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HIGHLIGHTS

• The synthetic methods and corresponding mechanisms of porous carbon (PC)‑based nanostructures from biomass resource are reviewed.

• The application of biomass‑derived PC in microwave absorption is discussed in terms of structure and composition optimization.

ABSTRACT Currently, electromagnetic (EM) pollution poses severe 
complication toward the operation of electronic devices and biological 
systems. To this end, it is pertinent to develop novel microwave absorb‑
ers through compositional and structural design. Porous carbon (PC) 
materials demonstrate great potential in EM wave absorption due to 
their ultralow density, large surface area, and excellent dielectric loss 
ability. However, the large‑scale production of PC materials through 
low‑cost and simple synthetic route is a challenge. Deriving PC materi‑
als through biomass sources is a sustainable, ubiquitous, and low‑cost 
method, which comes with many desired features, such as hierarchical 
texture, periodic pattern, and some unique nanoarchitecture. Using the 
bio‑inspired microstructure to manufacture PC materials in mild condi‑
tion is desirable. In this review, we summarize the EM wave absorption 
application of biomass‑derived PC materials from optimizing structure 
and designing composition. The corresponding synthetic mechanisms and development prospects are discussed as well. The perspective 
in this field is given at the end of the article.
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1 Introduction

The rapid development of electronic technologies brings 
about great convenience to humans’ life. However, exces‑
sive usage of electronics also results in serious electromag‑
netic (EM) radiation and interference, which is detrimen‑
tal to human health [1–5]. Consequently, the research on 
use of functional EM absorbers to eliminate the unwanted 
EM energies has attracted significant attention. Among the 
reported materials, carbon‑based nanomaterials are prom‑
ising because of their adjustable dielectric properties, low 
density, and good environmental stability [6–9].

Over the past decades, various carbon‑based nanomateri‑
als have emerged as ideal candidates due to their lightweight 
as well as outstanding EM wave absorption capabilities. In 
particular, the successful employment of graphene and car‑
bon nanotubes (CNT) in EM wave absorption field brought 
great development, due to their high electrical conductiv‑
ity, low percolation threshold, and special nanostructure 
[10–13]. In recent years, there have been booming studies 
based on CNT and graphene [14–18]. Unfortunately, syn‑
thesis of such materials requires expensive raw materials 
(e.g., fossil) and is subjected to energy‑intensive processes 
(chemical vapor deposition (CVD), hummers methods arc 
discharge, etc.) [19, 20]. These unavoidable shortcomings 
hinder their practical application. Thus, exploring sustain‑
able and economic raw materials to produce versatile carbon 
materials, accompanied with a facile synthesis technology, 
is highly desired.

Biomass is renewable, eco‑friendly, and abundant 
resource present around the world [21–23]. After various 
human agricultural activities, abundant biomass residues 
can be easily found. However, large amounts of agricul‑
tural resides and forest byproducts are directly discarded or 
incinerated, leading to severe environmental damage [24, 
25]. The use of low‑cost biomass residues as raw materials 
to fabricate carbon‑based absorber is an environmentally 
friendly and promising route. Recent reports have revealed 
that the porous structure is beneficial for enhancing EM 
wave absorption [26–30]. The presence of pores not only 
decreases the bulk density, but also improves impedance 
matching of absorber [31, 32]. Interestingly, biomass in 
nature has many desired characteristics, for example, elabo‑
rate periodic porous microstructure and microtubular chan‑
nels [33, 34]. As mentioned above, the favorable porous 
structures have close relationship with properties of EM 
wave absorption and attenuation. By utilizing biomass as 
raw materials, the porous carbon (PC) could be prepared 
through a simple thermal treatment process [35]. As a result, 
biomass‑derived PC has been considered as a novel and eco‑
nomically viable mean for dealing with EM pollution. Until 
now, tremendous trials have been dedicated to the exploi‑
tation of biomass‑derived PC in EM absorption, including 
optimizing pore size, enlarging surface area, and construct‑
ing multicomponent. In this progress report, we compre‑
hensively summarize recent progress in rational design and 
fabrication of novel PC‑based absorber from biomass source 
and systematically discuss the key factors influencing the 
EM wave absorption performance (pore architecture and 

Fig. 1  Schematic representation of biomass derive PC in EM absorption application
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compositions), as shown in Fig. 1. We expect this timely 
review to provide a constructive and general guideline for 
the design of novel absorber from biomass resource. 

2  The Role of Porous Structure in Microwave 
Absorption

Numerous previous literatures have confirmed that porous 
structure plays a positive role in attenuating EM energies 
[36–39]. It is well accepted that porous materials could be 
regarded as a composite, comprising of solid media (host) 
and air (inclusion) [29]. Many models have been established 
to describe the dielectric properties of composite in numeri‑
cal fits, analytic derivations, and stochastic methods. There 
are typically three models based on host‑inclusion medium, 
containing Bruggeman 1/3 power law, Landauer–Brugge‑
man effective medium approximation (EMA), and Maxwell‑
Garnet (MG) [40, 41]. With reference to Wang’s work [40], 
they prepared porous titania and calcium magnesium with 
different porosities and investigated the influence of poros‑
ity on complex permittivity (εr). It is concluded that εr val‑
ues decrease with porosity increasing in both porous titania 
and calcium magnesium. The change tendency is almost 
complied with the MG, EMA, and Bruggeman 1/3 power 
law. Among these models, the MG theory has been widely 
applied in diverse porous materials, and it can be expressed 
as Eq. 1 [42, 43]:

where ε1 and ε2 are the permittivity of solid and free air and 
fr relates to the volume percentage of air in the effective 
medium. From this formula, we can conclude that the pres‑
ence of a porous architecture will reduce complex permittiv‑
ity. In general, the impedance matching and EM attenuation 
capacity are fundamental design principles for an absorber. 
The poor attenuation capacity would result in weak micro‑
wave absorption intensity. Similarly, the inferior impedance 
matching would give rise to the reflection of EM wave on the 
absorber surface. Hence, the optimal impedance matching 
and strong EM attenuation competence are desired for an 
excellent absorber. The ideal impedance matching requires 
that the characteristic impedance of material (Zim) is close 
to that of free air (Z = 1) [44, 45]. The characteristic imped‑
ance is expressed by the relative complex permittivity (εr) 
and complex permeability (μr) (Eq. 2) [46]:

(1)�
MG
eff

=

[
(�2 + 2�1) + 2fr(�2 − �1)

(�2 + 2�1) − fr(�2 − �1)

]
�1

where ε0 and μ0 are the relative complex permittivity and 
permeability of vacuum, respectively. As we know, εr is usu‑
ally larger than μr for any absorber. So decline of εr would 
result in the Zim value of near 1 [47]. Combined with the 
above analysis, constructing porous structure is an effi‑
cient strategy to improve impedance matching of material, 
because of decreases in effective permittivity. Additionally, 
the porous structure would generate abundant solid–air 
boundaries in the interior of media. When the extra EM 
wave radiates on these boundaries, plenty of charges would 
accumulate at the carbon–air interfaces, inducing the strong 
space charge polarization. This can boost the EM wave 
attenuation capacity of material [48].

3  Pure PC Absorber from Biomass

3.1  Direct Pyrolysis Method

Direct carbonization is the most facile and widely adopted 
approach for producing PC from biomass. Typically, the 
biomass precursor is subjected to pyrolysis under inert 
gas atmosphere at elevated temperature. After removal of 
volatile constituents  (CH4,  CO2, and some organics), the 
carbon product could be collected [49]. Meanwhile, the 
intriguing porous architectures in biomass will be retained 
in the final product after pyrolysis. As shown in Fig. 2a, 
PCs have been produced from a wide range of biomass 
resources via one step pyrolysis method, such as walnut 
shell [50], spinach stem [34], wood [51], rapeseed flower 
[52], bamboo [53], peanut shell [54], apricot shells [55], 
and morpho‑butterfly wing scales [56]. Due to the diver‑
sity of biomass, the resultant pore morphology and size 
of PC rely strongly on the texture of gathered biomass. 
These developed pore structures could decrease effective 
dielectric values and promote the impedance matching. 
The optimal impedance would make the incident EM wave 
enter the interior of media for subsequent attenuation. In 
thermal treatment process, the high‑temperature calcina‑
tion accelerates the conversion of sp3 C‑X (X: C, O, H, 
etc.) bond into aromatic sp2 C=C bond and hence resulting 
in the generation of graphitized carbon (Fig. 2b) [57, 58]. 
Along the graphite plane, the C=C bond links with each 
other forming a two‑dimensional plane. The movement 
of numerous free electrons along the plane significantly 

(2)Zim =

√
�0

�0

√
�r

�r
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boosts the electronic conductivity of biomass‑derived PC. 
According to free electron theory: ε″ = 1/2πρfε0, where 
ρ is the resistivity and ε0 is the permittivity of vacuum 
[59–61], it can be deduced that the increase in conduc‑
tivity would enhance the dielectric loss and microwave 
loss capacity of material. Besides, small amounts of het‑
eroatoms (N, O, P, etc.) may be preserved in the carbon 
matrix after carbonization of biomass. On account of the 
different electronegativity between carbon atom and het‑
eroatom, these heteroatoms could act as the polarization 
center by alternating EM fields, inducing dipole polariza‑
tion and electronic polarization [62].

The enhanced polarization loss would attenuate the 
incoming EM energy, boosting the microwave absorption 
properties of materials. As a result, the biomass‑derived 
PC possesses excellent dielectric property and microwave 
absorption capacity.

Wu et al. [34] prepared a hierarchical PC product with two‑
level porous structure from biomass spinach stem (Fig. 2c). 
The microsized cavities will work as dihedral angles to cause 

the reflection of EM wave within the material. This would 
extend the transmission path of EM wave and provide more 
opportunities to attenuate incident EM wave. The existence 
of nanosized pores in PC can reduce the effective permittiv‑
ity and improve the impedance matching. The special hier‑
archical design and developed pore structure endow the PC 
medium with remarkable microwave absorption. An intensive 
reflection loss (RL) of − 62.2 dB can be obtained at thickness 
of 2.71 mm. In porous biomass‑pyrolyzed carbon (PBPC) 
based on natural wood, the PBPC inherits the original shape 
of the wood and displays the regularly aligned parallel chan‑
nel structure (Fig. 2d, I‑III), which is rarely found in artificial 
materials [51]. Thanks to its highly oriented arrangement pore 
texture, there is minimal reflection of incident microwave on 
the side walls of channel, while most microwave will enter in 
via the channels (Fig. 2d IV). By pyrolyzing under various 
temperatures, the PCBC samples exhibit different attenuation 
capacity with EM energies (Fig. 2e). It is clear that the RL 
values of PCBC specimen prepared at temperature of 680 °C 
(PCBC‑680) are much higher than those of other samples. The 
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Fig. 2  a Various biomass‑derived PC materials prepared by a direct pyrolysis process. Reprinted with permission from Refs. [34, 51–56]. b The 
schematic illustration of graphitized PC. c The EM wave absorption properties of spinach stem‑derived PC. Reprinted with permission from Ref. 
[34]. d (I) The digital camera photograph of wood and PBPC, (II, III) SEM images of radial and axial section for PBPC, (IV) The schematic rep‑
resentation of microwave absorption mechanism of PBPC. e The calculated reflection loss of PCBC samples with different annealing tempera‑
ture at 4 mm. f The calculated reflection loss of PBPC‑680 at different thicknesses. Reprinted with permission from Ref. [51]
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maximum RL value is up to − 68.3 dB with broad frequency 
bandwidth of 6.13 GHz at thickness of 4.28 mm (Fig. 2f). 
When the annealing temperature is higher or lower than 
680 °C, the obtained sample shows inferior microwave absorp‑
tion properties. Therefore, thermal treatment temperature is a 
crucial condition for determining the dielectric properties of 
sample. The higher temperature results in good conductivity 
and exorbitantly high dielectric value, which is unfavorable 
for impedance matching. On the contrary, low temperature 
would lead to weak attenuation capacity. Hence, an appropri‑
ate annealing condition is important factor for the eventual 
microwave absorption performance of PC sample.

3.2  Activation Method

For PC materials, increasing surface area and porosity is 
required approach to optimize EM wave absorption perfor‑
mance. Tailoring of pore structure in biomass‑derived PC can 
be fulfilled by chemical methods. Typically, activation method 
is a well‑established and efficient route to punch pores into 
carbon media [63–65]. The PC prepared by activation method 
would usually have 4–50 times higher surface area than these 
non‑activated PC [66].

Conventional activation methods include physical activa‑
tion and chemical activation. With regards to physical acti‑
vation, the biomass would be first carbonized into carbon 
component at relatively low temperature (usually < 800 °C). 
Then, the resultant carbon undergoes an activation process 
at higher temperature in the presence of suitable activator, 
such as  CO2, air, and steam [67–69]. Owing to the small 
molecular size of these activators, the generated pore archi‑
tectures by physical activation are at micropore level with 
the narrow distribution of pore dimension [70]. Zu’s group 
[71] highlighted that the number and size of micropores 
would increase with the activation time of  CO2 extending. 
Similarly, Liu’s work [72] further reveals that the specific 
surface area and pore distribution could be easily controlled 
by regulating the  CO2 activation duration.

For chemical activation, the whole reaction could be pro‑
cessed in one single procedure. Specifically, the carbon pre‑
cursor is uniformly blended with activated agent through 
impregnation or grind method, followed by annealing at proper 
temperature under inner gas atmosphere [73]. Common chemi‑
cal activators employed in reaction process includes  ZnCl2 [74, 
75],  H3PO4 [76], and KOH [77, 78], etc. Among them, KOH 

activation is a well‑developed method for introducing pores 
into biomass‑derived carbon materials because of its mild acti‑
vation temperature, higher production, and developed porosity 
with larger surface area (up to 3000 m2  g−1) [79]. Since the 
KOH activation method was first developed in 1978, it has 
been extensively applied in many experiments. Even till now, 
the mechanism for KOH activation is still unclear. Generally, 
the involved plausible reactions between KOH and carbon at 
elevated temperature are listed as Eqs. 3–7 [53]:

The reaction first begins with solid–solid reaction at 
400–600 °C, i.e., the KOH reacts with C, generating  K2CO3 
compound (Eq. 3). At ca. 600 °C, the KOH is exhausted 
completely. With temperature exceeding 700 °C, the  K2CO3 
is decomposed into potassium oxide  (K2O) and carbon diox‑
ide  (CO2) (Eq. 4) and is absolutely consumed above 800 °C. 
Additionally, the produced K compounds and  CO2 could fur‑
ther react with carbon over 700 °C. Namely,  CO2 is reduced 
into CO by C component (Eq. 5), while  K2CO3 and  K2O are 
also reduced by C, forming metallic potassium (Eqs. 6, 7). 
The resultant PC sample usually contains some inevitable 
impurities such as metallic potassium and its compound, 
which should be removed by water and diluted HCl solution. 
During this process, the alkaline substance erodes the carbon 
surface and interior at high temperature. The induced irre‑
versible expansion of carbon lattices results in the genera‑
tion of developed porosity [65]. Based on preceding theory, 
the large specific surface area and increased porosity would 
promote the development of biomass‑derived PC toward 
lightweight and high‑efficient EM absorber.

Qiu et al. [80] adopted the KOH activation technology to 
boost the microwave absorption capacity of walnut shell‑
derived PC, as shown in Fig. 3a. In Fig. 3b, c, it is obvi‑
ously seen that the PC prepared by KOH activation (PC‑600, 
SBET = 746.2 m2  g−1) possesses more developed pore struc‑
ture than non‑activated PC (C‑600, SBET = 435 m2  g−1). By 
regulating the activation temperature, tunable surface area 
and pore volume could be easily realized, which significantly 
affect the complex permittivity of samples (Fig. 3d–g). It is 

(3)6KOH + 2C → 2K + 3H2 + 2K2CO3

(4)K2CO3 → K2O + CO2

(5)CO2 + C → 2CO

(6)K2CO3 + 2C → 2K + 2CO

(7)K2O + C → 2K + CO
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noteworthy that PC with high surface area has large εr values, 
which is in contrast to the conclusion achieved in MG theory. 
Such abnormal phenomenon could be well explained by the 
enhanced polarization abilities and electrical conductivity of 
the materials. Benefiting from the increased dielectric prop‑
erties and favorable porous structure, the strong microwave 
absorption intensity of − 42.4 dB at 8.88 GHz can be achieved 
at a thickness of 2 mm (Fig. 3i). The performance is much bet‑
ter than that of the non‑activated samples (Fig. 3h). Similarly, 
our group prepared the PC sample from wheat flour through 
KOH activation method [81]. By controlling the period of 
activation, a nanoporous carbon with a three‑dimension net‑
work architecture and a specific surface area of 1486.8 m2  g−1 
can be obtained. Three‑dimension (3D) network could gen‑
erate induced currents along the skeleton under alternating 
EM fields. The presence of pore structure on skeleton forms 

the capacitor‑like structure. Such long range‑induced currents 
quickly decay in the resistive 3D network and are transformed 
into Joule heating, which lead to rapid consumption of mas‑
sive incoming microwave. With the ultralow filler content of 
8 wt%, the EM wave absorbency of − 51 dB was achieved 
at 1.8 mm. Meanwhile, the effective frequency bandwidth is 
up to 6 GHz at filler loading of 9 wt%. These extraordinary 
performances prove that the sample can be lightweight, highly 
efficient, and sustainable absorber.

3.3  Template Method

The above two segments showed that large surface area and 
high porosity result in improved EM wave absorption prop‑
erties. However, it is difficult to demonstrate the effect of 
pore size and distribution on microwave absorption behavior. 
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The relevant investigation in depth would benefit the desired 
porous texture of goal absorber. Prior to the investigation 
of the role of pore size and distribution on attenuating EM 
energies, it is essential to prepare the PC sample with con‑
trollable pore structure. The above described activation 
technique is unable to accurately control the porosity of the 
structure, which is unfavorable for studying of relationship 
between pore architecture and microwave absorbency.

The template method is a powerful tool to synthesize 
biomass‑derived PC with tailored pore dimension and 
distribution. The involved hard and soft templates are 
both vital to the synthesis of PC materials with regulable 
pore dimension and surface area [82–85]. As for template 
method, the technology is grounded on the self‑assemble 
of block copolymers, surfactants, organic compounds, and 
so forth [86, 87]. The surfactant  Pluronic® F127 is a typi‑
cal soft template. White et al. [88] reported the ordered 
porous carbon synthetized from fructose with the help of 
F127. The hydrophobic cores of the micelles, formed by 
polyphenylene oxide chains of F127, are the source of 
pores. However, the micelle is unstable at high tempera‑
ture. At low temperature, most of biomass is hard to inter‑
act with surfactant, leading to low efficiency. Moreover, 
the high cost of soft template strictly restrains its wide 
application [84].

Compared with soft template technology, the hard tem‑
plate is more efficient and economic [89]. In the process, 
the artificial porous solid would be infiltrated with bio‑
mass solution. Subsequent, the biomass‑template mixture 
undergoes the process of dehydrates and polymerizes/
carbonizes. The final PC sample could be obtained by 
following removal of the initial template. Various inor‑
ganic materials can be adopted as hard templates, includ‑
ing SBA‑15, alumina membrane, silica spheres, etc. [90, 
91]. There have been reported studies on conversion of 
biomass into PC with controllable pore structure through 
hard template approach [84, 92]. Recently, Yin’s work 
adopted an in situ Stöber approach for design of hollow 
carbon microsphere with mesopore (HCMS) and hollow 
carbon microspheres (HCM) without mesopores [26]. The 
microwave absorption properties are significantly differ‑
ent due to their presence of mesopores. RL of − 84 dB 
was recorded for HCMS, and it is almost four times higher 
than that of the HCM. The remarkable example opens a 
significant avenue for the controllable synthesis of pore 
structure to optimize EM wave absorption property. It is a 

pity that the carbon source in the work is an organic rea‑
gent that includes environmentally harmful formaldehyde 
and resorcinol. Nonetheless, few studies have reported on 
synthesis of PC from nature biomass through hard tem‑
plate for EM absorption application, which may result 
from the low solvability of biomass in conventional rea‑
gent. Even so, biomass is the important renewable carbon‑
containing source in the world, and thus, the development 
of biomass‑based PC will make great contributions to the 
progress of efficient and economic microwave absorber. 
Therefore, continuous research in depth about the prepa‑
ration of PC with tunable pore size and distribution from 
biomass in the future is of great significance.

4  Biomass‑Derived PC‑Based Composite 
Absorber

It is well known that the RL value is a crucial criterion used to 
assess the microwave absorption performance of a material. 
For satisfying practical application, the RL is required below 
− 10 dB, implying that more than the 90% of incoming EM 
wave could be absorbed and attenuated. Based on the trans‑
mission line theory, the RL can be expressed by Eqs. 8 and 9 
[93, 94]:

where Zin relates to the input impedance; εr and μr repre‑
sent the complex permittivity and permeability; f is the 
EM wave frequency; d is the thickness of absorber; c is the 
velocity of light; Z0 is the impedance of free space. When 
the thickness is limited by the total weight, the RL highly 
depends on the EM parameters (i.e., εr and μr) in the meas‑
ured frequency range of 2–18 GHz. Hence, tailoring of εr 
and μr is an important prerequisite for superior EM absorb‑
ing properties. According to loss mechanism, the functional 
microwave absorbers could be divided into two categories: 
dielectric materials and magnetic materials [95]. Construct‑
ing multicomponent composites provides a way for design‑
ing the desired εr and μr, enhancing the multiple loss, which 
achieves the remarkable microwave absorption [96–99].

In general, the dielectric loss ability primarily originates 
from polarization and conductivity loss [100]. The polariza‑
tion loss could be further divided into interfacial polarization, 
electronic polarization, dipolar polarization, and ionic polari‑
zation. Electronic and ionic polarization usually appear at a 
much higher frequency range of 103–106 GHz, which can be 

(8)Zin = Z0

√
�r∕�r tanh[j(2�fd∕c)]

√
�r∕�r

(9)RL (dB) = 20 log |(Zin − Z0)∕(Zin + Z0)|
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excluded in microwave range [101]. Therefore, interfacial and 
dipolar polarization should be the main relaxation attenuation 
mechanism in 2–18 GHz. Generally, the interfacial relaxa‑
tion process always occurs in a heterogeneous system. The 
accumulation and uneven distribution of space charges at the 
interfaces will produce a macroscopic electric moment that can 
decay the incident EM energy effectively. The dipolar polariza‑
tion occurs in molecule with obvious dipole moment. Accord‑
ing to Debye polarization equation, these relaxation processes 
could be estimated by analyzing the relationship between ε″ 
and ε′, as shown in Eq. 10:

where εs is the static permittivity and ε∞ is the relative per‑
mittivity at high‑frequency limit. From Eq. 10, it is deduced 
that the plots of ε′–ε″ should be a semicircle (generally 
regarded as Cole–Cole semicircle). Each semicircle repre‑
sents one Debye relaxation process [45]. More Cole–Cole 
semicircles indicate the strong polarization relaxation pro‑
cess during attenuating EM wave process. The magnetic loss 
is definitely another key factor for the microwave absorp‑
tion. It is widely known that the magnetic loss is contributed 
dominantly by eddy current loss, exchange resonance, and 
natural resonance in the microwave frequency band [102]. 
The resonant peaks at low‑frequency and high‑frequency 
regions are usually associated with the natural resonance 
and exchange resonance, respectively. The contribution of 
eddy current to magnetic loss can be assessed by analyzing 
the dependence of μ″ (μ′)−2  f−1 on frequency. If the μ″ (μ′)−2 
 f−1 value keeps constant with the variation of frequency, the 
eddy current loss will be the main reason for the magnetic 
loss [103]. To evaluate the contribution of dielectric and 
magnetic loss in attenuating EM energies, the calculated 
dielectric loss tangent (tanδε = ε″/ε′) and magnetic loss tan‑
gent (tanδμ = μ″/μ′) of absorber can be used to assess the loss 
ability of the materials in dissipating EM wave energy [94]. 
It is well known that the absorbers with higher tanδε and 
tanδμ values usually have better EM wave absorption, which 
assures the incoming EM wave to be consumed quickly 
through the absorber materials.

As for biomass‑derived PC, the loss mechanism is mainly 
resultant from limited dielectric loss. The EM wave absorp‑
tion properties are insufficient to broaden their applications. 
Hence, the incorporation of other functional materials into 
biomass‑derived PC is an effective strategy to boost its 
microwave absorbency.

(10)
(
�
� −

�s + �∞

2

)2

+ (���)2 =
(
�s − �∞

2

)2

4.1  Biomass‑Derived PC‑Based Binary Composite 
Absorber

Guan and his co‑worker [104] decorated jackfruit peel‑
derived PC with Ni(OH)2 nanosheet for high‑performance 
microwave absorption application. The Ni(OH)2/PC com‑
posite exhibits the good microwave absorption properties 
with RL value of − 23.6 dB at 15.48 GHz. The increased 
dielectric properties are attributed to enhanced interfacial 
polarization and porous structure. Compared with dielectric 
materials Ni(OH)2, the magnetic substance such as mag‑
netic metals (e.g., Fe, Co, Ni, and their related alloys) and/
or metal oxides (e.g., γ‑Fe2O3,  Fe3O4, and  CoFe2O4) may be 
better alternatives [105–108]. Incorporating magnetic mate‑
rials into biomass‑derived PC not only enhances interfacial 
polarization, but also gains the favorable magnetic loss. To 
this end, numerous biomass‑derived PC‑based magnetic 
composites with superior microwave absorption perfor‑
mance have been reported in recent years.

Using rice husk‑derived porous carbon (RHPC) as sub‑
strate, Fang et al. [109] imbedded the Fe and Co magnetic 
nanoparticles into RHPC matrix for EM wave attenuation 
application (Fig. 4a). The obtained RHPC/Fe and RHPC/
Co both exhibit the high tangent dielectric and magnetic loss 
values. The synergistic effect between dielectric loss and 
magnetic loss endows the composites with strong EM wave 
dissipation ability. At thin thickness of 1.4 mm, the RHPC/
Fe exhibits a RL value of − 21.8 dB with broad frequency 
bandwidth of 5.6 GHz (Fig. 4b), and the strong microwave 
absorption intensity − 40.1 dB was obtained at 1.8 mm for 
RHPC/Co composite (Fig. 4c). Li et al. [110] reported a 
flexible two‑step method consisting of immersion and subse‑
quent carbothermal reduction under  N2 atmosphere for fab‑
rication of Co/C fibers as synergistic EM absorber by using 
nature cotton as raw materials. Appropriate amount of Co 
nanoparticles in carbon fiber generates a better dielectric and 
magnetic property as well as optimized impedance match‑
ing. As the result of these features, the Co/C fiber shows the 
remarkable microwave absorbing ability. At the filler content 
of 33%, the RL below − 10 dB could cover the frequency 
range of 11.3–18 GHz, which is almost the entire Ku‑band 
(from 12 to 18 GHz). Similarly, our group also synthesized 
the Co/C composite using the cotton as porous carbon pre‑
cursor and ZIF‑67 as the magnetic metal Co source (Fig. 4d) 
[111]. As shown in Fig. 4e, the optimal impedance match‑
ing was achieved. This should be attributed to the synergy 
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of relaxation, magnetic resonance, conductive loss. At the 
low filler loading of 25%, the maximum reflection loss 
can achieve − 60.0 dB at 8.48 GHz. Through adjusting the 
thickness to only 1.65 mm, the strong RL intensity is up to 
− 51.2 dB at 13.92 GHz with a broad bandwidth of 4.4 GHz 
(Fig. 4f). For Ni/C composite, Zhao et al. [112] reported 
an EM‑functionalized Ni/C foam produced via an algi‑
nate/Ni2+ hydrogel (Fig. 4g). The fabricated foam has high 
porosities with large surface area of 451 m2  g−1, a moderate 

conductivity (6 S  m−1), and important magnetism. Com‑
pared with traditional carbon foam and nano‑Ni powder, the 
Ni/C foam with unique microstructure and special synergis‑
tic effects of multiple components maintains great EM wave 
absorption performance. When the filler content is only 10 
wt%, the maximum RL value of − 45 dB was obtained at a 
thickness of 2 mm with effective frequency bandwidth of 
4.5 GHz. Similarly, our group had incorporated the mag‑
netic Ni nanoparticle into rice‑derived PC matrix via a facile 
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dipping method and subsequent activation process [113]. By 
controlling the precursor ratio, optimized microstructure and 
component could be simultaneously realized. The effect of 
developed pore structure and heterojunction generates the 
enhanced interface polarization. The 3D framework offers 
the transmission route of induced current. As a consequence 
of these properties, the as‑prepared Ni/C composite shows 
significant enhancement in microwave absorption. At the 
low filler content of 15%, the enhanced RL of –52 dB and 
wide effective absorption frequency bandwidth of 5 GHz 
were realized.

In comparison with the introduction of magnetic met‑
als, researchers are more apt to hybridize the ferrite with 
biomass‑derived PC, owing to its low toxicity, high com‑
patibility, and strong spin polarization at room temperature 
[32, 114, 115]. Gao et al. [116] decorate the  Fe3O4 nano‑
particles with walnut shell‑derived porous carbon (WPC) 
with honeycomb‑like through a facial solvothermal method. 
The obtained  Fe3O4/WPC composite displays the better 
microwave absorbency as compared to pure  Fe3O4 and sin‑
gle WPC. Its high‑efficiency EM attenuation resulted from 

dielectric loss of lightweight conductive WPC and magnetic 
loss of  Fe3O4 nanoparticles.

4.2  Biomass‑Derived PC‑Based Ternary Composite 
Absorber

Beyond such two‑phase composites, ternary composites 
based on biomass‑derived PC have also attracted immense 
interests. Their attracted features, like multiple interfacial 
polarization and superior impedance matching, would fur‑
ther boost the EM attenuating capacity of biomass‑derived 
PC. Wang et al. [117] embedded the Ni–NiO nanoparti‑
cles into chitosan‑derived nitrogen‑doped carbon aerogel 
(NCA) via an explosion method (Fig. 5a). From Fig. 5b, it 
is observed that the as‑prepared ternary composites Ni‑NiO/
NCA possess much more Cole–Cole semicircles than pure 
NCA substance, indicating the enhanced Debye polariza‑
tion process induced by multiple heterostructure. Strong RL 
intensity of − 49.1 dB was obtained at thin thickness of 1 mm 
(Fig. 5c). Wang et al. [118] investigated the EM response 
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behavior of diverse magnetic hierarchical porous carbon 
(MPC) composites prepared at different annealing tem‑
perature using loofah sponge biomass and Fe(NO3)3·9H2O 
as ingredients. From Fig. 5d, it is obvious that the sample 
obtained at 600 °C (MPC‑600) possesses much better micro‑
wave absorption properties compared to other samples. The 
author ascribes the great difference in EM absorption per‑
formance to the variable component of samples. In detail, 
the MPC‑500, MPC‑700, and MPC‑800 samples are binary 
composites according to XRD results (Fig. 5e). The for‑
mer is comprised of  Fe3O4 and carbon, and the latter two is 
composed of Fe and carbon component. The MPC‑600 is a 
typical ternary component, including Fe and  Fe3O4 as well 
as carbon media. Integrating the multiple interfaces, unique 
porous structure, and magnetic loss (Fig. 5f, g), the MPC‑
600 displays superior EM loss property as compared to other 
samples. A RL value of − 49.6 dB is obtained at thin thick‑
ness of 2 mm, and effective frequency bandwidth is up to 
5 GHz. Zhao et al. [119] demonstrated a ternary composite 
of Co@crystalline carbon@carbon aerogel that is produced 
from biomass alginate. An enhanced microwave absorption 
of − 43 dB was achieved under filler loading of 10 wt%. In 
this work, the author deduced that the multiple interfacial 
polarization at interface of neighboring phase with different 
dielectric constants, such as, Co nanoparticles/crystalline 
carbon shells, amorphous carbons/crystalline carbon layers, 

and carbon framework/wax, should be responsible for the 
enhanced dielectric properties.

5  Conclusion and Perspectives

Microwave absorption materials are desired to come with 
strong absorption intensity, broad absorption frequency 
bandwidth, lightweight, thin thickness, as well as low cost, 
high production, and ease of processing. In this review, 
biomass‑derived PCs have demonstrated huge potential to 
meet such requirements, due to its low density, facile syn‑
thesis strategies, tunable EM properties, as well as abundant 
available precursor. In this review, we systematically sum‑
marized the key factors determining the EM loss capacity 
of biomass‑derived PC media, and highlighted promising 
approaches have shown to improve the EM absorption prop‑
erties of biomass‑derived PC materials. Structural modifi‑
cation and compositional design have been demonstrated 
to be instrumental in achieving excellent EM absorption 
properties. For PC synthesized directly via carbonization 
of biomass, thermal treatment condition is a significant fac‑
tor for the enhancing microwave attenuation property. The 
activation method and templating method are both feasible 
strategy in tailoring the pore structure of biomass‑derived 
PC to achieve remarkable EM properties. Furthermore, their 
performance could be further improved by hybridizing with 

Table 1  Recent progress in biomass‑derived PC‑based EM wave absorption material

Sample Minimum RL value Filler content (%) RL ≦ − 10 dB References

dm RLmin dm fe

Spinach stem‑derived PC 2.71 − 62.2 30 2.71 7.3 [34]
PBPC 4.28 − 68.3 – 3.73 7.63 [51]
PC 2 − 42.8 70 1.5 2.24 [80]
Nanoporous carbon 2.9 − 51 8 1.8 4.8 [81]
AC/Ni(OH)2 6 − 23.6 50 4.5 2 [104]
RHPC/Fe 1.4 − 21.8 25 1.4 5.6 [109]
RHPC/Co 1.8 − 40.1 25 1.8 2.7 [109]
Co/C fiber 2 − 31 33 2.5 6.7 [110]
Carbon‑cotton/Co@NPC 2.55 − 60.0 25 1.65 4.4 [111]
Ni/C foam 2 − 45 10 2 4.6 [112]
HPMC 1.7 − 52 15 1.65 5 [113]
Fe3O4/WPC‑600 – − 51.3 50 2 5.8 [116]
Co@crystalline carbon@carbon 1.5 − 43 10 1.7 4.6 [119]
Ni‑NiO/NCA 1.5 − 41.9 50 1.5 3.5 [117]
Amorphous PC/Fe3O4@Fe 2 − 49.6 30 2 5 [118]
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other functional materials through synergizing multiple loss 
mechanisms.

Table 1 summaries the microwave absorption properties 
of current reported biomass‑derived PC‑based absorber. 
These materials indeed have made remarkable achievement. 
Even so, there are some challenges that still hinder its devel‑
opment. On one hand, it is certain that enlarging surface 
area and adjusting pore structure are favorable for enhancing 
the microwave absorption performance of biomass‑derived 
PC materials. However, effect of pore size and pore distri‑
bution on microwave absorption behavior is still unclear, 
which hinders the design of PC with better performance. 
The issue remains to be further investigated. Along with this 
issue, another challenge is to develop an effective approach 
to fabricate PC materials with controllable pore structure 
from biomass resource. It is acceptable that the construc‑
tion of multicomponent composite is a promising strategy to 
broaden the application of biomass‑derived PC in microwave 
absorption and has made a great achievement. Neverthe‑
less, there are still some fundamental issues to be addressed, 
i.e., understanding the absorption mechanisms in depth for 
the multicomponent systems and investigating the effect of 
interface species on the absorption performance. Consid‑
ering a practical application, apart from the characteristics 
such as lightweight, low cost, and remarkable absorption, 
the features of anti‑causticity, good thermal stability, and 
hydrophobicity should be also considered due to the pos‑
sible harsh working environment of electric devices. Hence, 
exploring versatile biomass‑derived absorbing materials 
with extensive requirements such as well resistant to high 
temperatures, good hydrophobicity, and strong anti‑caustic‑
ity should be put forward. Finally, apart from the porous 
structure, biomass in nature offers numerous advantages in 
designing nanocomposites. The combination of bio‑inspi‑
ration, nanotechnology, and chemical synthesis is expected 
to generate an increase in nanostructured materials from 
renewable sources for microwave absorption application in 
the years to come.
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