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which made it possible for the chip to realize always-on low 
resting power consumption and optimum latency. To address 
the issue that the implementation of asynchronous circuits is 
complicated, the overall sensing to computing strategy was 
optimized. There was a central event router which is able to 
be configured to route events from any to any of the 9-SNN 
cores, and every core was managed to work independently 
and asynchronously, which was illustrated in Fig. 10m. 
As a result, the design effort could be limited to a single 
SNN core (Fig. 10n). Additionally, the asynchronous event-
driven convolution was included as one of the core designs 
for the improvement of the computational efficiency as well 
(Fig. 10o).

6  Perspectives

Overall, the recent development, including but not limited to 
the co-design strategies for the software and hardware, the 
realization of enhanced overall performance, and the poten-
tial for broader application have been reviewed in depth. 
Great progress has been made in the field of advanced chips 
due to the high challenges brought by AI, which has revolu-
tionized various aspects, ranging from information industry 
to material science. To execute the complex algorithmic pro-
grams and advanced tasks proposed by these new challenges, 
the elaborate design of chips covers every aspect, including 
materials, algorithm, architectures, processing technology, 
integrating method, and so on. Progress has been made on 
developing novel materials and models, as well as overcom-
ing the shortcomings of the existing conventional materials 
and architectures for chips. New fabrication processes for 
both the production and the package of the devices have 
been developed, aiming to induce the cost and develop com-
plex chips. The advanced chips are qualified to be applied for 

video recognition tasks, speech recognition and transcrip-
tion, visual memory and many other fields, offering fast and 
efficient information processing functions (Fig. 11).

Summary for the state-of-the-art advanced and AI chips 
is illustrated in Table 1 with the performance, scales, other 
properties, and applications included. The quantitative indi-
cators of the chips are critical to the systems. To be specific, 
energy efficiency refers to the effective amount of work com-
pleted by a chip with per unit of energy consumed when 
implementing a task, which makes sense for the environ-
mental sustainability. The computing speed of a chip is the 
core indicator for measuring its data processing capability, 
which is important for shortening the task processing time 
and supporting complex tasks. For AI training which needs 
to handle large amounts of parameters, chips with high 
computing speed are managed to shorten the training cycle, 
accelerating technological iteration. The latency of a chip 
refers to the time interval from the triggering of an input to 
the generation of an effective output, which is a key indicator 
for measuring the response speed of a chip. While ensur-
ing high energy efficiency and computing speed, reducing 
latency has become another challenge in chip design, which 
is especially essential for some real-time tasks. Besides, the 
abilities of integrating more transistors, realizing a larger 
area, or expanding to more application fields are also imper-
ative for these systems. For example, the scale expansion of 
chips is in relevant to the change from achieving a single 
function to multi-functions or from small-scale to large-scale 
applications, which can leave impacts on a series of factors, 
like cost, power consumption, design complexity, and so on.

Significant improvements of the advanced chips have hap-
pened and accompanied by the discovery of novel modes, 
the improvement of the package techniques, the accelerating 
of the efficiency, as well as the enhancement of computing 

Fig. 11  Outlook of the advanced chips
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power. This review offers a keen insight into the design strat-
egies for the advanced and AI chips, with some perspectives 
for the chips applied in the future proposed as follows:

1. Endeavors have been made to equip the AI chips with 
more intelligent performance learning from biology. a) 
Efforts have been made focused on mapping the biologi-
cal behavior to the electrical behavior in devices. It is 
expected for the systems to realize more complex bio-
logical performances. The associative learning behavior, 
which is commonly found in the cranial nerves of insects 
and is featured with the acquisition, extinction, resto-
ration, and generalization, has been simulated by ZnO 
QDs-based optoelectronic memristors, which provide 
novel scheme for the field of machine self-learning. It is 
desirable to develop chips learning from more advanced 
behaviors of the creatures. b) Extensive investigations 
have been carried out on neuromorphic devices based on 
the human brain, which is a potential candidate for the 
next-generation computer architecture. The method of 
how to learn from the high-level brain dynamic mecha-
nisms to equip neuromorphic computing with more 
energy advantages is always in high demand. Endeavors 
have been made from both the software and the hard-
ware aspects to address this issue. Moreover, chips used 
for dealing with image information are expected to be 
managed to handle the dynamic, diverse, and unpredict-
able scenes in real application scenarios, like autono-
mous driving. It is desirable to design the chips that are 
efficient in various fields to percept and address even the 
difficult issues existing in the real world. In particular, 
the dynamic computing, which is a critical feature of 
human brain, has been simulated by this system. In the 
future, more advanced strategies can be adopted for the 
realization of high-level brain dynamic mechanisms to 
fully achieve the brain advantages in many aspects.

2. Efforts can be made to make full use of the novel modes 
that extend the information processing from electrons, 
to photons, quantum, and biological elements, by tak-
ing advantages of the strengths and overcoming their 
weaknesses. a) Photonics-based systems are managed 
to provide high-speed computing units, and therefore 
efforts have been made focused on the algorithms 
design to exploit their unique advantages. For instance, 
approaches have been developed to realize the high 
throughput and precision by the successful applica-
tion of cellular automata [146]. Ultrafast silicon pho-
tonic reservoir computing engine has been developed, 
which paves the way for high-speed photonic comput-
ing [147]. For photonic computing, to truly become a 
leading technology in the field of AI, a series of key 

challenges still need to be meet which mainly lies in the 
aspect of integration, dynamic reconfiguration capabil-
ity, standardization, and cost issues. In particular, the 
compatibility of silicon-based photonic chips with the 
existing CMOS processes needs to be optimized, and the 
capacity of photonic chips to dynamically adapt to dif-
ferent tasks is expected, since the hardware of photonic 
chips is relatively fixed. b) Low power consumption 
and real-time requirements have promoted the appli-
cation of CIM in many fields, like intelligent sensors 
and IoT. For example, some progress has been made for 
cryogenic in-Memory Computing recently [148]. In the 
future, more endeavors can be made to enhance the com-
puting abilities of the memory by making use of new 
materials, such as two-dimensional materials and oxide 
semiconductors, and optimizing the circuit architectures. 
Besides, 3D packaging can also be applied for CIM to 
obtain the systems with excellent overall performance. 
c) Additionally, cellular computing has emerged focused 
on the analysis and modeling of real cellular processes 
to implement computing with the aspects of informa-
tion processing and adaptation. Attempt has been made 
on the reprogrammable circuits that are managed to 
increase circuit flexibility and realize the scalability of 
complex cell-based computing devices. The feasibil-
ity of proposing several circuits by making use of only 
a small set of engineered cells that can be externally 
reprogrammed to implement simple logics in response 
to the specific inputs has successfully been proved. In 
the future, more efforts can be made focused on taking 
advantages of biological circuits to implement logics 
and meet numerous biological challenges.

3. The advanced chips that are qualified for real-world 
applications are always in high demand. Multi-input 
signals are usually needed to be processed properly by 
the advanced processors suitable for diverse external 
information in the open-world applications. The inte-
grated signals from different input are needed to be 
handled accurately and timely. The version of GPT-4 
has successfully accomplished the processing of mul-
timodal data, like images and audio. A neuromorphic 
computing system applied for the risk assessment has 
been developed with several kinds of factors taking into 
considerations. In the future work, more work focused in 
the development of algorithms and hardware tailored for 
open-world applications can be conducted. The overall 
performances are expected to be enhanced for the chips 
to meet the high requirement proposed by the real-world 
applications.

4. The reconfigurable behavior is an important aim for 
computing hardware. For the chips with reconfigurable 
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capacities, their function can be changed even after the 
accomplishment of the fabrication, and therefore multi-
modal data and different tasks can be dealt with, making 
the high flexibility in adapting to different tasks feasible. 
It is especially critical to the chips used for some spe-
cific purposes like healthcare monitoring, for which it 
is imperative to finely reconfigure the relative intensity 
of weight updates from each input. Explorations have 
been made to equip different types of chips with strong 
reconfigurability. The reconfigurability and multimodal 
capability have been achieved for a TDONN chip by tak-
ing advantages of on-chip diffractive optics with massive 
tunable elements. The reconfigurability has also been 
available for the diffractive-interference hybrid photonic 
chiplet, which is acted as the fundamental building block 
for a diversity of advanced ML tasks, with 1000-cat-
egory classification and content generation included. An 
all-analog chip combining electronic and light comput-
ing (ACCEL) is also equipped with the reconfigurability 
for different tasks without changing the OAC module. 
The integration of two different information with recon-
figurable weights has been accomplished by a neuromor-
phic computing system. In the future, the high degree 
of adaptability to different assignments empowered by 
reconfiguration is expected to be accessible for more 
chiplet when it is necessary.

5. More explorations on large-scale integrations are 
expected to be made for chips. With the increasing of 
information, chips are required to be integrated to an 
ever-growing level to process the booming signals. The 
large-scale integrations of various chips are indispensa-
ble to getting rid of the shortcomings of each chip. For 
inorganic counterparts, like CMOS chips, an integration 
level in ultra-large-scale has been realized, while poor 
mechanical compatibility with organisms exists. It is 
ideal for the devices to overcome inherent shortcomings 
and accomplish the large-scale integration. Moreover, 
the integrations are closely related to the technologies. 
A diversity of techniques like photolithography, screen-
ing, printing, and shadow-mask evaporation has been 
developed. In the future, the continuous progress of the 
techniques is expected to be made in order to miniaturize 
these devices.

6. The application of sustainable materials in AI chips is 
one of the most important trends in this field with the 
aim of reducing the environmental impact and improv-
ing energy efficiency. Efforts can be made from various 
aspects, such as selecting degradable substrates, devel-
oping environmentally friendly manufacturing process, 
preparing environmentally friendly heat dissipation 
materials, and so on. Some bio-elastomers with active-

controllable degradation rates have been designed, 
which can be applied as the bio-electronic substrates and 
encapsulation layers. In the future, more endeavors can 
be made to make a balance between meeting the high-
performance requirements of AI chips and controlling 
the costs when using sustainable materials.
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