Supporting Information for

Improved Na⁺/K⁺ Storage Properties of ReSe₂-Carbon Nanofibers

Based on Graphene Modifications

Yusha Liao¹, Changmiao Chen¹, Dangui Yin¹, Yong Cai¹, Rensheng He^{1, *}, Ming Zhang^{1, *}

¹Key Laboratory for Micro/Nano Optoelectronic Devices of Ministry of Education, Hunan Provincial Key Laboratory of Low-Dimensional Structural Physics and Devices, School of Physics and Electronics, Hunan University, Changsha 410082, People's Republic of China

*Corresponding authors. E-mail: zhangming@hnu.edu.cn (Ming Zhang); hdwlhrs@hnu.edu.cn (Rensheng He)

Supplementary Figures and Tables

Fig. S1 XRD pattern of Re₂O₇@G@CNFs

Fig. S2 a-c SEM images of Re₂O₇ CNFs without GO. d-f SEM of ReSe₂@CNFs

Fig. S3 The diameter distribution of $ReSe_2@G@CNFs$ and $ReSe_2@CNFs$. We randomly selected 50 fibers to measure their diameters. According to the statistics, $ReSe_2@G@CNFs$ has the highest probability of appearing 240 nanometers in diameter, while 308 nanometers in ReSe_2@CNFs

Fig. S4 a-b SEM of Re₂O₇ CNFs with 1mmol Re. **c-d** SEM of 1 mM-ReSe₂@G@CNF and **e-f** SEM of 0.4 mM-ReSe₂@G@CNFs

Fig. S5 The TEM image of $ReSe_2@G@CNFs$

S**3** / S**10**

Fig. S6 Differential Thermal Analysis (DTA) plot of ReSe₂@G@CNFs. The endothermic peak and exothermic peak correspond to different types of reactions

Fig. S7 The XPS analysis of $ReSe_2@G@CNFs$. **a** XPS survey spectrum of $ReSe_2@G@CNFs$, and the high-resolution spectrum of **b** C 1s, **c** Re 4f, and **d** Se 3d

Fig. S8 a XRD and b-d SEM of the as-prepared pure ReSe₂

The pure ReSe₂ was synthesized through hydrothermal method, detailed process as follows: Firstly, 0.26g NH₄ReO₄ and 0.32g Se power were dispersed in ethylene glycol and hydrazine hydrate hybrid solution stirred for half an hour. Then the solution was transferred into a 50ml stainless steel Teflon-lined autoclave and maintained at 200 °C for 24h. After cooling to room temperature, the material was washed with distilled water and ethanol for several times and dried in a vacuum oven overnight. Finally, the collected sample was annealed at 600 °C for 2h in Ar atmosphere. The XRD plot in Fig. S8 is well matched to JPCDS:50-0537, which is verified the existence of ReSe₂. From the SEM images, we can see many nanoparticles were consisted of tiny nanoflakes, forming a flower-sphere structure.

Fig. S9 I-V curves of two samples between -50 to 50 mV

Fig. S10 a, c cycle and **b, d** rate performance of 1 mM-ReSe₂@G@CNFs and 0.4 mM-ReSe₂@G@CNFs in NIBs, respectively

Fig. S11 Nyquist plot of ReSe₂@G@CNFs before (black line) and after (blue line) 100 cycles, as well as the EIS of ReSe₂@CNFs (red line). The first impedance test was performed after a cycle of CV test

Fig. S12 SEM of **a-b** ReSe₂@G@CNFs electrode before/after 100 cycles. **c-d** ReSe₂ @CNFs electrode before/after 100 cycles

Fig. S13 Long cyclic performance of ReSe₂@G@CNFs at 200 mA g^{-1} after 550 cycles in KIBs

Fig. S14 SEM images of NVP/C composites synthesized by ball milling

Fig. S15 XRD image of NVP/C composites

The Na₃V₂(PO4)₃/C composites were prepared through a facile ball-milling method. Typically, 21 mmol NaH₂PO₄•2H₂O, 14 mmol NH₄VO₃ and 1.26 g PAN were putted in an agate jar, then the jar was ground at a rate of 400 rpm for 12 h. The prepared precursor was annealed in argon/hydrogen gas at 800 $^{\circ}$ C for 8 h.

For the fabrication of full cells, $Na_3V_2(PO_4)_3/C$ mixed with Super P and polyvinylidene fluoride (PVDF) (8:1:1 by weight) was spread on aluminum foil and adopted as the cathode. The loading mass of active material was about 2.3~2.5mg/cm² for cathode. The ReSe₂ CNFs and Na₃V₂(PO₄)₃/C were assembled in CR2032 coin cells, and the mass ratio of anode to cathode was controlled at about 1:1.8 to balance the capacity.

Fig. S16 The LED array lighted for 0, 30, 60, 90, and 120 min and it almost out at last

Materials	Voltage Range (V vs. K / K ⁺)	Capacity (mAh g ⁻¹) / Current Density (mA g ⁻¹) / Cycles	Rate Capacity (mAh g ⁻¹) / Current Density (mA g ⁻¹)	Capacity Retention / Current Density (mA g ⁻¹) / Cycles	Refs.
Nitrogen-doped graphene	0.01-1.5	$\sim \! 210/100/100^{th}$	200/100; 50/200	78%/100/100 th	[1]
Tin-based composite	0.01-2	${\sim}110/25/30^{th}$	\	73%/25/30 th	[2]
K ₂ Ti ₈ O ₁₇	0.01-3	~110.7/20/50 th	80/100; 60/200; 50/400; 44.2/500	١	[3]
Hard-carbon microspheres (HCS)	0.01-1.5 1 C=280mA/g	~216/0.1C/100 th	262/0.1C; 245/0.2C; 205/1C; 190/2C; 136/5C	83%/0.1C/100 th	[4]
Graphitic materials	0.01-2	/	270/5; 266/10; 234/50; 141/200	/	[5]
Hard-soft composites carbon	0.01-2 1 C=279mA/g	~200/1C/200 th	230/0.5C; 210/1C; 190/2C; 121/5C; 81/10C	93%/1C/200 th	[6]
MXene-Derived K ₂ Ti ₄ O ₉	0.01-3	~88/50/100 th	150/20; 119/50; 105/100; 97/150; 89/200; 8/300	61%/50/100 th	[7]
3D porous carbon/Sn composites	0.01-3	~276.4/50/100 th	310/50; 280/100; 200/200; 150/500	70%/50/100 th	[8]
Sn ₄ P ₃ /C	0.01-2	$\sim 307.2/50/50^{\text{th}}$ close to 0 after 120 th	399.4/50; 221.9/1000	80%/50/50 th	[9]
Nitrogen-rich hard carbon	0.01-3 1 C=280mA/g	~205/0.12C/200 th	250/0.12C;205/0.36C;190/0.72; 180/1.8C; 170/3.6C; 160/7.2C;	\	[10]
ReSe2@G@CNFs	0.01-3	~226/200/220 th ~178/200/550 th ~212/500/150 th	254/100; 235/200; 203/500; 182/1000; 157/2000	95%/200/220 th 73%/200/550 th 86%/500/150 th	this work

Table S1 The comparison of K⁺ storage properties of various anodes

Supporting References

- K. Share, A.P. Cohn, R. Carter, B. Rogers, C.L. Pint, Role of nitrogen doped graphene for improved high capacity potassium ion battery anodes. ACS Nano 10(10), 9738–9744 (2016). https://doi.org/10.1021/acsnano.6b05998
- [2] I. Sultana, T. Ramireddy, M.M. Rahman, Y. Chen, A.M. Glushenkov, Tin-based composite anodes for potassium-ion batteries. Chem. Commun. 52(59), 9279-9282 (2016). https://doi.org/10.1039/C6CC03649J
- [3] J. Han, M. Xu, Y. Niu, G.N. Li, M. Wang, Y. Zhang, M. Jia, C.M. Li, Exploration of K₂Ti₈O₁₇ as an anode material for potassium-ion batteries. Chem. Commun. 52(75), 11274-11276 (2016). https://doi.org/10.1021/acsnano.6b05998
- [4] Z. Jian, Z. Xing, C. Bommier, Z. Li, X. Ji, Hard carbon microspheres: Potassiumion anode versus sodium-ion anode. Adv. Energy Mater. 6(3), 1501874 (2016). https://doi.org/10.1021/acsnano.6b05998
- [5] W. Luo, J. Wan, B. Ozdemir, W. Bao, Y. Chen et al., Potassium ion batteries with graphitic materials. Nano Lett. 15(11), 7671-7677 (2015). https://doi.org/10.1021/acs.nanolett.5b03667
- [6] Z. Jian, S. Hwang, Z. Li, A.S. Hernandez, X. Wang, Z. Xing, D. Su, X. Ji, Hardsoft composite carbon as a long-cycling and high-rate anode for potassium-ion batteries. Adv. Funct. Mater. 27(26), 1700324 (2017). https://doi.org/10.1002/adfm.201700324
- Y. Dong, Z.S. Wu, S. Zheng, X. Wang, J. Qin, S. Wang, X. Shi, X. Bao, Ti₃C₂ MXene-derived sodium/potassium titanate nanoribbons for high-performance sodium/potassium ion batteries with enhanced capacities. ACS Nano 11(5), 4792-4800 (2017). https://doi.org/10.1021/acsnano.7b01165
- [8] K. Huang, Z. Xing, L. Wang, X. Wu, W. Zhao, X. Qi, H. Wang, Z. Ju, Direct synthesis of 3D hierarchically porous carbon/Sn composites via in situ generated nacl crystals as templates for potassium-ion batteries anode. J. Mater. Chem. A 6(2), 434-442 (2018). https://doi.org/10.1039/C7TA08171E
- [9] W. Zhang, J. Mao, S. Li, Z. Chen, Z. Guo, Phosphorus-based alloy materials for advanced potassium-ion battery anode. J. Am. Chem. Soc. 139(9), 3316-3319 (2017). https://doi.org/10.1021/jacs.6b12185
- [10]C. Chen, Z. Wang, B. Zhang, L. Miao, J. Cai et al., Nitrogen-rich hard carbon as a highly durable anode for high-power potassium-ion batteries. Energy Storage Mater. 8, 161-168 (2017). https://doi.org/10.1016/j.ensm.2017.05.010